Λύσεις των θεμάτων προσομοίωσης στα Μαθηματικά Θετικής και Τεχνολογικής Κατευθυνσης 15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 15 ΘΕΜΑ Α Α1. Θεωρία, ορισμός στη σελίδα 1 και ορισμός στη σελίδα 16 του σχολικού βιβλίου. Α. Θεωρία, ορισμός στη σελίδα 149 του σχολικού βιβλίου. Α. Απόδειξη θεωρήματος στη σελίδα 4. Α4. α. Λάθος. β. Σωστό. γ. Σωστό. δ. Λάθος ( ισχύει σε διάστημα Δ και όχι απαραίτητα σε σύνολο Α). ε. Σωστό. ΘΕΜΑ Β Β1. Έχουμε διαδοχικά: z 15i z 15i Επομένως z. z 15iz 15i z 15iz 15i 1 z 15i z 15i z 15i z 15i zz 15zi 15zi 15 zz 15zi 15zi 15 15zi 15zi 15zi 15zi4zi 4zi z z 1 Β. Αρχικά θέτουμε (για ευκολία των πράξεων) k i και παρατηρούμε ότι: 1 1 k k 1 k 1 kk 1 k ( I ) k Ακόμα από τα δεδομένα έχουμε: 1 w 1 w 1 ww 1 w ( II) w
Λύσεις των θεμάτων προσομοίωσης στα Μαθηματικά Θετικής και Τεχνολογικής Κατευθυνσης 15 1 w i w k Έτσι είναι: v = 1 1 kw 1 i w Τώρα έχουμε διαδοχικά: 1 1 k w w k = w k = wk k w w k v = v 1 kw 1 1 kw 1 1 kw 1 1 kw k w kw Επομένως v. Β. Αρκεί να αποδείξουμε ότι ο u είναι πραγματικός αριθμός 1 (αφού κάθε πραγματικός αριθμός z ικανοποιεί τη σχέση (1) 15i 15 15i 15 1). Έχουμε διαδοχικά: 4 4 11 4 4 4 u a ai a 1 i a 1 i a 1 i 11 11 1 4 11 4 4 11 11 4 11 11 a i i a i a i a i a, αφού i 11 1 Β4. Αφού z και v yi, y έχουμε: ή y 1 yi w y y z 9 9 9 1 9 18 επιπέδου που ικανοποιούν τη σχέση Ε (,-). ΘΕΜΑ Γ Γ1. Η συνάρτηση f γίνεται: και άρα ο γεωμετρικός τόπος των εικόνων των του μιγαδικού w z 9 είναι υπερβολή με εστίες τις Ε(,) και 1 Μπορούμε, αφού βρούμε τον αριθμό 11 u 15i 15i 15 1 u 15i 15i 15 u a, να επαληθεύσουμε την σχέση (1) :
Λύσεις των θεμάτων προσομοίωσης στα Μαθηματικά Θετικής και Τεχνολογικής Κατευθυνσης 15 Για το lim f ( ) έχουμε: f 1 1, αν 1 ln 1 1, ln, 1, αν 1 1 lim f ( ) lim, ln αφού 1 lim 1 lim 1 lim 1 1 1 1 f ln lim ( ) lim, αφού 1 lim 1 lim 1 lim 1 1 Επομένως είναι lim f ( ) lim f ( ) και άρα lim f ( ). Η συνάρτηση f είναι συνεχής στο, 1 f είναι συνεχής στο και lim ln και lim ln. ώς πράξεις συνεχών συναρτήσεων. Επίσης η, αφού lim f ( ) f όλο το πρέπει να είναι συνεχής και στο 1 1. Έχουμε, σύμφωνα με τον κανόνα του d L Hospital:. Τέλος για να είναι η f συνεχής σε 1 1 1 1 1 lim f ( ) lim lim lim 1 1 ln 1 1 1 1 1 Επομένως lim f ( ) f 1 1. 1 Γ. g 1 f ln, i) Η συνάρτηση γίνεται διαδοχικά: Για 1 g 1 1 ln1 έχουμε f
Λύσεις των θεμάτων προσομοίωσης στα Μαθηματικά Θετικής και Τεχνολογικής Κατευθυνσης 15 g 1 1 1 1 1 1 ln ln1 ln ln 1 1 1 ln ln ln Επομένως θα μελετήσουμε τη μονοτονία της συνάρτησης 1 g 1,. Η συνάρτηση g είναι παραγωγίσιμη στο, ως πράξεις παραγωγίσιμων συναρτήσεων με: Επειδή τριωνύμου 1 1 1 g 1 1, 1, για, το πρόσημο της 1 Ο πίνακας προσήμου της g είναι ο επόμενος: g εξαρτάται από το πρόσημο του 1 g g + Επομένως η συνάρτηση g είναι: Γνησίως φθίνουσα στο διάστημα, Γνησίως αύξουσα στο διάστημα 1, ii) Σύμφωνα με τον πίνακα προσήμου της 1 ελάχιστο (ολικό) στο σημείο Επομένως για κάθε έχουμε: Άρα: 1 και g του ερωτήματος (i) η συνάρτηση g έχει 1, το g 1 1 1 1 1 1 1 1 g g.
Λύσεις των θεμάτων προσομοίωσης στα Μαθηματικά Θετικής και Τεχνολογικής Κατευθυνσης 15 Γ. Για 1 1 έχουμε: 1 Για 1 1 έχουμε: 1 1 1 1 1 i) Η g είναι παραγωγίσιμη για κάθε (ή αλλιώς η g είναι δύο φορές παραγωγίσιμη για κάθε ) ως πράξεις παραγωγίσιμων συναρτήσεων με: 1 1 1 g 4 1 4 1 4 1 4 1, Επειδή 1 4, το πρόσημο της ( ) 1 4 1. Ο πίνακας του προσήμου της g είναι ο επόμενος: g εξαρτάται από το πρόσημο του g g Επομένως η συνάρτηση g : Είναι κοίλη (στρέφει τα κοίλα κάτω) στο διάστημα, Είναι κυρτή (στρέφει τα κοίλα άνω) στο διάστημα, Είναι κοίλη (στρέφει τα κοίλα κάτω) στο διάστημα, +
Λύσεις των θεμάτων προσομοίωσης στα Μαθηματικά Θετικής και Τεχνολογικής Κατευθυνσης 15 Τα σημεία καμπής της είναι το και το A, g ή το και το B, g ή το B, 1 A, ii) Η εξίσωση της εφαπτομένης της γραφικής παράστασης της συνάρτησης g στο σημείο A, g () είναι: y g g y 6 y 6 14 Επειδή η g είναι κοίλη (στρέφει τα κοίλα κάτω) στο διάστημα, για κάθε, 1 θα είναι: 1 1 6 14 1 7 1 7 1 y g 4,. Επίσης, η εξίσωση της εφαπτομένης της γραφικής παράστασης της συνάρτησης g στο σημείο B1, g (1) είναι: 1 1 1 1 y g g y Επειδή η g είναι κυρτή (στέφει τα κοίλα άνω) στο διάστημα, 1, θα είναι: 1 1 1 1 y g 1 1 1 1 1, για κάθε 1, αφού 1. ΘΕΜΑ Δ Δ1. Για να αποδείξουμε ότι η συνάρτηση f είναι περιττή, αρκεί να αποδείξουμε ότι: f ( ) f ( ), για κάθε Για την f ( ) 1 t dt 4 t t 4 θέτουμε t και έχουμε: dt d t t
Λύσεις των θεμάτων προσομοίωσης στα Μαθηματικά Θετικής και Τεχνολογικής Κατευθυνσης 15 Επομένως για κάθε έχουμε: 1 ( ) 1 f ( ) d d f ( ) 4 4 ( ) ( ) 4 4 Δ. Θέτοντας για ευκολία 1t h( t), 4 t t 4 t έχουμε διαδοχικά: Η συνάρτηση h( t) dt ( ) ( ) ( ) ( ), h t dt h t dt h t dt h t dt f ( ) h( t) 1t t t 4 4 είναι συνεχής στο (ως πηλίκο συνεχών συναρτήσεων στο ) και άρα οι συναρτήσεις h( t) dt και h( t) dt είναι παραγωγίσιμες στο (ως σύνθεση παραγωγίσιμων). Επομένως η συνάρτηση f ( ) είναι παραγωγίσιμη στο ως διαφορά παραγωγίσιμων συναρτήσεων με: f ( ) h ( ) h ( ) h ( ) h ( ) K ( ), Εφαρμόζουμε το θεώρημα του Bolzano για την K( ) στο διάστημα, 1 και έχουμε: Η K( ) είναι συνεχής στο K() 1, 1, ως διαφορά συνεχών συναρτήσεων στο, 1 1 11 1 K(1), αφού 1 1, διότι η συνάρτηση Άρα K() K(1) είναι γνησίως φθίνουσα στο διάστημα,. και επομένως υπάρχει ένα τουλάχιστον, 1 K( ) ή f ( ). Δ. Από τη σχέση τέτοιο, ώστε 15 5 g t dt 1, για κάθε έχουμε διαδοχικά: 15 5 15 5 g t dt g t dt 1 1 ( ) () 15 5,όπου ( ) g t dt 1,. Άρα ισχύει ( ) (), για κάθε και επομένως η συνάρτηση ( ) έχει μέγιστο στο σημείο. Ακόμα η ( ) είναι παραγωγίσιμη στο, ως πράξεις παραγωγίσιμων συναρτήσεων στο, αφού η g είναι συνεχής στο (δεδομένο) με: 15 4 ( ) g( ) 15 5, Συνεπώς, σύμφωνα με το θεώρημα του Frmat, θα έχουμε: () () 15 () 15 g g
Λύσεις των θεμάτων προσομοίωσης στα Μαθηματικά Θετικής και Τεχνολογικής Κατευθυνσης 15 Όμως είναι (βρέθηκε παραπάνω): Επομένως Άρα: f ( ) h ( ) h ( ) h ( ) h ( ) K ( ), 1 f h h h() 1 4 g 15 g 1 14 g f 14 Δ4. i) Εφαρμόζουμε το θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού για τη συνάρτηση g στα διαστήματα, 18 και 18, 16. Έχουμε: Η g είναι συνεχής στα διαστήματα Η g είναι παραγωγίσιμη στα διαστήματα, 18 και 18, 16 (δεδομένο)., 18 και 18, 16 (δεδομένο) Άρα υπάρχει ένα τουλάχιστον 1, 18 και ένα τουλάχιστον 18, 16 ώστε: g(18) g() 15 g ( 1) 1 και 18 18 g(16) g(18) 41 g ( ) 1 18 18 τέτοια, Εφαρμόζουμε το θεώρημα του Roll για τη συνάρτηση g στο διάστημα 1,. Έχουμε: Η g είναι συνεχής στο 1,, ως παραγωγίσιμη στο. Η g είναι παραγωγίσιμη στο 1,, ως δύο φορές παραγωγίσιμη στο. g 1 g Επομένως, υπάρχει ένα τουλάχιστον 1,, 16 τέτοιο, ώστε g ( ) ii) Έχουμε lim f ( ) και lim και άρα έχουμε την απροσδιόριστη μορφή οπότε, σύμφωνα με τον κανόνα του d L Hospital (η f ( ) και είναι παραγωγίσιμες), έχουμε διαδοχικά: f ( ) h( ) h( ) 1 h( ) h( ) h() h() h() 1 (η 1 4 lim lim lim συνάρτηση h( ) είναι συνεχής, ως πηλίκο συνεχών συναρτήσεων, άρα συνεχής και στο ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών