ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

Σχετικά έγγραφα
ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

B1. Η ζπλάξηεζε f είλαη ζπλερήο θαη παξαγσγίζηκε ζην 0,, σο πειίθν παξαγσγίζηκσλ. 1 x ln x ln x x ln x. x x x x. f x ln x 0 ln x 1 x e

ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 2017

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

ΔΠΑΝΑΛΖΠΣΗΚΟ ΓΗΑΓΧΝΗΜΑ Γ' ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ. ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (ζε όλη ηην ύλη) ΓΗΑΡΚΔΗΑ ΔΞΔΣΑΖ: 3 ΧΡΔ

ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο :

Master Class 3. Ο Ν.Ζανταρίδης προτείνει θέματα Μαθηματικών Γ Λσκειοσ ΘΕΜΑ 1.

(Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α. Α1. Βιέπε απόδεημε Σει. 262, ζρνιηθνύ βηβιίνπ. Α2. Βιέπε νξηζκό Σει. 141, ζρνιηθνύ βηβιίνπ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 Ενδεικτικές απαντήσεις

Πανελλαδικές εξετάσεις 2017

f(x) γν. φθίνουσα ολ.ελ. γν. αύξουσα

Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α

iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

ΘΔΜΑ 1 ο Μονάδες 5,10,10

) της γραφικής παράστασης της f που άγονται από το Α, τις οποίες και να βρείτε. Μονάδες 8 Γ2. Αν ( 1) : y x, και ( 2

και δεν είναι παραγωγίσιμη σε αυτό, σχολικό βιβλίο σελ. 99 Α3. Ορισμός σελ. 73 Α4. α) Λ β) Σ γ) Λ δ) Σ ε) Σ , δηλαδή αρκεί x 1 x

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα 10 Ηοσνίοσ 2019 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)

f x 2xln x x x 2ln x 1 x f x 0 x 2ln x 1 0 2ln x 1 0 ln x ln e x e

x x f x για κάθε f x x ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α1. α) Σχολικό σελίδα 15

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

Ο γεωκεηξηθόο ηόπνο ηωλ εηθόλωλ ηωλ κηγαδηθώλ αξηζκώλ z είλαη ν θύθινο κε θέληξν ηελ αξρή ηωλ αμόλωλ θαη αθηίλα ξ=2.

f '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x)

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ. Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

α) ηε κεηαηόπηζε x όηαλ ην ζώκα έρεη κέγηζην ξπζκό κεηαβνιήο ζέζεο δ) ην κέγηζην ξπζκό κεηαβνιήο ηεο ηαρύηεηαο

ΘΕΜΑ 1 ο. Α1. Θεωρία, στη σελίδα 260 του σχολικού βιβλίου (Θ. Fermat). Α2. Θεωρία, στη σελίδα 169 του σχολικού βιβλίου.

Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε:

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016

f ( x) f ( x ) για κάθε x A

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013

και γνησίως αύξουσα στο 0,

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Επωηήζειρ Σωζηού Λάθοςρ ηων πανελλαδικών εξεηάζεων Σςναπηήζειρ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

είναι 1-1 αλλά δεν είναι γνησίως μονότονη.

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

f(x) 0 (x f(x) g(x), lim f(x) lim g(x).

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016

3ο Δπαναληπηικό διαγώνιζμα ζηα Μαθημαηικά καηεύθσνζης ηης Γ Λσκείοσ Θέμα A Α1. Έζησ f κηα ζπλερήο ζπλάξηεζε ζ έλα δηάζηεκα

ΔΠΙΣΡΟΠΗ ΓΙΑΓΩΝΙΜΩΝ 74 ος ΠΑΝΔΛΛΗΝΙΟ ΜΑΘΗΣΙΚΟ ΓΙΑΓΩΝΙΜΟ ΣΑ ΜΑΘΗΜΑΣΙΚΑ Ο ΘΑΛΗ 19 Οκηωβρίοσ Δνδεικηικές λύζεις

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

ΑΠΑΝΣΗΕΙ ΜΑΘΗΜΑΣΙΚΑ ΚΑΣΕΤΘΤΝΗ ΣΕΑΡΣΗ 18 ΜΑΪΟΤ 2016

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2016

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Εξετάσεις 11 Ιουνίου Μαθηματικά Προσανατολισμού Γ Λυκείου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.

x, οπότε για x 0 η g παρουσιάζει

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 2 Μαΐου 2019 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α1. Απόδειξη σχολικού βιβλίου σελίδα 135.

ΜΑΘΗΜΑΤ ΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤ ΗΣΕΙΣ ΣΤ Α ΘΕΜΑΤ Α ΕΞΕΤ ΑΣΕΩΝ 2016.

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΠΛΗΡΕΙΣ ΑΠΑΝΤΗΣΕΙΣ

Μαθηματικά Προσανατολισμού Γ Λυκείου Ημερομηνία: 03 Μαρτίου 2019 Απαντήσεις

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

( ) ( ) ΘΕΜΑ 2 ο Α. Είναι. f (x) > 0 e 1 x > 0 1 x > 0 1 > x x < 1. η f είναι γνησίως αύξουσα Στο [ 1, + ) η f είναι γνησίως φθίνουσα.

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ. ΕΠΙΜΕΛΕΙΑ: X. KOMNHNAKΙΔΗΣ ΜΑΘΗΜΑΤΙΚΟΣ M.Sc. ΘΕΜΑ Α

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ. f (f )(x) x f (f )(x) x f (f )(x) (f ) (x)

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (09/06/2017)

g x είναι συνάρτηση 1 1 στο Ag = R αλλά δεν είναι γνησίως

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2018

Επιμέλεια: Παναγιώτης Γιαννές

Πανελλαδικές εξετάσεις 2016

και g(x) =, x ΙR * τότε

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

ΑΠΑΝΤΗΣΕΙΣ. lim f(x) έχουμε P(x) 2x (1 ). Επειδή. lim ( 2x )

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 13/04/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

Λύσεις του διαγωνίσματος στις παραγώγους

f '(x 0) lim lim x x x x

ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1. Να ιπζνύλ ηα ζπζηήκαηα. 1 0,3x 0,1y x 3 3x 4y 2 4x 2y ( x 1) 6( y 1) (i) (ii)

ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ

Transcript:

ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. καινούργιο σχολ. σελ 35 / παλιό σχολ. 53 Α. Ψευδής, σελ.99 / παλιό σχολ. σελ. 7 αντιπαράδειγμά, f ( ) Α3. σελ 73, παλιό σχολ. σελ. 9 Α. α) Λάθος β) Σωστό γ) Λάθος δ) Σωστό ε) Σωστό ΘΕΜΑ Β B. A,, g και g ( ) A, f B. ( ) ln fo g f g fo g ( ) h ( ) ln ln ( ), για κ α ι, α φ ο ύ, Νέο Φροντιστήριο

h Άρα η συνάρτηση h είναι γνησίως αύξουσα στο, οπότε η h είναι -, άρα αντιστρέφεται. Για το σύνολο τιμών έχουμε: lim h lim ln lim h lim ln Η h είναι συνεχής και γνησίως αύξουσα στο,, άρα lim, lim h h h Οπότε h y y y y y y y f y ln y ( ) y y y Άρα h με h B3. ( ) ( ) Άρα η φ είναι γνησίως αύξουσα στο και δεν έχει ακρότατα. Νέο Φροντιστήριο

( ) 3 3 3 3 ( ) 3 μ ε κ α ι ( ) + - 3 Άρα η φ είναι κυρτή, η φ είναι κοίλη,, Και σημείο καμπής ( ) Β lim lim D L H άρα η Cφ έχει οριζόντια ασύμπτωτη την ε: y= lim άρα η Cφ έχει οριζόντια ασύμπτωτη την ε: y= Άρα η ( ) έχει στο ορίζονται ασύπμτωτη την y= και στο την y = Νέο Φροντιστήριο

ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Γ : Γ. Η f είλαη ζπλερήο θαη παξαγσγίζηκε ζην, κε f '(). Η εμίζσζε ηεο εθαπηνκέλεο ηεο C ζην,f ( ), όπνπ, f, είλαη : y f ( ) f ( ) ( ) y ( ) ( ) y θαη δηέξρεηαη από ην, όηαλ Θεσξνύκε ηε ζπλάξηεζε g() εμίζσζε g(), κε,. Αξθεί λα δείμνπκε όηη ε έρεη αθξηβώο δύν ξίδεο ζην,. Η g είλαη ζπλερήο θαη παξαγσγίζηκε ζην g () πξάμεηο παξαγσγίζηκσλ κε Είλαη g () ή ή ή αθνύ,, σο Τν πξόζεκν ηεο g, ε κνλνηνλία θαη ηα αθξόηαηα ηεο g ζην, θαίλνληαη ζηνλ παξαθάησ πίλαθα π g () + g() MέγηζηνEιάρηζην Μέγηζην Η g είλαη γλεζίσο θζίλνπζα ζην, θαη γλεζίσο αύμνπζα ζην, Η g παξνπζηάδεη ζηε ζέζε κέγηζην ην g(), ζηε ζέζε ειάρηζην ην g θαη Νέν Φξνληηζηήξην

ζηε ζέζε 3 κέγηζην ην g( ) ( ). Παξαηεξνύκε ινηπόλ όηη ε εμίζσζε g() έρεη αθξηβώο δύν ξίδεο ηηο, 3 άξα ππάξρνπλ δύν ζεκεία επαθήο ηα, θαη,, επνκέλσο ππάξρνπλ θαη δύν εθαπηνκέλεο ηεο Cf πνπ άγνληαη από ην, ζην, θαη είλαη νη : ( ) : y y ζην, θαη ( ) : y y Γ. ( ) : y ΚC f Ε Ο Β(π,) Ε -π Α, ( ) : y Τν είλαη ην εκβαδόλ ηνπ ρσξίνπ πνπ πεξηθιείεηαη από ηε γξαθηθή παξάζηαζε ηεο f θαη ηηο επζείεο, θαη είλαη ίζν κε ην εκβαδόλ ηνπ ηξηγώλνπ ΟΑΒ κείνλ ην εκβαδόλ ηνπ ρσξίνπ πνπ πεξηθιείεηαη από ηε γξαθηθή παξάζηαζε ηεο f θαη ηνλ άμνλα δειαδή ην. Τν ηξίγσλν ΟΑΒ είλαη νξζνγώλην επεηδή νη επζείεο, ηέκλνληαη θάζεηα αθνύ ( ). Είλαη ( ) ( ) ( ), όπνπ ΑΚ ην ύςνο από ηελ θνξπθή ηεο νξζήο γσλίαο Α Η f είλαη ζπλερήο ζην, θαη f () γηα θάζε, νπόηε f ()d d d ( ) ( ) θαη ( ). Οπόηε 8 Νέν Φξνληηζηήξην

Γ3. Είλαη f () f () lim lim lim f () f () f () f (), δηόηη lim f () lim θαη lim f () lim ( ) ( ) ελώ παξαηεξνύκε από ηε γξαθηθή παξάζηαζε ζην Γ όηη θαζώο ην, αθνύ από ην πεδίν νξηζκνύ ηεο f, ε γξαθηθή παξάζηαζε ηεο f βξίζθεηαη πάλσ από ηελ επζεία ( ) : y, πνπ ζεκαίλεη όηη f() θνληά ζην π. Άξα lim f () ( ) Γ. Από ηε γξαθηθή παξάζηαζε ηεο f θαη ηεο ζην Γ εξώηεκα είλαη f() νπόηε έρνπκε : γηα θάζε, f () f () f () f () επνκέλσο είλαη θαη f () f () f () d d d d d d ln f () f () d ln ln d Νέν Φξνληηζηήξην

ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΤΑΞΗΣ Δ. Η H f () f() 3 είναι συνεχής στο, ημ είναι συνεχής στο Εξετάζουμε τη συνέχεια της f στο. 3 lim f () lim lim f () lim ημ f () Δηλαδή ως σύνθεση των συνεχών, π ως γινόμενο των συνεχών lim f() lim f() f, άρα η f είναι συνεχής στο. Τελικά η f είναι συνεχής στο, π. Αναζητούμε τα κρίσιμα σημεία της f στο, π. 3 3 Για, έχουμε f 3., 3, ημ.. Η f είναι παραγωγίσιμη στο, ως σύνθεση των παραγωγίσιμων u και (παραγωγίσιμη στο, ), με 3 3 3 f () Είναι f () Για, π 3 3. για κάθε,, άρα η f δεν έχει κρίσιμα σημεία στο, η f είναι παραγωγίσιμη ως γινόμενο παραγωγίσιμων, με. f ημ (ημ συν) Είναι. f () ημ συν ( ) Άρα αφού, π. Οπότε η f έχει κρίσιμο σημείο το. Εξετάζουμε παραγωγισιμότητα της f στο. Είναι 3 f f 3 lim lim lim ( ) f f ημ lim lim lim ημ συν Εφόσον τα πλευρικά όρια παραγωγισιμότητας στο είναι άνισα η f δεν. 3 u Νέο Φροντιστήριο

είναι παραγωγίσιμη στο, οπότε είναι κρίσιμο σημείο της. Τελικά κρίσιμα σημεία της f είναι (μηδενίζεται η f () ) και (η f δεν παραγωγίζεται). Δ. Από το ερώτημα Δ έχουμε ότι: f συνεχής [, π] και 3, (,) f () 3 (ημ συν), (, π) κρίσιμα σημεία της f οι, f () στο (,) Πρόσημο της f () (ημ συν ) στο (,π) f συνεχής στο (,π), με μοναδική ρίζα διαστήματα Είναι,,, π. π π f, άρα f () στο, άρα διατηρεί πρόσημο σε καθένα από τα, και 5π 5π 3 6 f στο 6, π Είναι f στα,,, π άρα f γνησίως φθίνουσα στα,,,π και f στο, άρα f γνησίως αύξουσα στο,. Η f είναι συνεχής στο, π άρα παρουσιάζει μέγιστο και ελάχιστο σ αυτό, και παραγωγίσιμη στα,,, π οπότε από τον πίνακα προσήμων της f () έχουμε ότι: η f παρουσιάζει Νέο Φροντιστήριο

τοπικό μέγιστο στο, το f και στο f οπότε Τοπικό ελάχιστο στο, το f ολικό μέγιστο της f., το f f() f(π) ολικό ελάχιστο της f. Η f είναι συνεχής στο, π με ολικό μέγιστο το f και στο π f π άρα το σύνολο τιμών της είναι το διάστημα Δ3. Το ζητούμενο εμβαδό E ορίζεται από τη C f,, το f π οπότε f και ολικό ελάχιστο,. C g και τις ευθείες (άξονας y'y ) και π. Στο [,π] η f() σύνθεση των συνεχών 5, ημ είναι συνεχής (ερώτημα Δ) και η. Οπότε, g() 5 είναι συνεχής ως π π 5 E f() g() d ημ d θέτω Έχουμε: 5 h() f() g() ημ (ημ ), [,π] π π π π () και π ημ (). Προσθέτοντας τις () και () κατά μέλη προκύπτει: π ημ. Άρα h() στο [,π], εφόσον. Επομένως, π π π 5 5 (3) E ( ημ)d d ημd Είναι π 5 π 5 5 d 5 5 () και π π π π π π I ημd [ ημ] (ημ)'d συνd [ συν] ( ημ)d π π I συνπ συν Ι Ι π I (5) Νέο Φροντιστήριο

Επιμέλεια απανηήζεων: Τζαλιγόποσλος Μίληος, Μήηροσ Βαζίλης, Πανούζης Γιώργος, Βαλιάδη Μαρία Βαζίλης Μαζηρογεωργίοσ - Θωμάς Καραγιάννης Ναηάζα Παπαγούλα, Ηλίας Κοσνηούπης Νέο Φρονηιζηήριο