Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1

Σχετικά έγγραφα
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Ψηφιακή Επεξεργασία Σημάτων

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. DTFT και Περιοδική/Κυκλική Συνέλιξη

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. Διακριτός Μετασχηματισμός Fourier DFT

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Επικοινωνίες στη Ναυτιλία

Σήματα- συμβολισμοί. x(n)={x(n)}={,x(-1),x(0), x(1),.} x(n)={0,-2,-3, -1, 0, 1, 2, 3, 4,0 }

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

ΚΕΦΑΛΑΙΟ 2. Ηλεκτρονικη και 1/60 Πληροφορίας

ΚΕΦΑΛΑΙΟ 2. Ηλεκτρονικη και 1/62 Πληροφορίας

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση Νο. 3. Δισδιάστατα σήματα και συστήματα #2

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα»

Ψηφιακή Επεξεργασία Σημάτων

Μετασχηµατισµός FOURIER ιακριτού χρόνου DTFT

20-Φεβ-2009 ΗΜΥ Διακριτός Μετασχηματισμός Fourier

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

Μετασχηµατισµός FOURIER ιακριτού Χρόνου - DTFT. Οκτώβριος 2005 ΨΕΣ 1

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Ψηφιακή Επεξεργασία Σημάτων

Σήµατα και συστήµατα διακριτού χρόνου

Σήματα και Συστήματα ΙΙ

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

Σήματα και Συστήματα ΙΙ

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT)

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

DFT ιακριτός µετ/σµός Fourier Discrete Fourier Transform

Εισαγωγή. Διάλεξη 1. Εισαγωγή Σήματα και Συστήματα Διακριτού Χρόνου. Τι είναι σήμα; Παραδείγματα

Ψηφιακή Επεξεργασία Σημάτων

ΑΝΑΠΤΥΓΜΑ ΣΕ ΣΕΙΡΑ FOURIER - ΣΕΙΡΑ FOURIER

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

Α. Αιτιολογήστε αν είναι γραμμικά ή όχι και χρονικά αμετάβλητα ή όχι.

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Παρουσίαση του μαθήματος

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

Ψηφιακή Επεξεργασία Σήματος. Γιάννης Κοψίνης Γραφείο: Ι (γιώτα) 3, (Δευτέρα 14:00-15:00)

Kεφάλαιο 5 DFT- FFT ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISCRETE FOURIER TRANSFORM 1/ 80. ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ DFT-FFT Σ.

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1)

y[n] 5y[n 1] + 6y[n 2] = 2x[n 1] (1) y h [n] = y h [n] = A 1 (2) n + A 2 (3) n (4) h[n] = 0, n < 0 (5) h[n] 5h[n 1] + 6h[n 2] = 2δ[n 1] (6)

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Σήματα και Συστήματα. Διάλεξη 3: Εισαγωγή στα Συστήματα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 2

3-Φεβ-2009 ΗΜΥ Σήματα

Ο μετασχηματισμός Fourier

(1) L{a 1 x 1 + a 2 x 2 } = a 1 L{x 1 } + a 2 L{x 2 } (2) x(t) = δ(t t ) x(t ) dt x[i] = δ[i i ] x[i ] (3) h[i, i ] x[i ] (4)

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

3. Δίνεται ψηφιακό σύστημα που περιγράφεται από τη σχέση. y[n] = x[n]-2x[n-1] y[n] = x[n]-2x[1-n]

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Κυκλική Συνέλιξη. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Μετασχημ/μός Fourier Διακριτών Σημάτων - Διακριτός Μετασχημ/μός Fourier. Στην απόκριση συχνότητας ενός ΓΧΑ συστήματος ο μετασχηματισμός :

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης

Ψηφιακή Επεξεργασία Σημάτων

Advances in Digital Imaging and Computer Vision

Διακριτός Μετασχηματισμός Fourier

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c

11 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση Νο. 1. Εισαγωγή

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

Ψηφιακή Επεξεργασία Σημάτων

Kεφάλαιο 5 DFT- FFT ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISCRETE FOURIER TRANSFORM ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ DFT-FFT. Σ.

ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ

Σήματα και Συστήματα ΙΙ

Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας

Σήματα και Συστήματα

Γραμμικά Χρονικά Αμετάβλητα Συστήματα. Ψ.Ε.Σ.Ε. Σ. Θεοδωρίδης 1

Εισαγωγή στις Τηλεπικοινωνίες

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ και ΣΗΜΑΤΩΝ Σ.Δ. Φωτόπουλος 1/22

ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ

Στοχαστικές Ανελίξεις (1) Αγγελική Αλεξίου

6-Μαρτ-2009 ΗΜΥ Μετασχηματισμός z

Θεώρημα δειγματοληψίας

Επαναληπτικές Ασκήσεις για το µάθηµα Ψηφιακή Επεξεργασία Σηµάτων

Ψηφιακή Επεξεργασία Σήματος

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΙΟΥΝΙΟΥ 2004., η οποία όµως µπορεί να γραφεί µε την παρακάτω µορφή: 1 e

Ψηφιακή Επεξεργασία Σημάτων

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ

10-Μαρτ-2009 ΗΜΥ Παραθύρωση Ψηφιακά φίλτρα

Εισαγωγή στην Επεξεργασία Σήματος. Νόκας Γιώργος

a k y[n k] = b l x[n l] (12.1)

ΨΕΣ. Ψηφιακή Επεξεργασία Σήματος. Σημειώσεις από τις παραδόσεις*

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Εισαγωγή στη Θεωρία Σημάτων και Συστημάτων

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ

Συνεπώς, η συνάρτηση µεταφοράς δεν µπορεί να οριστεί για z=0 ενώ µηδενίζεται όταν z=1. Εύκολα προκύπτει το διάγραµµα πόλων-µηδενικών ως εξής:

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

stopband Passband stopband H L H ( e h L (n) = 1 π = 1 h L (n) = sin ω cn

Διακριτός μετασχηματισμός Fourier

Transcript:

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 009-0 Παρουσίαση Νο. Δισδιάστατα Σήματα και Συστήματα #

Βασικοί ορισμοί () Κάθε εικόνα είναι ένα δισδιάστατο (-D) σήμα. Αναλογική εικόνα: x α Ψηφιακή εικόνα: ( t, t ), < t t <, ( ) = ( ) x n, n Q[ x nt, nt ], α n, n Z T, T R < n, n, T, T < ΤΜΗΥΠ / ΕΕΣΤ

Βασικοί ορισμοί () Ένα διακριτό δισδιάστατο σήμα έχει την μορφή πίνακα και στην γενική του μορφή δηλώνεται ως: x ( n, n ), < n n <, Συνήθως όμως το πεδίο ορισμού είναι πεπερασμένο: ( n, n ), 0 < n < N, 0 < n N x < Γραφική απεικόνιση δισδιάστατου σήματος ΤΜΗΥΠ / ΕΕΣΤ 3

Σημαντικές ακολουθίες () Μοναδιαίος (κρουστικός) παλμός: δ ( n, n ) =, n, n = 0, αλλού 0 Μοναδιαίο βήμα: u ( n, n ) =, 0, n, n αλλού 0 Εκθετική ακολουθία: x n n ( n, n ) a b, < n n < =, ΤΜΗΥΠ / ΕΕΣΤ 4

Σημαντικές ακολουθίες () n δ(n,n) μοναδιαίος παλμός u(n,n) n n μοναδιαίο βήμα n n δ(n) παλμός στήλης n δ(n) n παλμός γραμμής n ΤΜΗΥΠ / ΕΕΣΤ 5

Ειδικές περιπτώσεις () Διαχωρίσιμες ακολουθίες: μία -D ακολουθία ονομάζεται διαχωρίσιμη εάν μπορεί να γραφεί ως ( n n ) f ( n ) g ( ) x =, n Προφανώς έχει λιγότερους βαθμούς ελευθερίας Ο μοναδιαίος παλμός και το μοναδιαίο βήμα είναι διαχωρίσιμες ακολουθίες. ( n n ) δ ( n ) δ ( ) δ = u ( n n ) = u( n ) u( ), n, n ΤΜΗΥΠ / ΕΕΣΤ 6

Ειδικές περιπτώσεις () Περιοδικά σήματα: Μία -D ακολουθία ονομάζεται ορθογώνια περιοδική με περίοδο Ν xν εάν ισχύει ( n, n ) = x( n + N, n ) = x( n n N ) x +, Η στοιχειώδης περίοδος είναι το ορθογώνιο παραλληλόγραμμο [0,Ν )x[0,n ). Η ορθογώνια περιοδικότητα είναι απλή αλλά δυστυχώς δεν μπορεί να καλύψει όλες τις περιπτώσεις περιοδικών -D σημάτων. ΤΜΗΥΠ / ΕΕΣΤ 7

Ειδικές περιπτώσεις (3) Γενικός ορισμός περιοδικών σημάτων: Μία -D ακολουθία ονομάζεται περιοδική εάν ισχύει: (, ) = ( + +, + + ) x n n x n kn mn n kn mn Έτσι ορίζεται περιοδική επέκταση σε οποιεσδήποτε κατευθύνσεις, όχι κατ ανάγκην ορθογώνιες. Η βασική περίοδος είναι το παραλληλόγραμμο που ορίζεται από τα διανύσματα N [ ] T i = N i N i ΤΜΗΥΠ / ΕΕΣΤ 8

Μετασχηματισμοί στο πεδίο των συχνοτήτων Συνήθεις μετασχηματισμοί: DFT, DCT, Wavelet Γιατί οι μετασχηματισμοί είναι χρήσιμοι στην επεξεργασία εικόνας; Επεξεργασία στο πεδίο των συχνοτήτων. Φιλτράρισμα, αφαίρεση θορύβου, κυκλική μετατόπιση, συμπίεση, περιγραφή σχήματος Πλεονεκτήματα: μικρότερη υπολογιστική πολυπλοκότητα / εναλλακτική ερμηνεία ΤΜΗΥΠ / ΕΕΣΤ 9

Δισδιάστατος Μετασχηματισμός Fourier () Ο μετασχηματισμός Fourier δισδιάστατων σημάτων υπάρχει όταν η συνάρτηση είναι απόλυτα ολοκληρώσιμη και ορίζεται ως: FT : F(, ) f( t, t )exp( i t i t ) dt dt IFT : f( t, t ) F(, )exp( i t i t ) d d 4p ΤΜΗΥΠ / ΕΕΣΤ 0

Δισδιάστατος Μετασχηματισμός Fourier () Στην περίπτωση διακριτών σημάτων χρησιμοποιείται ο διακριτός FT. FT διακριτού σήματος: F( w, w ) f( n, n )exp( iw n iw n ) n n IFT διακριτού σήματος: p p f( n, n ) F( w, w )exp( iw n iw n ) dw dw 4 p p p ΤΜΗΥΠ / ΕΕΣΤ

Δισδιάστατος Μετασχηματισμός Fourier (3) Έστω μία ακολουθία x(n, n ) πεπερασμένης χωρικής επέκτασης. Τότε ο -D DFT αυτής δίνεται από τις σχέσεις: pnk pnk Xk k xn n i i N N (, ) (, )exp( ) n 0 n 0 N N pnk pnk xn n Xk k i i N N (, ) (, )exp( ) NN k 0 k 0 N N ΤΜΗΥΠ / ΕΕΣΤ

Δισδιάστατος Μετασχηματισμός Fourier (4) Η σχέση του DFT με τον FT είναι η εξής:, w, w k k X k k X p p w, w N N Ο υπολογισμός του DFT μπορεί να γίνει γρήγορα (FFT) με την μέθοδο των γραμμώνστηλών. N (, ) = (, ) (, ) = (, ) G n k x n n W n = 0 N X k k G n k W n = 0 nk N nk N όπου δηλαδή ο DFT είναι μία δειγματοληψία του FT πάνω στον διπλό μοναδιαίο κύκλο. WN i exp i π N = i ΤΜΗΥΠ / ΕΕΣΤ 3

Δισδιάστατος Μετασχηματισμός Fourier (5) Σημαντικές ιδιότητες του -D DFT. Γραμμικότητα,,,,,, x n n a v n n b w n n X k k a V k k b W k k. Κυκλική μετατόπιση,,, exp, x n n v n m n m X k k ik m ik m V k k 3. Διαχωρίσιμη ακολουθία,, x n n x n x n X k k X k X k 4. Θεώρημα Parseval x n n y n n X k k Y k k NN N N N N,,,, n 0 n 0 n 0 n 0 5. Ετερο-συσχέτιση xy,,, C k k X k k Y k k ΤΜΗΥΠ / ΕΕΣΤ 4

Δισδιάστατος Μετασχηματισμός Συνημίτονου () DCT διακριτού σήματος: IDCT διακριτού σήματος: p n k n k p Ck (, k) 4 xn (, n)cos cos N N n 0 n 0 N N p n k n k p xn (, n) w( n) w( n) Ck (, k)cos cos N N NN k 0 k 0 N N με w i = /, ki = 0, ki N Ο μετασχηματισμός DCT είναι διαχωρίσιμος. ΤΜΗΥΠ / ΕΕΣΤ 5

Δισδιάστατος Μετασχηματισμός Συνημίτονου () Υπολογισμός κατά γραμμές και στήλες N n 0 N G( n, k ) x( n, n )cos n N n 0 N Ck (, k) Gn (, k)cos Υπολογισμός μέσω του DFT της y(n,n ) η οποία προκύπτει από κατοπτρική επέκταση της x(n,n ) σε περιοχή Ν xn n k p k p k k (, ) N N (, ) C k k W W Y k k όπου WN i exp π N = i i ΤΜΗΥΠ / ΕΕΣΤ 6

Η μορφή της εικόνας στο πεδίο των συχνοτήτων () Συχνοτικό περιεχόμενο του DFT (συγκέντρωση ενέργειας γύρω από το (0,0)) lenna Λογαριθμική απεικόνιση του πλάτους του DFT ΤΜΗΥΠ / ΕΕΣΤ 7

Η μορφή της εικόνας στο πεδίο των συχνοτήτων () Παραδείγματα συγκέντρωσης της ενέργειας πάνω σε συγκεκριμένες διευθύνσεις ΤΜΗΥΠ / ΕΕΣΤ 8

Η μορφή της εικόνας στο πεδίο των συχνοτήτων (3) Συχνοτικό περιεχόμενο του DCT (συγκέντρωση ενέργειας στη μία γωνία) lenna Γραμμική απεικόνιση του πλάτους του DCT ΤΜΗΥΠ / ΕΕΣΤ 9

Δισδιάστατα Συστήματα () Ένα δισδιάστατο διακριτό σύστημα T μετασχηματίζει ένα -D διακριτό σήμα εισόδου σε ένα -D διακριτό σήμα εξόδου y ( ). x( n,n ) Γραμμικό σύστημα: ( n, n ) T[ x( n n )] y =, [ ax + bx ] = at[ x ] bt[ ] T + x Χωρικά αμετάβλητο σύστημα: y ( ) ( n m, n m ) = T[ x( n m n m )], n,n Θα μας απασχολήσουν κυρίως γραμμικά και χωρικά αμετάβλητα συστήματα ΤΜΗΥΠ / ΕΕΣΤ 0

Δισδιάστατα Συστήματα () Τα συστήματα ορίζονται από την κρουστική τους απόκριση. Η σχέση εισόδου-εξόδου είναι y ( n, n ) = x( n, n ) h( n, n ) ( ) FIR σύστημα: η h n,n έχει περιορισμένη περιοχή υποστήριξης 0 n N, 0 n N IIR σύστημα: η h( n,n ) έχει άπειρη περιοχή υποστήριξης. Διαχωριζόμενο σύστημα: h n n = h n h ( ) ( ) ( ), n ΤΜΗΥΠ / ΕΕΣΤ

Δισδιάστατα Συστήματα (3) BIBO (Bounded Input Bounded Output) συστήματα: ( n, n ), x( n, n ) B B : y( n n ) B, Ευσταθή συστήματα: n = n = h ( n n ) = S <, Τα FIR είναι εξ ορισμού ευσταθή συστήματα. ΤΜΗΥΠ / ΕΕΣΤ

Συνέλιξη στις δύο διαστάσεις () Η συνέλιξη είναι ιδιαίτερα χρήσιμη στην επεξεργασία εικόνας (πχ φιλτράρισμα). Κυκλική συνέλιξη: Γραμμική συνέλιξη: ( n,n ) y ( n,n ) R Q Q [ ) [, ) x με περιοχή υποστήριξης R P [ 0, ) [ 0, ) P = P P με περιοχή υποστήριξης = 0, Q 0 Η γραμμική συνέλιξη είναι: w C,,,,, w n n x n n y n n X k k Y k k L Q Q Q ( n, n ) = y( m, m ) x( n m, n m ) m = 0m = 0 [ ) [ ) Η έξοδος έχει περιοχή υποστήριξης την R = 0, L 0, L L = P + Q, i =, LL i i i ΤΜΗΥΠ / ΕΕΣΤ 3

Συνέλιξη στις δύο διαστάσεις () Έστω ότι επιλέγουμε περιοχή υποστήριξης με επέκταση N xn, όπου Ni Li, και επεκτείνουμε με μηδενικά τις ακολουθίες x(n,n ) και y(n,n ) ώστε να ορίζονται σε όλη την περιοχή με διαστάσεις N xn. Τότε μπορεί εύκολα να δειχθεί ότι η κυκλική συνέλιξη και η γραμμική συνέλιξη των x και y, ταυτίζονται. Όταν έχουμε συνέλιξη ακολουθίας x(n,n ) με κρουστική απόκριση h(n,n ) που είναι διαχωρίσιμη τότε η συνέλιξη αυτή μπορεί να πραγματοποιηθεί με τη μέθοδο γραμμώνστηλών. Συνήθως τα -D συστήματα είναι μη-αιτιατά. ΤΜΗΥΠ / ΕΕΣΤ 4