II zakon termodinamike

Σχετικά έγγραφα
Drugi zakon termodinamike

SPONTANI PROCESI II ZAKON TERMODINAMIKE

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

BIOFIZIKA TERMO-FIZIKA

3.1 Granična vrednost funkcije u tački

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

NULTI I PRVI ZAKON TERMODINAMIKE

Ispitivanje toka i skiciranje grafika funkcija

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

TOPLOTA I RAD, PRVI ZAKON TERMODINAMIKE

SISTEMI NELINEARNIH JEDNAČINA

Reverzibilni procesi

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

Primer povratnog procesa bi bio izotermski proces koji bi se odvijao veoma sporo i bez trenja.

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

ELEKTROTEHNIČKI ODJEL

DRUGI ZAKON TERMODINAMIKE

Osnovne teoreme diferencijalnog računa

Prvi zakon termodinamike

Elementi spektralne teorije matrica

U unutrašnja energija H entalpija S entropija G 298. G Gibsova energija TERMOHEMIJA I TERMODINAMIKA HEMIJSKA TERMODINAMIKA

Kaskadna kompenzacija SAU

IZVODI ZADACI (I deo)

Eliminacijski zadatak iz Matematike 1 za kemičare

Termohemija. C(s) + O 2 (g) CO 2 (g) H= -393,5 kj

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

RAD, SNAGA I ENERGIJA

Idealno gasno stanje-čisti gasovi

5 Ispitivanje funkcija

Zavrxni ispit iz Matematiqke analize 1

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

entropije Entropija raste ako se krećemo od čvrstog preko tečnog do gasovitog stanja: S čvrsto < S tečno << S gas

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

Energetska priroda toplote Mejer i Džul (R. Mayer, , i J. Joul, ) W. Thomson S. Carnot J. W. Gibbs

TERMODINAMIKA osnovni pojmovi energija, rad, toplota

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

TERMODINAMIKA.

Termodinamika. Termodinamika

TERMODINAMIKA. Sistem i okruženje

TERMODINAMIČKI PARAMETRI su veličine kojima opisujemo stanje sistema.

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

18. listopada listopada / 13

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Teorijske osnove informatike 1

Molekularna fizika i termodinamika. Molekularna fizika i termodinamika. Molekularna fizika i termodinamika. Molekularna fizika i termodinamika

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

C P,m C V,m = R C P C V = nr

2. TERMODINAMIKA 2.1. Prvi zakon termodinamike

numeričkih deskriptivnih mera.

Računarska grafika. Rasterizacija linije

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PRELAZ TOPLOTE - KONVEKCIJA

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

za reverzibilan kružni proces količina toplote koju je sistem na svojoj nižoj temperaturi T 1 predao okolini i ponovo prešao u početno stanje

I zakon termodinamike unutrašnje energije, U I zakon termodinamike II zakon termodinamike

Količina topline T 2 > T 1 T 2 T 1

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

C P,m C V,m = R C P C V = nr

5. Karakteristične funkcije

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

GASNO STANJE.

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Mašinsko učenje. Regresija.

IZVODI ZADACI (I deo)

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

SEKUNDARNE VEZE međumolekulske veze

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

H T. C P,m C V,m = R C P C V = nr U T U V T H P. Izotermski procesi: I zakon termodinamike. Izotermski reverzibilni zapreminski rad gasa u I.G.S.

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

13.1. Termodinamički procesi O K O L I N A. - termodinamički sustav: količina tvari unutar nekog zatvorenog volumena

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

C P,m C V,m = R C P C V = nr

Linearna algebra 2 prvi kolokvij,

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

41. Jednačine koje se svode na kvadratne

I zakon termodinamike unutrašnje energije, U I zakon termodinamike II zakon termodinamike

OSNOVI HEMIJSKE TERMODINAMIKE I TERMOHEMIJA

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Dvanaesti praktikum iz Analize 1

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

Transcript:

Poglavlje.3 II zakon termodinamike Pravac i smer spontanih promena Drugi zakon termodinamike-definicije Karnoova teorema i ciklus Termodinamička temperaturska

Prvi zakon termodinamike: Energija univerzuma je konstantna-energija je konzervirana Ovaj zakon ne kaže ništa o spontanosti fizičkih i hemijskih promena Razmotrimo nastajanje vode: H (g) + /O (g) H O (t) Δ f H 0 =-86 kj/mol Korišćenjem I zakona lako računamo ΔU i ΔH za spontanu reakciju ali isto i za reakciju u suprotnom smeru koja se ne dešava spontano Šta je sa gasovima? Iz iskustva znamo da se gasovi spontano šire ispunjavajući raspoloživi sud a suprotno se ne dešava samo od sebe dok se ne izvrši neki rad da bi se promena desila u suprotnom smeru. Ni veličina ni znak ΔU i ΔH ne određuju način kojim će se promena desiti niti o izvodljivosti procesa. II zakona termodinamike daje kriterijum za mogućnost, tj. verovatnoću odigravanja određenog procesa.

Primeri procesa koji se odigravaju u određenom smeru: Šolja tople kafe ostavljena u hladnoj sobi će se ohladiti Voda teče nadole Rastvorak difunduje iz koncentrovanijeg u razblaženiji rastvor Gvožđe postepeno rđa ali nikada se ponovo ne izdvaja Fe i O Toplota uvek prelazi iz oblasti više temperature u oblast niže temperature

Spontani procesi spontano Gasovi se šire iz oblasti visokog u oblast niskog pritiska Procesi spontani pri datim uslovima samo u jednom smeru a ne i u obrnutom.

Spontani procesi su oni koji se dešavaju sami od sebe odn. bez intervencije spolja bilo koje vrste. Na osnovu iskustva zaključujemo da je uzrok svih spontanih procesa nepostojanje termodinamičke ravnoteže. Njihova bitna karakteristika je da se oni u početno (neravnotežno) stanje ne vraćaju spontano tj. bez spoljne intervencije, drugim rečima spontani procesi su termodinamički ireversibilni Svi procesi u prirodi su spontani i ireverzibilni! Zajednički izvori ireverzibilnosti: konačna brzina promene trenje iznenadno širenje ili sabijanje razmena toplote izmeđutelasakonačnom razlikom temperature Kvazireverzibilni procesi: veoma sporo širenje ili sabijanje bez trenja, sporo hlađenje ili zagrevanje

Veza I i II zakona termodinamike Zadovoljavanje samo I zakona ne garantuje da će se proces desiti I zakon ne daje ograničenja u pogledu pravca i smera procesa Iz iskustva znamo da će se neki proces odvijati u određenom smeru a ne u suprotnom i II zakon je u vezi sa ovim Proces se neće desiti ako nisu zadovoljeni i I i II zakon

Osnov II zakona II zakon tvrdi da energija ima i kvantitet i kvalitet. I zakon se odnosi na količinu energije i njene transformacije, dok II zakon obezbeđuje sredstvo da se odredi njen kvalitet kao i stepen degradacije energije tokom procesa (Rezervoar energije na višoj temperaturi ima viši kvalitet jer je moguće lakše iskoristiti njegovu energiju za vršenje rada) Drugi zakon termodinamike daje kriterijum za mogućnost, odnosno verovatnoću odigravanja određenog termodinamičkog procesa. Drugi važan aspekt drugog zakona termodinamike je u vezi konverzije u rad apsorbovane energije kao toplote. II zakon se takođe koristi da se odredi teorijska granica za realizaciju procesa u sistemima u praksi (npr.tehnički sistemi)

II zakon termodinamike se može izraziti na različite načine. Primer: T=const. m m T, P, V T, P, V U izotermskom ciklusu nije moguće potpuno pretvoriti toplotu u rad Tomson-Planck-ova definicija: Nemoguće je napraviti mašinu koja bi radećiu ciklusu uzimala toplotu iz rezervoara konstantne temperature i pretvarala je u ekvivalentnu količinu rada bez ikakvih promena u sistemu i okolini Perpetuum mobile II vrste Nemoguće je dobiti rad hladeći telo do temperature niže od temperature okoline Lord Kelvin (84-907) Max Planck (858-947)

prevedeno Ni jedna toplotna mašina ne može imati efikasnost 00% tj. perpetuum mobile II vrste je nemoguće realizovati ili Da bi mašina radila radni fluid mora razmenjivati toplotu sa okolinom (utok) i izvorom T H Q H Toplotna masina W net

Hladno Toplo Clausius-ova definicija Nemoguće je napraviti mašinu koja bi radeći u kružnom procesu, prenosila toplotu sa hladnijeg na topliji sistem, bez ikakvih drugih promena na ovim sistemima i okolini Rudolf Clausius (8-888)

Naime, svima je poznat prirodni prelaz toplote sa toplijeg na hladnije telo kao npr. sa Sunca na Zemlju. Obrnut proces se ne odvija prirodno, spontano, samo od sebe, bez intervencije spolja. Mašina koja prenosi toplotu sa hladnijeg na toplije telo je frižider i motor omogućava njegov rad. Kao i drugi prirodni zakoni i II zakon je baziran na eksperimentalnim opažanjima Kao i K-P i ova definicija je negacija i ne dokazuje se Do danas nije izveden eksperiment koji je suprotan II zakonu T H Heat pump T L Q H Q L

Ludwig Boltzmann-ova definicija: U zatvorenom adijabatskom sistemu entropija ne može nikada opadati. Stoga je visok nivo organizacije veoma malo verovatan. Ludwig Boltzmann (844-906)

Makroskopska priroda II zakona Drugi zakon termodinamike odnosi na makroskopske sisteme koji su osnova ljudskog posmatranja i iskustva. Ako bi se međutim posmatrali sistemi koji se sastoje od svega nekoliko molekula, spontani procesi bi mogli biti povratni.

Makroskopska priroda II zakona Samo su stanja (5 %) u kojima su svi molekuli u istom balonu od od 8 mogućih stanja. Najverovatnije stanju u kome su molekuli raspoređeni u oba balona.

Toplotne mašine Uvod Rad može lako preveden u druge oblike energije, ali prevođenje drugih oblika energije u rad je teško Rad može biti preveden u toplotu direktno i kompletno, ali prevođenje toplote u rad zahteva korišćenje posebne opreme Toplotne mašine Sistemi koji prevode toplotu u rad Karakteristike toplotnih mašina Primaju toplotu od izvora visoke temperature Pretvaraju deo toplote u rad Oslobađaju višak toplote u utok niske temperature Rade u ciklusu

Definicije Rezervoar Termalne Energije (Toplotni Rezervoar) Hipotetičko telo relativno velikog toplotnog kapaciteta koji može davati ili apsorbovati konačnu količinu energije bez ikakve promene temperature Primeri Velika količina vode (okeani, jeera, reke) Atmosfera Izvor Rezervoar koji daje energiju u obliku toplote Utok Rezervoar koji apsorbuje energiju u obliku toplote

Toplotna mašina Primer toplotne mašine Parna turbina Q in količina energije predata pari u bojleru kao izvoru visoke temperature Q out količina energije oslobođena iz pare na niskoj temperaturi W out količina rada pare koja se širi u turbini W in količina rada potrebna da se komprimuje voda u bojler Radni fluid Fluid kome se i od koga se toplota prenosi tokom ciklusa

Toplotna efikasnost Toplotna Efikasnost (η) Deo toplote prevedene u rad Mera karakteristike toplotne mašine Karakteris tika = Željeni izlaz Traženi ulaz Termalna efikasnost = Ukupno izvršeni rad Ukupna uneta toplota η = w q η = ΔU ΔU meh ter

Karnoova teorema Sve periodične, reverzibilne toplotne mašine koje rade izmeđudve iste temperature imaju istu efikasnot ili iskorišćenje. To znači da efikasnost toplotne mašine koja radi reverzibilno, ni na koji način ne zavisi od prirode radne supstancije u sistemu ili od načina rada, već zavisi samo od temperatura rezervoara i za date temperature, ovakva mašina ima maksimalnu efikasnot. Teoremu je Karno dokazao negacijom negacije, pokazujući da je suprotno tvrđenje od navedene teoreme nemoguće. Toplota razmenjena na T : q -q Izvršeni rad: w -w kako je: q = w -q i -q =q -w q -q =w -w suprotmo II akonu termodinamike

Karnoov ciklus Izolator T-dT T Toplota T+dT T-dT T+dT Rad Rad Termi~ka okolina I Izotermsko { irenje II Adijabatsko { irenje Mehanicka okolina Toplota T-dT T+dT T-dT T+dT T Sadi Carnot Rad III Izotermsko sabijanje Rad IV Adijabatsko sirenje

Karnoov ciklus Carnot-ov ciklus Ciklus koji se sastoji od četiri reveribilna procesa: dva izotermska i dva adijabatska. Radni fluid je mol gasa u idealnom gasnom stanju Proces Reverzibilno izotermsko širenje od zapremine V do V na temperaturi T izvora gde gas vrši rad (podiže teg) w i prima toplotu q od izvora Proces 3 Reverzibilno adijabatsko širenje od zapremine V do V 3 gde gas vrši rad w (podiže teg) na račun sopstvene unutrašnje energije usled čega se hladi do temperature T utoka

Karnoov ciklus Proces 3 4 Reveribilno izotermsko sabijanje od zapremine V 3 do V 4 gde sistem prima rad w 4 (teg se spušta) na temperaturi hladnijeg utoka T i oslobađa toplotu q Proces 4 Reverzibilno adijabatsko sabijanje od zapremine V 4 do početne V gde gas prima rad w 4 (teg se spušta) i zagreva se do početne temperature T izvora

Pressure Q H T H =constant Specific Volume Proces - Reverzibilan izotermski rad na višoj temperaturi T H > T L koji se vrši na račun apsorbovane toplote

Proces -3 Reverzibilna adijabatska ekspanzija tokom koje sistem vrši rad pri čemu temperatura radne supstancije opadaod T H do T L. Pressure Q H T H =constant 3 Specific Volume

Pressure Q H T H =constant 4 Q L 3 T L =constant Specific Volume Proces 3-4 Sistem je doveden u kontakt sa toplotnim rezervoarom pri T L < T H i dolazi do reverzibilne izotermske razmene toplote dok se rad sabijanja vrši na sistemu.

Proces 4- A reverzibilna adijabatskaic kompresija koji dovodi do porasta temperature radnog fluidaod T L do T H Pressure Q H T H =constant 4 Q L 3 T L =constant Specific Volume

P-V dijagram Karnoovog ciklusa Površine ispod krivih predstavlaju granični rad u kvazi-ravnotežnom procesu Površina ispod krivih 3: Rad koji gas vrši tokom eksanzionog dela ciklusa Površina ispod krivih 3 4 : rad koji gas vrši tokom kompresionog dela ciklusa Površina obuhvaćena ciklusom: Predstavlja čist rad izvršen za vreme ciklusa Karnoov ciklus

Obrnut Karnoov ciklus Obrnut Karnoov ciklus je frižider ili toplotna pumpa

Karnoov ciklus w = 4 w i V V = RT ln + Cv ln V V 3 ( T T ) + RT + C ( T T ) 4 v Izolator η = V RT ln RT w V = q V RT ln V V ln V 3 4 T-dT Rad T Toplota T+dT T-dT Rad T+dT Termi~ka okolina η = T T T I Izotermsko { irenje II Adijabatsko { irenje Toplota T-dT T+dT T-dT T+dT T Mehanicka okolina Rad Rad III Izotermsko sabijanje IV Adijabatsko sirenje

Karnoov ciklus Karnoova toplotna mašina < η ηth = η > η th, rev th, rev th, rev ireverzibilna toplotna mašina reverzibilna toplotna mašina nemoguće toplotna mašina Termalna efikasnost realnih toplotnih mašina može se povećati apsorbovanjem toplote iz rezervoara na što višoj temperaturi i oslobađanjem toplote na što nižoj temperaturi hladnijeg rezervoara Što je temperatura izvora viša to se više termalne energije može transformisati u rad tj. Viši je kvalitet energije. η kada : T T 0K

Karnoova teorema. Efikasnost ireverzibilne mašine uvek je manja od efikasnosti reverzibilne mašine kada rade imeđu istih izvor i utoka η th < η th, rev. Efikasnost svih reverzibilnih mašina između dva ista rezervoara je ista

Termodinamička temperaturska skala Termodinamička temperaturska skala Temperaturska skala koja je nezavisna od osobina termometarske supstancije Razvoj thermodinamičke temperaturske skale Prema Karnoovoj teoremi sve reveribilne toplotne mašine imaju istu termalnu efiksanost kada rade između dva ista rezervoara Sledi da je efikasnost toplotne mašine nezavisna od osobina radnog fluida, načina na koji se ciklus izvodi i tipa korišćene reverzibilne mašine To uključuje da je termalna efikasnost reverzibilne toplotne mašine samo funkcija temperature brezervoara g (, H η ) = f ( T, T ) th, rev = T H T L ili Q Q L H L

Za reverzibilne toplotne mašine koje rade između dva rezervoara temperatura T L i T H možemo pisati: Drugi zakon termodinamike govori o odnosu toplota prenetih toplotnom mašinom tokom reverzibilnog ciklusa Nekoliko funkcija φ(t) zadovoljava gornji uslov, izbor je arbitraran Uzimamoφ(T) = T, kako je originalno predložio Lord Kelvin a prema definiciji efikasnosti toplotne mašine imamo: ( ) ( ) L H L H T T Q Q φ φ = L H L H T T Q Q = rev Termodinamička temperaturska skala ) ( T T q q T T T q q q q w = + = = = η

Termodinamička temperaturska skala Ovo je Kelvinova termodinamička temperaturska skala Odnos temperatura zavisi od odnosa toplota razmenjenih između reverzibilne toplotne mašine i rezervoara Skala je nezavisna od fizičkih osobina bilo koje supstancije Nulta temperatuta je temperatura utoka mašine koja ima jediničnu efikasnost Temperature variraju između nule i beskonačno Vrednost kelvina je ustanovljena tako da trojna tačka vode ima temperaturu od 73,6 Temperatura rezervoara na nekoj temperaturi se dobija merenjem efikasnosti toplotne mašine koja radi između toplijeg rezervoara koji je na temperaturi trojne tačke vode i rezervoara koji je na traženoj temperaturi. Lord Kelvin