ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΕΝΔΕΚΑΤΟ ΘΕΩΡΙΑΣ-ΑΥΤΟΣΥΣΧΕΤΙΣΗ(AUTOCORELLATION) Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2008-2009
ΕΠΙΧ Οικονοµετρικά Πρότυπα ιαφάνεια 1 ΓΕΝΙΚΑ Ι Ηετεροσκεδαστικότητααναφέρεταιστογεγονόςότιηδιακύμανσητων καταλοίπων είναι σταθερή και ίση με ένα αριθμό.αλλη μια υπόθεση των Gauss-Markov υποστηρίζειότι COV ( ε, ε ) = 0, i j i j Ηυπόθεσηαυτήεκφράζειτογεγονόςότιοιδιάφορεςτιμέςτου διαταρακτικού όρου δεν συσχετίζονται. Δηλαδή ότι ο διαταρακτικός όροςτηςπεριόδου iδενσυσχετίζεταιμεαυτώντηςπεριόδου j. Ανη υπόθεση αυτή δεν ικανοποιείται τότε μιλάμε για το φαινόμενο της αυτοσυσχέτισης Ηαυτοσυσχέτισηπαρατηρείταικυρίωςσεστοιχείαχρονολογικώνσειρών (καλύπτεταιαποτομάθηματωντεχνικώνπροβλέψεων& ελέγχου). Μιαπιθανήεξήγησητουφαινομένουπεριλαμβάνειτογεγονόςότιη επίδραση κάποιων παραγόντων όπως αυτές περιλαμβάνονται στον δαιταρακτικό όρο δεν εξαντλείται στην τρέχουσα περίοδο αλλά διαχέεταικαισεμελλοντικέςπεριόδους.
ΕΠΙΧ Οικονοµετρικά Πρότυπα ιαφάνεια 2 ΓΕΝΙΚΑ ΙΙ Θέλουμεναέχουμετηνικανότηταναελέγχουμεαντα σφάλματαείναιαυτοσυσχετιζόμεναήόχι. Θέλουμεναελέγξουμετημηδενικήυπόθεσηανρ = 0 στην ε t = ρε t-1 + u t, t =2,, n, όπου ε t είναιοόροςτου σφάλματοςτουμοντέλουκαι u t είναιι.α.κ. (ισόνομα και ανεξάρτητα κατανεμημένα). Μόνομεεξωγενείςμεταβλητές, τοτεστείναιπολύ απλό απλά παλινδρομούμε τα κατάλοιπα σε κατάλοιπα με υστέρηση και εκτελούμε ένα t-τεστ.
ΕΠΙΧ Οικονοµετρικά Πρότυπα ιαφάνεια 3 Συνέπειες Αυτοσυσχέτισης (Autocorellation Effects) Οιεκτιμητέςπουπροκύπτουναποέναοικονομετρικό υπόδειγμα είναι BLUE. Ωστόσοστηνπερίπτωσητηςαυτοσυσχέτισηςοιεκτιμητέςπου παίρνουμε δεν είναι ασυμπτωτικά αποτελεσματικοί. Αραμηνλαμβάνονταςυπόψητηναυτοσυσχέτισηη διακύμανση του εκτιμητή υποεκτιμάται με αποτέλεσμα οι τιμές των t-ratios να είναι μεγάλες. Οι εκτιμητές που παίρνουμε δεν είναι άριστοι. 2 2 ΧΧ t t 1 ΧΧ t t 1 σ σ t 2 t Var( β1) = (1+ 2ρ + 2 ρ +...) 2 2 2 2 Χ Χ ( Χ ) ( Χ ) t t t t t t t t
ΕΠΙΧ Οικονοµετρικά Πρότυπα ιαφάνεια 4 Διαπίστωση της Αυτοσυσχέτισης Ι(- Έλεγχος Durbin Watson) Ο έλεγχος των Durbin Watson (1950, 1951) α οτελεί τον ερισσότερο διαδεδοµένο τρό ο ελέγχου της αυτοσυσχέτισης ρώτης τάξης στο διαταρακτικό όρο. Τα βήµατα ου ακολουθούµε για τον έλεγχο αυτό είναι τα αρακάτω: Βήµα1 Γράφω τις δύο υ οθέσεις για την ύ αρξη της αυτοσυσχέτισης Ηο: εν υ άρχει αυτοσυσχέτιση ρ = 0 Η1: Υ άρχειαυτοσυσχέτισηρ 0 ήρ>0 ήρ<0 Ο έλεγχος για την αυτοσυσχέτιση ρώτης τάξης µε τον έλεγχο των DW γίνεται α ό τους ίνακες ου οι ίδιοι δηµιούργησαν Βήμα2 Σχηματίζοντας ένα ημικύκλιο βρίσκω τις πέντε περιοχές που σχηματίζονται σύμφωνα με τα κρίσιμα σημεία για επίπεδο σημαντικότητας 5% (κατώτερο dl και ανώτερο όριο du) για η παρατηρήσεις και κ αριθμό ερμηνευτικών μεταβλητών
ΕΠΙΧ Οικονοµετρικά Πρότυπα ιαφάνεια 5 Διαπίστωση της της Αυτοσυσχέτισης Ι(- Έλεγχος Durbin Watson) Βήµα3 Εκτιµούµε τη βασική συνάρτηση µε τη µέθοδο των ελαχίστων τετραγώνων και σώζουµε τα κατάλοι α εt Βήµα4 Υ ολογίζουµε το στατιστικό d των Durbin-Watson α ό την οσότητα: 2 ( ε t εt 1) εtεt 1 t= 2 t= 2 d = 2(1 ) = 2(1 ρ) 2 2 ε ε Βήμα5 t t= 1 t= 1 Ανηποσότηταd < dl(ρ> 0) υπάρχειθετικήαυτοσυσχέτιση ΑνηποσότηταdL< d < duαβέβαιαπεριοχή ΑνηποσότηταdU< d < 4 -du(ρ=0) Δενυπάρχειαυτοσυσχέτιση Ανηποσότητα4 -du< d < 4 dlαβέβαιαπεριοχή Ανηποσότητα4 dl< d (ρ<0) υπάρχειαρνητικήαυτοσυσχέτιση t
ΕΠΙΧ Οικονοµετρικά Πρότυπα ιαφάνεια 6 Διαπίστωση της της Αυτοσυσχέτισης ΙΙ (Κριτήριο του Durbin) ΟσυγκεκριμένοςέλεγχοςείναιπολύαπλόςκαιδενισχύειγιαέλεγχοόπουηΥt-1 χρησιμοποιείται στο υπόδειγμα. Τα βήματα που ακολουθούμε: Υπολογίζουμε την στατιστική του Durbin ως εξής: Ν 1 Ν 2 h= ρ % sa ρ Όπου Ν μέγεθος, η εκτίμηση του συντελεστή αυτοσυσχέτισης που προκύπτει από 2 την ΜΕΤ, s % a η εκτίμηση διακύμανσης του συντελεστή της Υt-1. Εκτελούμε τον παρακάτω έλεγχο H : ρ = 0 vs H : ρ 0 0 1 hz a
ΕΠΙΧ Οικονοµετρικά Πρότυπα ιαφάνεια 7 Διαπίστωσητης ΑυτοσυσχέτισηςΙΙΙ Μπορούμε να ελέγξουμε για AR(q) αυτοσυσχέτιση με τον ίδιο βασικό τρόπο όπως και στην AR(1) Απλά περιλαμβάνουμε q μεταβλητές με υστέρηση των καταλοίπων στην παλινδρόμηση και ελέγχουμε την συνολικήσημαντικότητα. Μπορούμε να χρησιμοποιήσουμε το F τεστ ή το LM τεστ, όπου η LM εκδοχή καλείται Breusch-Godfrey τεστ και είναι (n-q)r 2 χρησιμοποιώντας R 2 απόπαλινδρόμησητων καταλοίπων. Μπορούμε επίσης να ελέγξουμε για μορφές εποχικότητας
ΕΠΙΧ Οικονοµετρικά Πρότυπα ιαφάνεια 8 Διαπίστωση της Ετεροσκεδαστικότητας Έλεγχοςαυτοσυσχέτισηςπρώτηςτάξης Διάγραμματηςδιασποράς ΈλεγχοςτουVonNeumann ΈλεγχοςτωνDurbin-Watson Έλεγχοςh Σε 2 -Durbin t ΕναλλακτικόςέλεγχοςτουDurbin Έλεγχοςτουt ΈλεγχοςGearyήέλεγχοςροών ΈλεγχοςανεξαρτησίαςτουΧ2 ΈλεγχοςBerenblut-Web
ΕΠΙΧ Οικονοµετρικά Πρότυπα ιαφάνεια 9 Εκτίμηση ενός υποδείγματος όταν υπάρχει αυτοσυσχέτιση Οι λόγοι για τους οποίους μπορεί να υπάρχει αυτοσυσχέτιση είναι οι εξής: Λαθεμένηεξειδίκευσητουυποδείγματοςωςπροςτις μεταβλητέςπου περιλαμβάνει Λαθεμένηεξειδίκευσητουυποδείγματοςωςπροςτη συναρτησιακήτουσχέση Λαθεμένηεξειδίκευσητουυποδείγματοςωςπροςτηδυναμική διάρθρωσητου φαινομένου Οι λόγοι αυτοί αναφέρονται σε λαθεµένη εξειδίκευση του υ οδείγµατος και όχι σε λαθεµένη εξειδίκευση της διάρθρωσης των σφαλµάτων Ε οµένως στην ερί τωση ου η αυτοσυσχέτιση οφείλεται σε λαθεµένη Εξειδίκευση του υ οδείγµατος ριν α ό την εκτίµηση για διόρθωση της αυτοσυσχέτισης θα ρέ ει να γίνει διερεύνηση για τη σωστή εξειδίκευση του Υ οδείγµατος Η µετατρο ή του υ οδείγµατος α ό γραµµικό σε λογαριθµικό ή σε ολυωνυµικό ή σε δυναµικό, α αλείφει το ρόβληµα της αυτοσυσχέτισης Σε ερί τωση όµως ου δεν α αλείφεται η αυτοσυσχέτιση, τότε ροχωρούµε σε µεθόδους εκτίµησης ου λαµβάνουν υ όψη την αυτοσυσχέτιση στα σφάλµατα
ΕΠΙΧ Οικονοµετρικά Πρότυπα ιαφάνεια 10 ΑντιμετώπισηΑυτοσυσχέτισης (Facing Autocorellation) Αρχίζουμεμετηνπερίπτωσημεαυστηράεξωγενείς μεταβλητές, και διατηρούμε όλες τις G-M υποθέσεις εκτός της μη αυτοσυσχέτισης Υποθέτουμεότιτασφάλματαακολουθούν AR(1) έτσι u t = ρu t-1 + e t, t =2,, n Var(u t ) = σ 2 e /(1-ρ2 ) Χρειάζεταιναπροσπαθήσουμενα μετασχηματίσουμε την εξίσωση έτσι ώστε να μην έχουμε αυτοσυσχέτιση
ΕΠΙΧ Οικονοµετρικά Πρότυπα ιαφάνεια 11 ΑντιμετώπισηΑυτοσυσχέτισης (Facing Autocorellation) Υποθέστεότιαφού y t = β 0 + β 1 x t + u t, τότε y t-1 = β 0 + β 1 x t-1 + u t-1 Εάνπολλαπλασιάσουμεμε τηνδεύτερηεξίσωσημερ, και την αφαιρέσουμε από την πρώτη, παίρνουμε y t ρy t-1 = (1 ρ)β 0 + β 1 (x t ρx t-1 ) + e t, αφού e t = u t ρu t-1 Αυτάταοιονείδιαφορισμέναδεδομένα(quasi-differenced data) δημιουργούν ένα μοντέλο χωρίς αυτοσυσχέτιση
ΕΠΙΧ Οικονοµετρικά Πρότυπα ιαφάνεια 12 ΕφικτήΕκτίμησηΓενικευμένων ΕλαχίστωνΤετραγώνων GLS Τοπρόβλημαμεαυτήτημέθοδοείναιότιδεν γνωρίζουμε το ρ, έτσι χρειαζόμαστε έναν εκτιμητή πρώτα Μπορούμεαπλάναχρησιμοποιήσουμετονεκτιμητή που παίρνουμε από την παλινδρόμηση των καταλοίπων επάνω σε κατάλοιπα με υστερήσεις Εξαρτάταιαπότοτικάνουμεμετηνπρώτη παρατήρηση, αυτό καλείται Cochrane-Orcutt ή Prais- Winsten εκτίμηση 13