Digital Image Processing

Σχετικά έγγραφα
Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Συχνότητας

Advances in Digital Imaging and Computer Vision

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Advances in Digital Imaging and Computer Vision

Digital Image Processing

Εργαστήριο ADICV. Fourier transform, frequency domain filtering and image restoration. Κώστας Μαριάς 3/4/2017

Digital Image Processing

Digital Image Processing

Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

Ενότητα 4: Φιλτράρισµα στο Πεδίο Συχνοτήτων (ΙΙ)

Ιατρικά Ηλεκτρονικά. Χρήσιμοι Σύνδεσμοι. ΙΑΤΡΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΔΙΑΛΕΞΗ 5α. Σημειώσεις μαθήματος: E mail:

Advances in Digital Imaging and Computer Vision

2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier

Advances in Digital Imaging and Computer Vision

Ο μετασχηματισμός Fourier

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. στο χώρο της συχνότητας

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. Διακριτός Μετασχηματισμός Fourier DFT

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου

Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας

Κεφάλαιο 6: Βελτιστοποίηση εικόνας 6.73

Advances in Digital Imaging and Computer Vision

Επανάληψη Μιγαδικών Αριθμών

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

2. Ανάλυση και Σύνθεση κυματομορφών με την μέθοδο Fourier

Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Παρουσίαση του μαθήματος

Αντίστροφος Μετασχηματισμός Ζ. Υλοποίηση συστημάτων Διακριτού Χρόνου. Σχεδίαση φίλτρων

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Ψηφιακή Επεξεργασία Σηµάτων. ηµήτριος Βαρσάµης Καθηγητής Εφαρµογών

Ψηφιακή Επεξεργασία Σημάτων

Advances in Digital Imaging and Computer Vision

Digital Image Processing

Ο μετασχηματισμός Fourier

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

Εργαστήριο ADICV2. Image filtering. Κώστας Μαριάς

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1

ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT)

Group (JPEG) το 1992.

ΕΝΟΤΗΤΑ 12: ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE

Ψηφιακή Επεξεργασία Εικόνων

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. DTFT και Περιοδική/Κυκλική Συνέλιξη

Ψηφιακή Επεξεργασία Σημάτων

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΙΟΥΝΙΟΥ 2004., η οποία όµως µπορεί να γραφεί µε την παρακάτω µορφή: 1 e

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα»

20-Φεβ-2009 ΗΜΥ Διακριτός Μετασχηματισμός Fourier

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1

2. ΤΟΜΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕ ΙΣΟΤΟΠΑ

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Ψηφιακή Επεξεργασία Σημάτων

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών

ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου

X(e jω ) = x[n]e jωn (1) x[n] = 1. T s

Ψηφιακή Επεξεργασία Εικόνας

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 2. ΣΤΟΙΧΕΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

Μαθηματικός Ορισμός Διδιάστατου Χώρου (R 2 )

Ο Ήχος ως Σήμα & η Ακουστική Οδός ως Σύστημα

Παρουσίαση Νο. 5 Βελτίωση εικόνας

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 8 Επεξεργασία Σήματος με την Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων

2.1 Περιοδικές συναρτήσεις και τριγωνομετρικά αναπτύγματα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x)

Ανακατασκευή εικόνας από προβολές

Χόρδισμα Οργάνων με την μέθοδο των Zero Crossings

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform)

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1

Μετασχηµατισµός FOURIER ιακριτού χρόνου DTFT

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ

3-Μαρτ-2009 ΗΜΥ Γρήγορος Μετασχηματισμός Fourier Εφαρμογές

Μάθημα: Μηχανική Όραση

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 ( ) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 ΑΠΑΝΤΗΣΕΙΣ

Κεφάλαιο 8 Φίλτρα. 8.1 Γενικά. Κωνσταντίνος Γ. Περάκης

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Kεφάλαιο 5 DFT- FFT ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISCRETE FOURIER TRANSFORM 1/ 80. ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ DFT-FFT Σ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ

Digital Image Processing

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R )

3-Φεβ-2009 ΗΜΥ Σήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

. Σήματα και Συστήματα

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση

Transcript:

Digital Image Processing Φιλτράρισμα στο πεδίο των Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008.

Φίλτρο: μια διάταξη ή ένα υλικό για την καταστολή ή την ελαχιστοποίηση κυμάτων ή ταλαντώσεων συγκεκριμένων. Συχνότητα: Το πλήθος των επαναλήψεων της ίδιας ακολουθίας τιμών μιας περιοδικής συνάρτησης που παρατηρείται κατά την διάρκεια μιας μοναδιαίας μεταβολής της ανεξάρτητης μεταβλητής Λεξικό Webster

Η τρελή Ιδέα του Fourier (1807): Οποιαδήποτε περιοδική συνάρτηση μπορεί να εκφραστεί ως ένα άθροισμα ημιτόνων και συνημιτόνων διαφορετικών με τον κάθε όρο από τους όρους να πολλαπλασιάζεται με διαφορετικό συντελεστή. Στην αρχή δεν τον πίστεψαν: ο Laplace, ο Poison ακόμη και ο Lagrange. Jean Baptiste Joseph Fourier Για το λόγο αυτό δεν μεταφράστηκε η αρχική εργασία του στα Αγγλικά μέχρι το 1878.

1-D Διακριτός μετασχηματισμός Fourier: M 1 j2 ux/ M ( ) ( ), 0,1,2,...,M1 F u f x e u x0 1-D Διακριτός Αντίστροφος μετασχηματισμός Fourier: 1 f x e x M M 1 j2 ux/ M ( ) F(u), 0,1,2,...,M1 x0

Παράδειγμα: Να υπολογιστεί ο διακριτός μετασχηματισμός Fourier της δειγματοληπτημένης συναρτήσεως που φαίνεται παρακάτω

Παράδειγμα: 1 0.8 0.6 0.4 f ( x) sin(2 ft), f 5 0.2 0-0.2-0.4-0.6-0.8 Δειγματοληπτούμε την συνάρτηση με f s =150 και υπολογίζουμε το φάσμα του μετασχηματισμού Fourier 2 2 Fu ( ) Re(F(u)) Imag(F(u) -1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 0.8 0.6 0.4 0.2 0-0.2-0.4-0.6-0.8-1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Φάσμα του μετ. Fourier 80 70 F(u 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 u

Πώς μοιάζει μια ημιτονική εικόνα; Μ=Ν=1024 10 10 f ( x, y) 255sin 2 x y, 1024 1024 0 xy, 1023 Πόση είναι η Οριζόντια συχνότητα και η κάθετη Συχνότητα της εικόνας; Άρα πόσες είναι οι περιοδικές επαναλήψεις της εικόνας κατά τον x, y άξονα;

Πώς μοιάζει μια ημιτονική εικόνα; Μ=Ν=1024 10 f ( x, y) 255sin 2 x, 1024 0 xy, 1023

2-D Διακριτός μετασχηματισμός Fourier: M 1 ux vy j2 M N F( u, v) f ( x, y) e, u 0,1,2,...,M1, u 0,1,2,..., N 1 x0 2-D Διακριτός Αντίστροφος μετασχηματισμός Fourier: M 1 ux vy j2 M N 1 f ( x, y) F( u, v) e, x 0,1,2,...,M1, y 0,1,2,..., N 1 MN x0

2-D Διακριτός μετασχηματισμός Fourier: x,y συντεταγμένες χώρου (θέσεις pixels) ενώ u,v συχνότητες. Άρα μας επιτρέπει την μετάβαση από το πεδίο του χώρου στο πεδίο των. M 1 ux vy j2 M N F( u, v) f ( x, y) e, x0 u 0,1,2,...,M1, u 0,1,2,..., N 1 Χρήσιμο στην επεξεργασία εικόνας (π.χ. φίλτρα) και όχι μόνο.

Μια εικόνα αποτελείται από πραγματικούς αριθμούς ή ακεραίους που εκφράζουν την φωτεινότητα ή το χρώμα της εικόνας σε εικονοστοιχεία-pixels της. DFT είναι γενικά μιγαδικός Άρα μπορεί να γραφτεί ως το άθροισμα ενός πραγματικού και ενός φανταστικού αριθμού F( u, v) F ( u, v) 1F real imag M1N1 u v Freal ( u, v) f ( x, y) cos 2 x y x0 y0 M N M1N1 u v Fimag ( u, v) f ( x, y) sin 2 x y x0 y0 M N

Άρα ο DFT μιας εικόνας έχει μέτρο και φάση Το μέτρο του DFT 2 2 F( u, v) F ( u, v) F ( u, v) real imag Η φάση του DFT F (, ) 1 imag u v ( uv, ) tan Freal ( u, v) Matlab Fm = abs(fft2(f)); %μέτρο του DFT A = angle(fft2(f)); %φάση σε ακτίνια Τι αναπαριστά το στοιχείο F(0,0);

Ιδιότητες Μετασχηματισμού Fourier (1/3)

Ιδιότητες Μετασχηματισμού Fourier (2/3)

Ιδιότητες Μετασχηματισμού Fourier (3/3)

Συμμετρία του Μετ. Fourier Από την ιδιότητα της συμμετρίας και περιοδικότητας προκύπτουν συμμετρίες ως προς το μέσο της συχνότητας (u,v)=(m/2,n/2) Για καλύτερη απεικόνιση θεωρούμε μια απεικόνιση με κέντρο τον αξόνων (u,v) το κέντρο του πίνακα.

Fourier Magnitude Fourier Spectrum F u v R u v I u v 2 2 (, ) (, ) (, ) 1/2 f(x, y F(u, v

Fourier Magnitude Fourier Spectrum F u v R u v I u v 2 2 (, ) (, ) (, ) 1/2 f(x, y F(u, v

Fourier Magnitude Fourier Spectrum F u v R u v I u v 2 2 (, ) (, ) (, ) 1/2 f(x, y F(u, v

Fourier Magnitude Fourier Spectrum F u v R u v I u v 2 2 (, ) (, ) (, ) 1/2 f(x, y 1 + log F(u, v

Τα βασικά βήματα φιλτραρίσματος στο πεδίο των

Κατηγορίες Φίλτρων Υψιπερατό φιλτράρισμα: αποκοπή χαμηλών (π.χ. ανάδειξη ακμών) Χαμηλοπερατό Φίλτράρισμα: αποκοπή υψηλών (απαλοιφή θορύβου) Ζωνοφρακτικό Φίλτράρισμα: αποκοπή ενδιάμεσων

Από Χωρικά φίλτρα σε Φίλτρα Έστω εικόνα μεγέθους MxN και φίλτρο mxn Για χωρικό φιλτράρισμα εφαρμόζουμε τη σχέση g=f*h Για φιλτράρισμα στο πεδίο των g=f.h Όμως το H είναι mxn Επεκτείνεται η μάσκα h με μηδενικά ώστε να έχει διαστάσεις MxN Υπολογίζουμε τον DFT της νέας μάσκας h Εφαρμόζεται G=F.H g=idft(g)

Χαμηλοπερατό φίλτρο Το ιδεατό χαμηλοπερατό φίλτρο έχει συνάρτηση μεταφοράς : D(u,v) η απόσταση του σημείου u,v από το σημείο (0,0) D 0 θετικός αριθμός H ( u, v) 1 D( u, v) 0 D( u, v) D D 0 0

Χαμηλοπερατό φίλτρο Αποτελέσματα από χαμηλοπερατά φίλτρα με cutoff συχνότητες απόστασης 5,15,30,80, 230

Χαμηλοπερατό φίλτρο Μειονεκτήματα των ιδεατών χαμηλοπερατών φίλτρων Δεν είναι υλοποιήσιμα από υλικό Δημιουργία ringing effect (εξαιτίας της απότομης μεταβολής) H ( u, v) 1 Λύση Butterwoth φίλτρα 2 1 D( u, v) D0 n

Σύγκριση ιδεατού και φίλτρου Butterworth

Φίλτρα Gauss στο πεδίο των Είναι χαμηλοπερατά φίλτρα και έχουν συνάρτηση μεταφοράς: H ( u, v) e D(u,v) D 0 2

Φίλτρα Gauss στο πεδίο των D 0 =30 D 0 =10

Υψιπερατά φίλτρα Είναι φίλτρα τα οποία χρησιμοποιούνται για την ανάδειξη ακμών στις εικόνες Υπολογισμός της συνάρτησης μεταφοράς: H High =1-H Low

Υψιπερατά φίλτρα Ιδεατό(IDEAL High Pass Filter IHPF) H IHPF =1-H ILPF Butterwoth H BHPF =1-H BLPF Gauss H GHPF =1-H GLPF

Υψιπερατά φίλτρα