Το Λογισµικό JGEX. Λυγάτσικας Ζήνων. Πρότυπο Πειραµατικό Γ.Ε.Λ. Βαρβακείου Σχολής

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Το Λογισµικό JGEX. Λυγάτσικας Ζήνων. Πρότυπο Πειραµατικό Γ.Ε.Λ. Βαρβακείου Σχολής"

Transcript

1 Το Λογισµικό JGEX Λυγάτσικας Ζήνων Πρότυπο Πειραµατικό Γ.Ε.Λ. Βαρβακείου Σχολής 5 Μαρτίου

2 1 Τι είναι ένα Σύστηµα Αυτόµατης Απόδειξης (ΣΑ- Α) στην Γεωµετρία ; ιαθέτουµε δύο µεγάλες κατηγορίες λογισµικών για να υποστηρίξουµε την εκπαιδευτική διαδιακασία : τα Συστήµατα υναµικής Γεωµετρίας (Σ Γ) και τα Συστήµατα Αλγεβρικού Υπολογισµού (ΣΑΥ). Μεταξύ των συστηµάτων αυτών µόνο ένας αρκετά µικρός αριθµός µπορεί να χρησιµοποιηθεί για την αυτόµατη απόδειξη ϑεωρηµάτων στην Ευκλείδεια Γεωµετρίας. Το Xcas κατασκευάζει α- ποδείξεις χρησιµοποιώντας µερικές ικανότητες των ΣΑΥ, το Cinderella µπορεί να ελέγξει την αλήθεια ή όχι µίας πρότασης χρησιµοποιώντας πιθανοθεωρητικές µεθόδους και τέλος το Geometrix µπορεί να ελέγχει γεωµετρικές αποδείξεις χρησιµοποιώντας το πανίσχυρο proof assistant σύστηµα Coq. Το σύστηµα αυτό δεν είναι συστήµατα αυτόµατης απόδειξης. Χρησιµοποιείται αποκλειστικά στο να δείξει που και πως ϑεωρήµατα µπορούν να ορίσουν µια αυτόµατη απόδειξη. Το Coq χρησιµοποιήθηκε επιτυχώς στο πρόβληµα των τεσσάρων χρωµάτων, στην απόδειξη του ϑεµελειώδους ϑεωρήµατος της Άλγεβρας µε την χρήση της ϑεωρίας οµάδων και τελευταία στο ϑεώρηµα των Feit-Thomson. Το JGEX µπορεί να χρησιµοποιηθεί για την παράγει αυτόµατες αποδείξεις. Πρόκειται για ένα σύστηµα που ενσωµατώνει τις δυνατότητες των συστηµάτων υναµικής Γεωµετρίας αλλά έχει και έναν solver µε διπλή λειτουργία : µπο- ϱεί να κάνει αυτόµατες αποδείξεις µε µια Επαγωγική Βάση (ΕΒ) και µε µία Αλγεβρική Βάση χρησιµοποιώντας δύο πανίσχυρα εργαλεία της Πραγµατικής Αλγεβρικής Γεωµετρίας, την ϑεωρία της ϐάσης Gröbner και την µέθοδο Wu, δες στο [7] και [8]. Το λογισµικό είναι το αποτέλεσµα των αλγορίθµων στην Άλγε- ϐρα που αναπτύχθηκαν στην δεκαετία του 80 και της µερικής χρήσης κάποιων αποτελεσµάτων της Μαθηµατικής Λογικής και της Λογικής του Προγραµµατισµού, όπως η Skolemization και Horn clauses. εν ϑα µας απασχολήσει εδώ η Αλγεβρική Βάση. Θα ασχοληθούµε µε την ΕΒ του συστήµατος και συγκεκριµµένα το πως µπορεί να χρησιµοποιηθεί για αποδείξει ή να ανακαλύψει µη τετριµένα γεωµετρικά ϑεωρήµατα. Η ϐασική ιδέα του λογισµικού µπορεί να επικεντρωθεί στην κατασκευή µιας ϐάσης που την αποκαλεί fixpoint, εµείς ϑα την λέµε ϐάση ιδιοτήτων, η οποία µπορεί να ϐρεί όλες τις ιδιότητες του σχήµατος που µπορεί να εξαχθούν από ένα σύνολο αξιωµάτων. Αξίζει να σηµειώσουµε ότι οποιοδήποτε ϑεώρηµα µπορεί να αποδειχθεί µε την µέθοδο της ΕΒ, µπορεί να αποδειχθεί και µε τις δύο ενσωµατοµένες αλγεβρικές µεθόδους, οι οποίες όµως δεν κατασκευάζουν απόδειξη αλλά είναι διαδικασίες απόφασης αν το ϑεώρηµα είναι ή όχι αληθές. Οπωσδήποτε όµως µπορούµε να αποδείξουµε περισσότερα και δυσκολότερα ϑεωρήµατα µε τις αλγεβρικές µεθόδους του λογισµικού παρά µε την Επαγωγική Βάση. 2 ΠΠ ΓΕΛ Βαρβακείου Σχολής Ζ. Λυγάτσικας- 5 Μαρτίου 2015

3 1.1 Η Επιλογή των Γεωµετρικών Κανόνων 1.1 Η Επιλογή των Γεωµετρικών Κανόνων Οι Γεωµετρικοί κανόνες είναι στον πυρήνα του συστήµατος, ο οποίος αν και δεν είναι κλειστός δεν έχουµε την δυνατότητα παρέµβασης. Η επιλογή τους ϐασίζεται στις παρακάτω παραδοχές Κατασκευή ϐοηθητικών σηµείων Το επαγωγικό σύστηµα ϐασίζεται πάνω στην χρήση προτάσεων Horn και έ- τσι δεν υπάρχει τρόπος για την κατασκευή ϐοηθητικών σηµείων. Αν και τα ϑεωρήµατα που χρησιµοποιούν ισότητες τριγώνων δεν χρησιµοποιούν αυτήν την ιδιότητα. Ωστόσο, πολλά ϑεωρήµατα, όπως για παράδειγµα το ϑεώρηµα του ορθοκέντρου ή του κέντρου ϐάρους, δεν µπορεί να αποδειχθούν χωρίς την κατασκευή ϐοηθητικών σηµείων. Το JGEX κάνει κάτι πιο οικονοµικό και αποτελεσµατικό. Η κατασκευή ϐοηθητικών σηµείων αντιστοιχούν στην Skolemization των υ- παρξιακών ποσοδεικτών. Εχει χρησιµοποιηθεί η παρατήρηση αυτή από τον A. Robinson, δες [1] ότι πρίν την γεωµετρική απόδειξη, µπορεί να κατασκευάσουµε όλα τα ϐοηθητικά σηµεία και ευθείες που µπορεί να χρειασθούµε στην απόδειξη, αφού είναι στοιχεία του συνόλου -universe Herbrand του προβλή- µατος. Βασισµένος σ αυτές τις αρχές ο Reiter παρουσίασε µια επαγωγική µέθοδο που παράγει νέα στοιχεία στο [10]. Και οι δύο αυτές ιδέες δεν είναι αλγοριθµικές. Επίσης, εισάγοντας νέα στοιχεία αυξάνουµε δραµατικά το µέγεθος της ϐάσης. Αφού συζητήσουµε την τελική ϐάση, ϑα έχουµε την δυνατότητα να δούµε πως λειτουργεί αυτήν η παραδοχή Σχέση διάταξης Ας δούµε την απόδειξη του παρακάτω ϑεωρήµατος : Οι διαγώνιες παραλληλογράµµου διχοτοµούνται. Η κλασική απόδειξη χρησιµοποιεί την ισότητα τριγώνων ABE = DCE η οποία µε την σειρά της ϐασίζεται στην ισότητα των γωνιών ÊAB = DCE. Αλλά, αυτό υποθέτει ότι τα σηµεία B και D είναι εκατέρωθεν της AC. Αυτή 3 ΠΠ ΓΕΛ Βαρβακείου Σχολής Ζ. Λυγάτσικας- 5 Μαρτίου 2015

4 1.2 Οι Κανόνες η παραδοχή δεν ϕαίνεται λογική σε αυτόµατες µηχανιστικές αποδείξεις. Το JGEX στην περίπτωση αυτή δεν χρησιµοποιεί το ότι τα B και D είναι εκατέρο- ϑεν της AC, χρησιµοποιεί µάλιστα το Θεώρηµα Θαλή στην απόδειξη, ως εξής : Αφού AC και BD δεν είναι παράλληλα ϑα τέµνονται σε ένα σηµείο E. Αλλά τότε τα δύο τρίγωνα ABE και DCE είναι όµοια. Άρα EA EC = EB ED = AB DC. Αλλά, AB = DC, συνεπώς EB = ED και EA = EC. Άρα, ένα στοιχειώδες ϑεώρηµα στην Γεωµετρία που χρειάζεται µόνο ισότητες είναι ανεξάρτητο από την σχετική ϑέση σηµείων. Αυτό είναι µια παρατήρηση γνωστή στους προγραµµατιστές του JGEX από την δεκαετία του 80. Παρά το ότι η απόδειξη στην στοιχειώδη γεωµετρία, ενός τέτοιου ϑεωρήµατος, δεν παρουσιάζει πρόβληµα, στο λογισµικό µας µπορεί να είναι περίπλοκη και κα- ϑόλου αυστηρή. Το ίδιο ισχύει για το ϑεώρηµα που εκφράζει την ιδιότητα της διχοτόµου σε ισοσκελές τρίγωνο. 1.2 Οι Κανόνες Η δοµή ενός κανόνα ακολουθεί την δοµή µιας πρότασης Horn (Horn clause), του τύπου : x[ ( ) ] P 1 (x) P k (x) Q(x) όπου όλα τα x είναι σηµεία που ϐρίσκονται στα γεωµετρικά κατηγορήµατα P 1,..., P k, Q. Οι προτάσεις Horn είναι πολύ καλές στην αυτοµατοποίηση αποδείξεων. Ας δούµε µερικούς τέτοιους κανόνες : ( ) 14. circle(o, A, B, C) perp(o, A, A, X) [AB, AX] = [CA, CB] ( ) 35. midp(e, A, B) midp(f, A, C) EF BC... Κεντρική έννοια στην κατασκευή των κανόνων παίζει η ισότητα γωνιών. Εδώ οι γωνία δεν είναι η σύνηθης γωνία αλλά είναι η λεγόµενη πλήρης γωνία fullangle. Ετσι, µια γωνία που συµβολίζεται µε [l, u] είναι η γωνία των ευθειών l και u, δεν είναι οι συνήθεις πλευρές µιας γωνίας. ύο γωνίες [l, u] και [v, k] είναι ίσες αν µετά από µία στροφή K έχουµε K(l) K(v) και K(u) K(k). Ποιά είναι η πραγµατική αιτία για αυτήν την απλούστευση. Θεωρείστε δύο παράλληλες ευθείες που τέµνονται από µια τρίτη. Για να περιγράψουµε τα Ϲεύγη των ίσων γωνιών πρέπει να δώσουµε µια σχέση διάταξης. Αν ϕορτώσουµε το γεωµετρικό κατηγόρηµα µε όρους διάταξης γίνεται δίσχρηστο µε κίνδυνο να διασπασθεί κατα την διάρκεια των υπολογισµών. Αυτός είναι ο λόγος που ϑα δείτε να σηµειώνουνται σαν ίσες γωνίες που έχουν άθροισµα 180 o. Παρ ολα 4 ΠΠ ΓΕΛ Βαρβακείου Σχολής Ζ. Λυγάτσικας- 5 Μαρτίου 2015

5 1.3 Η ϐάση Ιδιοτήτων, fixpoint αυτά, το λογισµικό, µε ad hock επεµβάσεις µπορεί να διακρίνει κατα την διάρκεια της απόδειξης γωνίες ίσες και παραπληρωµατικές µε την σύνηθη σηµασία. Το σύνολο των κανόνων που είναι στην ϐιβλιοθήκη του λογισµικού ανέρχεται σε 43. Οπωσδήποτε δεν είναι πλήρης ο κατάλογος. Για τον λόγο αυτό µπορεί µερικά ϑεωρήµατα να µην είναι αποδείξιµα µε το JGEX. Η κλειδωµένη ϐάση των κανόνων είναι ένα από τα ελλατώµατα του λογισµικού. 1.3 Η ϐάση Ιδιοτήτων, fixpoint Εστω D 0 είναι ένα σύνολο γεωµετρικών ιδιοτήτων ενός γεωµετρικού σχήµατος, οι υποθέσεις σε µια άσκηση ή σε ένα ϑεώρηµα και R ένα σύνολο κανόνων. Θα χρησιµοποιήσουµε µια αύξουσα αλυσίδα ιδιοτήτων για να ϐρούµε νέες ιδιότητες στο αρχικό σχήµα. D 0 R D1 R... R Dk Το σύστηµα αρχίζει µε το σύνολο των ιδιοτήτων D 0 και συνεχίζει δηµιουργώντας ένα νέο σύνολο από το D 0 όταν το σύνολο κανόνων R εφαρµοσθεί σε αυτό. Οταν R(D k ) = D k το σύστηµα σταµατά και µας δίνει την ϐάση ιδιοτήτων (ή fixpoint). Ας δούµε την ϐάση ιδιοτήτων του ϑεωρήµατος που αφορά το ορθόκεντρο τριγώνου. έδεται τρίγωνο ABC και AD, BE τα ύψη που άγονται από τις κορυφές A και B αντίστοιχα. F το σηµείο τοµής των AD και BE. Τότε το σύνολο D 0 είναι : D 0 = collinear(a, E, C), perpendicular(b, E, A, C) collinear(d, B, C), perpendicular(a, D, B, C) collinear(f, A, D), collinear(f, B, E) collinear(g, A, B), collinear(g, C, F ) 5 ΠΠ ΓΕΛ Βαρβακείου Σχολής Ζ. Λυγάτσικας- 5 Μαρτίου 2015

6 1.3 Η ϐάση Ιδιοτήτων, fixpoint Η κατασκευή της ϐάση ιδιοτήτων κοστίζει 0.3 sec. Η ϐάση έχει µε 134 ιδιότητες. lines 6 peprpendicular lines 3 circles 6 congruent angles 7 similar triangles 7 ratio segments 105 Η ϐάση λοιπόν σχηµατίζεται ϐάσει του διαγράµµατος : 6 ΠΠ ΓΕΛ Βαρβακείου Σχολής Ζ. Λυγάτσικας- 5 Μαρτίου 2015

7 1.4 Ο ϱόλος του αριθµητικού µοντέλου 1.4 Ο ϱόλος του αριθµητικού µοντέλου Παρα το ότι έχουµε την εντύπωση ότι τα συστήµατα αυτόµατης απόδειξης λειτουργούν αποκλειστικά µε επαγωγικά µοντέλα, η ύπαρξη αριθµητικών µοντέλων ϐοηθαέι ad hock την κατασκευή της ϐιβλιοθήκης Ιδιοτήτων, στα δύο κύρια συστήµατα Geometrix και JGEX. Ετσι, πρέπει να έχουµε υπόψη ότι η κατασκευή ενός αριθµητικού µοντέλου είναι καθοριστική για την µέθοδο επιλογής της απόδειξης. Πρώτα, είναι χρήσιµο στην αντίστροφή διαδικασία της απόδειξης όπως παρουσιάζεται από το λογισµικό JGEX. Επίσης, είναι χρήσιµο για την παραγωγή αποδείξεων ανεξαρτήτων από το γράφηµα. Ενα σχήµα παράγει ένα καλό αριθµητικό µοντέλο αν είναι το σχήµα είναι γραµµικά κατασκευάσιµο. Λέµε ότι ένα σχήµα είναι γραµµικά κατασκευάσιµο αν κατασκευάζεται σύµφωνα µε τις παρακάτω κατασκευές : Από ένα ελεύθερο σηµείο Από ένα αυθαίρετο σηµείο πάνω σε ευθεία Από τοµές ευθειών Από την τοµή µιας ευθείας και ενός κύκλου όταν το άλλο σηµείο τοµής έχει προηγουµένως κατασκευασθεί. Αν µια γεωµετρική κατασκευή δεν είναι γραµµική, το σχήµα προσδιορίζει τα σηµεία από αλγεβρικές συντεταγµένες. Τότε το λογισµικό δεν µπορεί να κατασκευάσει ένα αριθµητικό µοντέλο και δεν µπορεί να υποστηρίξει µια α- πόδειξη. Στην περίπτωση αυτή ϑα χρησιµοποιήσουµε µια από τις αλγεβρικές µεθόδους που ήδη υπάρχουν στο λογισµικό. 1.5 ιαχείριση των ϐοηθητικών σηµείων Οπως είπαµε το JGEX δεν ξεκινά την κατασκευή ϐοηθητικών σηµείων αν δεν υπάρχει λόγος. Η αιτία είναι να µην αυξηθεί το µέγεθος της ϐάσης ιδιοτήτων fixpoint. Ετσι, αν η απόδειξη δεν ϐρίσκεται στην ϐάση fixpoint, τότε το σύστηµα ϑα προσπσθήσει να κατασκευάσει νέα σηµεία έτσι ώστε οι νέες ιδιότητες να ϐρεθούν στην ϐάση. Αν το συµπέρασµα δεν ϐρεθεί στην ϐάση συνεχίζει µε τον τρόπο αυτό. εν είναι µια δόκιµη επιλογή, αλλά οι προγραµµατιστές προτίµησαν την στρατηγική αυτή για καθαρά αποτελεσµατικές αλγοριθµηκές αιτιές. ηλαδή, η αύξηση των δεδοµένων δεν επιτρέπει την αποτελεσµατική λειτουργία του hardware. Γενικά για την ακτασευή νέων σηµείων ισχύουν οι παρακάτω τέσσερες κανόνες : Οι κανόνες A1 και A2 εισάγουν νέα σηµεία σαν τοµές δύο µη παραλλήλων ευθειών. Ο κανόνας A3 εισάγει σηµεία σαν µέσα ευθυγράµµων τµηµάτων και τέλος ο κανόνας A4 εισάγει σηµεία που είναι οι τοµές ευθείας και κύκλου. 7 ΠΠ ΓΕΛ Βαρβακείου Σχολής Ζ. Λυγάτσικας- 5 Μαρτίου 2015

8 1.5 ιαχείριση των ϐοηθητικών σηµείων Παράδειγµα 1 Αριθµητικό Μοντέλο Στην άσκηση Αποδεικτική 2 σελ. 139, το ένα σηµείο της τοµής ευθείας και κύκλου, B και Γ, έχει προηγουµένως κατασκευασθεί. Ετσι η κατασκευή είναι γραµµική και εποµένως το αριθµητικό µοντέλο κατασκευάζεται. Η άσκηση λέει : Ενας κύκλος K διέρχεται από τις κορυφές B και C, (άρα τα δύο αυτά σηµεία έχουν κατασκευάσθεί), ενός τριγώνου ABC και τέµνει τις πλευρές AB και AC στα σηµεία G και F. Να αποδείξετε ότι η GF είναι παράλληλη στην εφαπτοµένη του περιγεγραµµένου κύκλου στο σηµείο A. Σχήµα 1: Άσκηση Αποδεικτική 2 σελ Παράδειγµα 2 Αριθµητικό Μοντέλο - Κατασκευή Νέου Σηµείου Στο παρακάτω παράδειγµα ϑα δούµε δύο διαφορετικές κατασκευές στην ίδια άσκηση που δείχνουν το πως εργάζεται το λογισµικό στην κατασκευή αριθµητικού µεντέλου ή όχι. Ασκηση Αποδεικτική 1 σελ. 120: Σε τραπέζιο ABCD η διχοτόµος της B τέµνει τη διάµεσο σε σηµείο G. Τότε η BG GC. 8 ΠΠ ΓΕΛ Βαρβακείου Σχολής Ζ. Λυγάτσικας- 5 Μαρτίου 2015

9 1.5 ιαχείριση των ϐοηθητικών σηµείων Αν αφήσετε το σύστηµα να κατασκευάσει την διχοτόµο της γωνίας B, η κατασκευή που είναι ενσωµατωµένη στο λογισµικό είναι αριθµητική της έτσι δεν είναι γραµµικά κατασκευάσιµη. Τότε αν και το σύστηµα δίνει µια καταφατική απάντηση - ναι/οχι, δεν είναι δυνατόν να υποστηρίξει το αριθµητικό µοντέλο και απορρίπτει την απόδειξη µε ΕΒ. Ενώ µε αλγεβρικές µεθόδους αυτό είναι εφικτό, όπως µπορείτε να διαπυστώσετε. Υπενθυµίζουµε ότι η κατασκευή της διχοτό- µου γωνίας γίνεται µε την τοµή κύκλων των οποίων τα σηµεία τοµής δεν είναι αλγεβρικώς διακριτά. Σχήµα 2: Άσκηση Αποδεικτική 1 σελ. µοντέλου. 120, χωρίς κατασκευή αριθµητικού Αν όµως κατασκευάσετε την διχοτόµο, µε κανόνα και διαβήτη όπως στην σύνηθη κλασική κατασκευή, επειδή ϑα ορίσεται εσείς τα σηµεία τοµής των κύκλων, το λογισµικό κατασκευάζει το αριθµητικό µοντέλο και συνεχίζει εκ τούτου την απόδειξη. Επίσης, ϑα δείτε ότι ϑα χρειασθεί και την κατασκευή ενός επιπλέον σηµείου J στο Σχήµα 3. Σχήµα 3: Άσκηση Αποδεικτική 1 σελ. 120, µε κατασκευή αριθµητικού µοντέλου. Παράδειγµα 3 Αριθµητικό Μοντέλο - Κατασκευή Νέου Σηµείου Το Θεώρηµα της Πεταλούδας 9 ΠΠ ΓΕΛ Βαρβακείου Σχολής Ζ. Λυγάτσικας- 5 Μαρτίου 2015

10 1.5 ιαχείριση των ϐοηθητικών σηµείων Το ϑεώρηµα αυτό είναι χαρακτηριστική περίπτωση της αλγεβρικής αµφιβολίας προσδιορισµού σηµείων τοµής ευθείας και κύκλου. Σε κύκλο κέντρου O έχουµε τέσσερα σηµεία C, D, E και F, όπως στο Σχήµα 4. Αν A το σηµείο τοµής των CE και DF και η κάθετος στην OA από το σηµείο A τέµνει τις CF και DE στα σηµεία H και I, τότε το A είναι το µέσο του HI. Το πρόβληµα δηµιουργείται επειδή το σηµείο E ορίζεται στο αριθµητικό µοντέλο σαν το σηµείο τοµής της CA και του κύκλου. Αλλά, τα σηµεία τοµής της CA µε τον κύκλο είναι τα C και E. Το σύστηµα δεν έχει κάποιον λόγο να ϑεω- ϱεί το σηµείο E και µάλιστα το σηµείο C έχει εκ των προτέρων κατασκευασθεί! Ετσι, απορρίπτει το αριθµητικό µοντέλο αφού πλέον τα σηµεία είναι αλγεβρικά. Η αλήθεια του συµπεράσµατος αποδεικνύεται µε την µέθοδο Wu. Σχήµα 4: ϑεώρηµα Πεταλούδας χωρίς ϐοηθητικό σηµείο. Σχήµα 5: ϑεώρηµα Πεταλούδας µε ϐοηθητικό σηµείο. 10 ΠΠ ΓΕΛ Βαρβακείου Σχολής Ζ. Λυγάτσικας- 5 Μαρτίου 2015

11 2 Η Απόδειξη Αφού σχηµατισθεί µια ϐάση ιδιοτήτων µπορούµε να περάσουµε στην απόδειξη. Η διαδικασία δεν είναι απλή γιατί χρησιµοποιεί την ϐάση κάπως περίπλοκα. Γενικά το σχήµα µιας απόδειξης είναι το εξής : (R) C : P 1,..., P k όπου C είναι το συµπέρασµα που ϑέλουµε να καταλήξουµε και P 1,..., P k µαι σειρά από απλές προτάσεις, έχουν συγκεκριµµένη µορφή στο λογισµικό. Η διαδικασία επιλογής είναι η εξής : Αν P i είναι µια απλή πρόταση τότε ψάχνουνε στην ϐάση και ϐρίσκουµε την πρώτη πρόταση που συνεπάγεται την P i, αν δεν είναι απλή ψάχνουµε στην ϐάση για να ϐρούµε µια απλή που συνεπάγεται από την P i και είναι σχετική µε την (R). Το σύστηµα έχει τρείς κανόνες για να ελέγχει αν οι διαδιακασίες P i έχει επαναληθφεί ή µπορεί να συντοµευθεί κλπ. Παράδειγµα 4 Στο παρακάτω παράδειγµα ϑα ϕανεί το σχήµα R που κατασκευάζει στην έξοδο το JGEX. Αν ABCD τραπέζιο µε AB CD, και E µέσο της AC, F µέσο της BD, τότε η EF διέρχεται από το µέσο της BC. Σχήµα 6: EF διέρχεται από το µέσο της BC. Η απόδειξη από το JGEX είναι η εξής : 11 ΠΠ ΓΕΛ Βαρβακείου Σχολής Ζ. Λυγάτσικας- 5 Μαρτίου 2015

12 ΑΝΑΦΟΡΕΣ Αναφορές [1] Robinson, A.: Proving a theorem (as done by Man, Logician, or Machine), in J. Siekmann and G. Wrightson (eds), Automation of Reasoning, Springer-Verlag, (1983), pp [2] Chou S.-C.: Proving Elementary Geometry Theorems Using Wu s Algorithm, in Automated theorem proving after 25 years-contemporary mathematics Vol. 29-Bledsoe and Loveland editors -Denver (1984). [3] Chou S.-C., Gao X., Zhang J.:A Deductive Database Approach to Automated Geometry Theorem Proving and Discovering, Journal of Automated Reasoning 25: , (2000). [4] Chou S.-C.: Mechanical Geometry Theorem Proving, D. Reidel publishing company-dordecht (1988). [5] Chou S.-C., Schelter W.F.: Proving geometry theorems with rewrite rules. Journal of automated Reasoning 2 (1986). [6] Cox D., Little J., O Shea D.: Ideals, Varieties and Algorithms, Undergraduate Texts in Mathematics, Springer-Verlag, (1991). [7] Λυγάτσικας Ζ.: Gröbner Bases στο GB, (2007). [8] Λυγάτσικας Ζ.: Αυτόµατες Αποδείξεις στην Γεωµετρία µε την Μέθοδο Wu, Μαθηµατική Επιθεώρηση 79-80, σελ. 3-30, (2013). [9] Prasolov V. V.: Polynomials. Algorithms and Computation in Mathematics, vol. 11, Springer (2004). [10] Reiter, R.: A semantically guided deductive system for automatic theorem proving, IEEE Trans. on Computers C-25(4) (1976), ΠΠ ΓΕΛ Βαρβακείου Σχολής Ζ. Λυγάτσικας- 5 Μαρτίου 2015

13 ΑΝΑΦΟΡΕΣ [11] Ritt J.F.: Differential Algebra, Amer. Mat. Soc., New York, (1950). [12] Wu Wen-Tsün: On the decision problem and the mechanization of theorem-proving in elementary geometry. Scienta Sinica, 21 (1978). [13] Wu Wen-Tsün: Some recent advances in mechanical theorem-proving of geometries, in Automated theorem proving after 25 years-contemporary mathematics Vol. 29-Bledsoe and Loveland editors -Denver (1984). [14] Wu Wen-Tsün: Mechanical Theorem Proving in Geometries Texts and Monographs in Symbolic Computation, Springer-Verlag/Wien (1994). [15] Wu Wen-Tsün: Basic principles of mechanical theorem proving in elementary geometries. Journal of automated reasoning 2 (3) pp , (1986). 13 ΠΠ ΓΕΛ Βαρβακείου Σχολής Ζ. Λυγάτσικας- 5 Μαρτίου 2015

Παρατηρήσεις στα ϑέµατα

Παρατηρήσεις στα ϑέµατα Παρατηρήσεις στα ϑέµατα του διαγωνισµού ΘΑΛΗΣ 2013 της Ε.Μ.Ε. Λυγάτσικας Ζήνων Πρότυπο Πειραµατικό Γ.Ε.Λ. Βαρβακείου Σχολής 20 Οκτωβρίου 2013 1 Γενικές Παρατηρήσεις Οι απόψεις των παιδιών Τα ϑέµατα, ιδίως

Διαβάστε περισσότερα

Ασκήσεις στα ιανύσµατα

Ασκήσεις στα ιανύσµατα Ασκήσεις στα ιανύσµατα Λυγάτσικας Ζήνων zenon7@otenet.gr http://blogs.sch.gr/zenonlig/ Πρότυπο Πειραµατικό Γ.Ε.Λ. Βαρβακείου Σχολής 15 Νοεµβρίου 014 c:\education\ B lycee \module\ module\revision vec.tex

Διαβάστε περισσότερα

Κυρτές Συναρτήσεις και Ανισώσεις Λυγάτσικας Ζήνων Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο e-mail: zenon7@otenetgr Ιούλιος-Αύγουστος 2004 Περίληψη Το σχολικό ϐιβλίο της Γ Λυκείου ορίζει σαν κυρτή (αντ κοίλη)

Διαβάστε περισσότερα

6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης

6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης 6.5 6.6 σκήσεις σχολικού βιβλίου σελίδας 34 ρωτήσεις Κατανόησης. Σε ένα εγγεγραµµένο τετράπλευρο i) Τα αθροίσµατα των απέναντι γωνιών του είναι ίσα Σ Λ ii) Κάθε πλευρά φαίνεται από τις απέναντι κορυφές

Διαβάστε περισσότερα

1. Γενικά για τα τετράπλευρα

1. Γενικά για τα τετράπλευρα 1. ενικά για τα τετράπλευρα Ένα τετράπλευρο θα λέγεται κυρτό αν η προέκταση οποιασδήποτε πλευράς του αφήνει το σχήμα από το ίδιο μέρος (στο ίδιο ημιεπίπεδο, όπως λέμε καλύτερα). κορυφές γωνία εξωτερική

Διαβάστε περισσότερα

Κεφάλαιο 10 Γεωμετρικές κατασκευές Στα αιτήματα του Ευκλείδη περιλαμβάνονται μόνο τρία που αναφέρονται στη δυνατότητα κατασκευής ενός σχήματος. Ηιτήσθω από παντός σημείου επί παν σημείον ευθείαν γραμμήν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

Σχόλιο. Παρατηρήσεις. Παρατηρήσεις. p q p. , p1 p2

Σχόλιο. Παρατηρήσεις. Παρατηρήσεις. p q p. , p1 p2 A. ΠΡΟΤΑΣΕΙΣ Στα Μαθηµατικά χρησιµοποιούµε προτάσεις οι οποίες µπορούν να χαρακτηριστούν ως αληθείς (α) ή ψευδείς (ψ). Τις προτάσεις συµβολίζουµε µε τα τελευταία µικρά γράµµατα του Λατινικού αλφαβήτου:

Διαβάστε περισσότερα

(1) (2) A ΑE Α = AΒ (ΑΒΕ) (Α Ε)

(1) (2) A ΑE Α = AΒ (ΑΒΕ) (Α Ε) 9. Τα τρίγωνα και έχουν κοινή γωνία, άρα: () () A E AB A E A (1) Όµοια τα τρίγωνα και, άρα: () () A E AB A A () E Όµως από το θεώρηµα του Θαλή: A A () ( // ) () () πό (1), (), () έχουµε. () () Άρα () ()

Διαβάστε περισσότερα

Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Β. ΜΕΘΟ ΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Β. ΜΕΘΟ ΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Όµοια λέγονται δύο πολύγωνα που έχουν τις πλευρές τους ανάλογες και τις αντίστοιχες γωνίες τους ίσες. Λόγος οµοιότητας δύο όµοιων πολυγώνων λέγεται ο λόγος δύο

Διαβάστε περισσότερα

Υπολογιστική άλγεβρα Ενότητα 12: Ο αλγόριθμος του Buchberger

Υπολογιστική άλγεβρα Ενότητα 12: Ο αλγόριθμος του Buchberger Υπολογιστική άλγεβρα Ενότητα 12: Ο αλγόριθμος του Buchberger Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Κεφάλαιο 12 Ο Αλγόριθμος του Buchberger Τετάρτη 4 Ιουνίου 2014 12.1 Ο Αλγόριθμος

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 212-213 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Να αποδείξετε ότι κάθε σημείο της διχοτόμου μιας γωνίας ισαπέχει

Διαβάστε περισσότερα

6.1 6.4. 1. Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών

6.1 6.4. 1. Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών 6. 6.4 ΘΩΡΙ. γγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο Το µέτρο της επίκεντρης ισούται µε το µέτρο του αντίστοιχου τόξου. Η εγγεγραµµένη ισούται µε το µισό της αντίστοιχης επίκεντρης. Η εγγεγραµµένη

Διαβάστε περισσότερα

Ευκλείδεια Γεωμετρία. ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ και ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ

Ευκλείδεια Γεωμετρία. ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ και ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ και ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ 1 Σωτήρης Ε. Λουρίδας 1. ΓΕΝΙΚΑ: 1.1 Θεωρούμε ότι κάθε Μαθηματικό πρόβλημα είναι της μορφής «αν p τότε q», συμβολικά p q. 1.2. Λύση ενός Μαθηματικού προβλήματος

Διαβάστε περισσότερα

ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του

ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του Ανδρέας Ιωάννου Κασσέτας ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του 1. Υπάρχει αριθµός τέτοιος ώστε εάν τον υψώσεις στο τετράγωνο να αυξηθεί

Διαβάστε περισσότερα

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 22 Φεβρουαρίου 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr, GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

Ορισµοί. Ένα τετράπλευρο λέγεται εγγεγραµµένο σε κύκλο, αν οι κορυφές του είναι σηµεία του κύκλου.

Ορισµοί. Ένα τετράπλευρο λέγεται εγγεγραµµένο σε κύκλο, αν οι κορυφές του είναι σηµεία του κύκλου. 6.5 6.6 ΘΩΡΙ. Ορισµοί Ένα τετράπλευρο λέγεται εγγεγραµµένο σε κύκλο, αν οι κορυφές του είναι σηµεία του κύκλου. Ένα τετράπλευρο λέγεται εγγράψιµο σε κύκλο, όταν µπορεί να γραφεί κύκλος που να διέρχεται

Διαβάστε περισσότερα

Ονοματεπώνυμο... Β. Να γράψετε τον αριθμό κάθε πρότασης στο γραπτό σας και δίπλα να την χαρακτηρίσετε σαν «Σωστό» ή «Λάθος»

Ονοματεπώνυμο... Β. Να γράψετε τον αριθμό κάθε πρότασης στο γραπτό σας και δίπλα να την χαρακτηρίσετε σαν «Σωστό» ή «Λάθος» ο Γενικό Λύκειο Χανίων ΣΧΟΛ. ΕΤΟΣ - Τάξη ΓΡΠΤΕΣ ΠΡΟΓΩΓΙΚΕΣ ΕΞΕΤΣΕΙΣ ΜΪΟΥ - ΙΟΥΝΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙ Τα θέματα ΔΕΝ θα μεταφερθούν στο καθαρό. Να απαντήσετε σε όλα τα θέματα Οι απαντήσεις να γραφούν στο καθαρό

Διαβάστε περισσότερα

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες. ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη

Διαβάστε περισσότερα

5 Γενική µορφή εξίσωσης ευθείας

5 Γενική µορφή εξίσωσης ευθείας 5 Γενική µορφή εξίσωσης ευθείας Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Κάθε ευθεία έχει εξίσωση της µορφής: Ax + By +Γ= 0, µε Α 0 ηβ 0 () και αντιστρόφως κάθε εξίσωση της µορφής () παριστάνει ευθεία γραµµή.

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήµα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν Α ΒΓ, Ε ΑΒ τότε το τρίγωνο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος ) Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 28 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ( )

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 28 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 8 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ 6 ΦΕΒΡΟΥΑΡΙΟΥ 0 Ενδεικτικές Λύσεις θεμάτων μεγάλων τάξεων ΠΡΟΒΛΗΜΑ Να λύσετε στους ακέραιους την εξίσωση 4 xy y x = xy 6.

Διαβάστε περισσότερα

και ω η γωνία που σχηµατίζει το διάνυσµα OA (1) x = ρσυν(ω+ θ) = ρσυνωσυνθ ρηµωηµθ και και

και ω η γωνία που σχηµατίζει το διάνυσµα OA (1) x = ρσυν(ω+ θ) = ρσυνωσυνθ ρηµωηµθ και και ΣΤΡΟΦΗ ΙΝΥΣΜΤΟΣ Νίκος Ιωσηφίδης, Μαθηµατικός Φροντιστής, έροια e-mail: iossifid@yahoo.gr Στο άρθρο που ακολουθεί, όλα τα αναφερόµενα σηµεία θα θεωρούµε ότι βρίσκονται στο ίδιο επίπεδο. Ορισµοί: 1) Ονοµάζουµε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ ΣΧΣΗ ΘΩΡΗΜΤΩΝ ΘΛΗ ΚΙ ΠΥΘΟΡ ισαγωγή ηµήτρης Ι Μπουνάκης dimitrmp@schgr Οι δυο µεγάλοι Έλληνες προσωκρατικοί φιλόσοφοι, Θαλής (περίπου 630-543 πχ) και Πυθαγόρας (580-500 πχ) άφησαν, εκτός των άλλων, στην

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου Εισαγωγή στα Πρότυπα Τεστ. Πειραματικά Λύκεια ΕΠΕΣ Π.Π. ΓΕΛ Βαρβακείου Σχολής Συντάκτης Λυγάτσικας Ζήνων ΠΕ 03 Χρόνος

Μαθηματικά Γ Γυμνασίου Εισαγωγή στα Πρότυπα Τεστ. Πειραματικά Λύκεια ΕΠΕΣ Π.Π. ΓΕΛ Βαρβακείου Σχολής Συντάκτης Λυγάτσικας Ζήνων ΠΕ 03 Χρόνος Μαθηματικά Γ Γυμνασίου Εισαγωγή στα Πρότυπα Τεστ Πειραματικά Λύκεια ΕΠΕΣ Π.Π. ΓΕΛ Βαρβακείου Σχολής Συντάκτης Λυγάτσικας Ζήνων ΠΕ 03 Χρόνος 0 λεπτά Βαθμολογία Το διαγώνισμα είναι βαθμολογημένο με άριστα

Διαβάστε περισσότερα

Ερωτήσεις κατανόησης σελίδας 114. Ασκήσεις σχολικού βιβλίου σελίδας Στα παρακάτω τραπέζια να βρείτε τα x, ψ ω, και θ

Ερωτήσεις κατανόησης σελίδας 114. Ασκήσεις σχολικού βιβλίου σελίδας Στα παρακάτω τραπέζια να βρείτε τα x, ψ ω, και θ 5.0 5. σκήσεις σχολικού βιβλίου σελίδας 4 5 ρωτήσεις κατανόησης σελίδας 4. Στα παρακάτω τραπέζια να βρείτε τα x, ψ ω, και θ 3 3 (α) x 0 ψ 4 (β) x ψ 7 (γ) x (δ) θ x+ 3x ω 0 ο πάντηση + 0 Στο σχήµα (α) το

Διαβάστε περισσότερα

ΕΒ ΟΜΗ ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑ Α JBMO ( ΓΙΑ ΜΑΘΗΤΕΣ ΚΑΤΩ ΤΩΝ 15,5 ΕΤΩΝ ) - ΣΜΥΡΝΗ

ΕΒ ΟΜΗ ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑ Α JBMO ( ΓΙΑ ΜΑΘΗΤΕΣ ΚΑΤΩ ΤΩΝ 15,5 ΕΤΩΝ ) - ΣΜΥΡΝΗ ΕΟΜΗ ΛΚΝΙΚΗ ΜΘΗΜΤΙΚΗ ΟΛΥΜΠΙ JBMO ( Ι ΜΘΗΤΕΣ ΚΤΩ ΤΩΝ 15,5 ΕΤΩΝ ) - ΣΜΥΡΝΗ Ιούνιος 003 Επιµέλεια: Ευθύβουλος Λιασίδης νδρέας Σαββίδης Να λυθούν όλα τα προβλήµατα Χρόνος: 4 ½ Ώρες Πρόβληµα 1. Ένας n θετικός

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι

Διαβάστε περισσότερα

x ax by c y a x b y c

x ax by c y a x b y c Γεωμετρία Affine - Εφαρμογές Δόρτσιος Κων/νος, Μαθηματικός mail:kdortsi@sch.gr Τσίντσιφας Γεώργιος, Μαθηματικός mail :gtsintsifas@yahoo.com Εισαγωγή Η Γραμμική Γεωμετρία περιέχει τρία είδη Μετασχηματισμών

Διαβάστε περισσότερα

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος 2013-14 Μετά από σχετική εισήγηση του Ινστιτούτου Εκπαιδευτικής Πολιτικής (πράξη 32/2013

Διαβάστε περισσότερα

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Γεωμετρία Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10 ΥΣΙΣ ΙΑΩΝΙΣΜΑ ΩΜΤΡΙΑ Α ΥΚΙΟΥ ΘΜΑ ο 08/04/0 Α. Να αποδείξετε ότι η διάµεσος ορθογωνίου τριγώνου που φέρουµε από την κορυφή της ορθής γωνίας είναι ίση µε το µισό της υποτείνουσας. Θεωρία σχολικό βιβλίο σελ.09

Διαβάστε περισσότερα

Ορια Συναρτησεων - Ορισµοι

Ορια Συναρτησεων - Ορισµοι Ορια Συναρτησεων - Ορισµοι Λυγάτσικας Ζήνων Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο 3 Σεπτεµβρίου 205 Εισαγωγή Στην παράγραφο αυτή ϑα δούµε πως προκύπτει η ιδέα του ορίου στην προσπά- ϑεια να ορίσουµε την

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα

Διαβάστε περισσότερα

ΣΗΜΕΙΑΚΕΣ ΠΡΑΞΕΙΣ. ΜΕΡΟΣ 1 ο

ΣΗΜΕΙΑΚΕΣ ΠΡΑΞΕΙΣ. ΜΕΡΟΣ 1 ο ΣΜΙΚΣ ΠΡΞΙΣ. ΜΡΟΣ 1 ο ΜΙ Ν ΜΘΟΟΣ ΠΟΙΞΣ ΩΜΤΡΙΚΩΝ ΠΡΟΤΣΩΝ Νίκος Ιωσηφίδης, Μαθηµατικός Φροντιστής, έροια e-mail: iossifid@yahoo.gr ΠΡΙΛΨ ΣΚΟΠΟΣ Στην παρούσα εργασία εισάγεται µια νέα έννοια ΣΜΙΚ ΠΡΞ. Σκοπός

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Να αποδειχθεί ότι : «Οι διαγώνιοι ορθογωνίου είναι ίσες». ( 5.3 σελ 100 ) 2 ) Να αποδειχθεί ότι τα εφαπτόμενα τμήματα κύκλου

Διαβάστε περισσότερα

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ 1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα Πανεπιστηµιο Ιωαννινων σχολη θετικων επιστηµων τµηµα µαθηµατικων τοµεας αλγεβρας και γεωµετριας αναλυτικη γεωµετρια διδασκων : χρηστος κ. τατακης υποδειξεις λυσεων των θεµατων της 7.06.016 ΘΕΜΑ 1. µονάδες

Διαβάστε περισσότερα

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή Αντιστροφή Υποθέτουμε ότι υπάρχει ένας κανόνας ο οποίος επιτρέπει την μετάβαση από ένα σχήμα σε ένα άλλο, με τέτοιο τρόπο ώστε το δεύτερο σχήμα να είναι τελείως ορισμένο όταν το πρώτο είναι δοσμένο και

Διαβάστε περισσότερα

x y z d e f g h k = 0 a b c d e f g h k

x y z d e f g h k = 0 a b c d e f g h k Σύνοψη Κεφαλαίου 3: Προβολική Γεωμετρία Προοπτική. Εάν π και π 2 είναι δύο επίπεδα που δεν περνάνε από την αρχή O στο R 3, λέμε οτι τα σημεία P στο π και Q στο π 2 βρίσκονται σε προοπτική από το O εάν

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 6ο κεφάλαιο: Συναρτήσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα

Διαβάστε περισσότερα

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Μαθηµατική Επαγωγή Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Επαγωγή 1 / 17 Υπενθύµιση: Ακολουθίες Ακολουθία είναι συνάρτηση από

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

1 ΘΕΩΡΙΑΣ...με απάντηση

1 ΘΕΩΡΙΑΣ...με απάντηση 1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.

Διαβάστε περισσότερα

5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες.

5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες. 5.0 5. ΘΕΩΡΙ. Ορισµοί Τραπέζιο λέγεται το τετράπλευρο που έχει µόνο δύο πλευρές παράλληλες. άσεις τραπεζίου λέγονται οι παράλληλες πλευρές του. Ύψος τραπεζίου λέγεται η απόσταση των βάσεων. ιάµεσος τραπεζίου

Διαβάστε περισσότερα

4 η εκάδα θεµάτων επανάληψης

4 η εκάδα θεµάτων επανάληψης 4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και Μ το µέσο του. Η Μ τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i ΟΜ = 4 Τα ορθογώνια τρίγωνα Μ και Μ έχουν Μ =

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ÅÐÉËÏÃÇ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΘΕΜΑ Α Ηµεροµηνία: Σάββατο 8 Απριλίου 2017 ιάρκεια Εξέτασης: 3 ώρες Α1. Θεωρία. Σχολικό βιβλίο σελίδα 83 Α2. α) Σωστό β) Λάθος γ) Σωστό

Διαβάστε περισσότερα

Απέναντι πλευρές παράλληλες

Απέναντι πλευρές παράλληλες 5. 5.5 ΘΩΡΙ. Παραλληλόγραµµο πέναντι πλευρές παράλληλες. Ιδιότητες παραλληλογράµµου πέναντι πλευρές ίσες πέναντι γωνίες ίσες Οι διαγώνιοι διχοτοµούνται Το σηµείο τοµής των διαγωνίων είναι κέντρο συµµετρίας

Διαβάστε περισσότερα

Στοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος

Στοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος 3. 3.9 ΘΕΩΡΙ. Στοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος 2. Είδη τριγώνων Ως προς τις πλευρές : Σκαληνό, ισοσκελές, ισόπλευρο. Ως προς τις γωνίες

Διαβάστε περισσότερα

ΣΩΣΤΗ ΧΡΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ

ΣΩΣΤΗ ΧΡΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ ΣΩΣΤΗ ΧΡΗΣΗ ΤΩΝ ΕΟΜΕΝΩΝ Νικ. Ιωσηφίδης, Μαθηµατικός Φροντιστής, ΕΡΟΙ e-mail: iossifid@yahoo.gr Στην εισήγηση αυτή θα παρουσιάσουµε τους τρόπους µε τους οποίους πρέπει να χρησιµοποιούµε τα δεδοµένα ενός

Διαβάστε περισσότερα

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών 54 ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών ιαφόριση συναρτήσεων πολλών µεταβλητών Ένας στέρεος ορισµός της παραγώγισης για συναρτήσεις πολλών µεταβλητών ανάλογος µε τον ορισµό για συναρτήσεις µιας µεταβλητής

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 28 η Ελληνική Μαθηματική Ολυμπιάδα. "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 28 η Ελληνική Μαθηματική Ολυμπιάδα. Ο Αρχιμήδης ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 8 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 6 ΦΕΒΡΟΥΑΡΙΟΥ 011 Ενδεικτικές Λύσεις θεμάτων μικρών τάξεων ΠΡΟΒΛΗΜΑ 1 Έστω τρίγωνο ΑΒΓ με ˆ ΒΑΓ = 10. Αν Δ είναι το μέσον της

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 28 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ( )

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 28 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 8 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 6 ΦΕΒΡΟΥΑΡΙΟΥ 011 Ενδεικτικές Λύσεις θεμάτων μεγάλων τάξεων ΠΡΟΒΛΗΜΑ 1 Να λύσετε στους ακέραιους την εξίσωση 4 xy y x =

Διαβάστε περισσότερα

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 η Να αποδείξετε ότι στις ομόλογες πλευρές δύο ίσων τριγώνων αντιστοιχούν ίσες διάμεσοι. Α Α ΑΠΟΔΕΙΞΗ Β Γ Β Γ Θα δείξουμε ότι ΑΜ=Α

Διαβάστε περισσότερα

66 Γεωμετρία Σχήμα 11.1: Το ΜΝ είναι κοινό μέτρο των και ΓΔ. τόσο ανατρεπτική που απαγόρευσαν να διαδοθεί αυτή η γνώση. Οταν μάλιστα ο *** παρέβει την

66 Γεωμετρία Σχήμα 11.1: Το ΜΝ είναι κοινό μέτρο των και ΓΔ. τόσο ανατρεπτική που απαγόρευσαν να διαδοθεί αυτή η γνώση. Οταν μάλιστα ο *** παρέβει την Κεφάλαιο 11 Αναλογίες, Ομοιότητα Η έννοια του λόγου ορίζεται στο πέμπτο βιβλίο των Στοιχείων του Ευκλείδη ως εξής: Λόγος εστί δύο μεγεθών ομογενών η κατά πηλικότητά ποια σχέσις Λόγον έχειν προς άλληλα

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά

Διαβάστε περισσότερα

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα

Διαβάστε περισσότερα

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = //

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = // 1 5.6 5.9 ΘΩΡΙ 1., µέσα των, = //. µέσο της και // µέσο της 3. = και ////Ζ = Ζ Ζ. Ο γ. τόπος της µεσοπαράλληλης Έστω ε η µεσοπαράλληλη των ε 1, ε. Τότε ισχύουν : i) άθε σηµείο της ε ισαπέχει από τις ε

Διαβάστε περισσότερα

3.2. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας

3.2. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας 3. Ασκήσεις σχολικού βιβλίου σελίδας 99 A Οµάδας. Να βρεθεί η εξίσωση της παραβολής που έχει κορυφή την αρχή των αξόνων και άξονα συµµετρίας τον άξονα σε καθεµιά από τις παρακάτω περιπτώσεις : (i) Όταν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

2 η εκάδα θεµάτων επανάληψης

2 η εκάδα θεµάτων επανάληψης η εκάδα θεµάτων επανάληψης. Έστω τρίγωνο µε + Ένα πρόχειρο σχήµα είναι το διπλανό

Διαβάστε περισσότερα

14 Μαρτίου 2015, Τρίκαλα Ποιές ιδιότητες του σχήματος διατηρούνται; Ποιές ιδιότητες του σχήματος διατηρούνται; Τα σημεία της περιφέρειας ισαπέχουν από το κέντρο; Ποιές ιδιότητες του σχήματος διατηρούνται;

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης 1. ** 2. ** 3. ** 4. ** 5. ** 6. **

Ερωτήσεις ανάπτυξης 1. ** 2. ** 3. ** 4. ** 5. ** 6. ** Ερωτήσεις ανάπτυξης 1. ** ίνονται επίπεδο p και τρία µη συνευθειακά σηµεία του Α, Β και Γ καθώς και ένα σηµείο Μ, που δεν συµπίπτει µε το Α. Αν η ευθεία ΑΜ τέµνει την ευθεία ΒΓ, να δείξετε ότι το Μ είναι

Διαβάστε περισσότερα

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) =

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) = Ερωτήσεις ανάπτυξης. ** α) Να αποδείξετε ότι αν τα όρια lim - f () - f - είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο. ( ) και β) Να εξετάσετε τη συνέχεια της συνάρτησης f () = lim + στο σηµείο

Διαβάστε περισσότερα

Ευκλείδεια Γεωμετρία

Ευκλείδεια Γεωμετρία Ευκλείδεια Γεωμετρία Γεωμετρία Γεω + μετρία Γη + μετρώ Οι πρώτες γραπτές μαρτυρίες γεωμετρικών γνώσεων ανάγονται στην τρίτη με δεύτερη χιλιετία π.χ. και προέρχονται από τους λαούς της αρχαίας Αιγύπτου

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 13 Μαρτίου 2013 Ασκηση 1. Αφού ϐρείτε την

Διαβάστε περισσότερα

14 Εφαρµογές των ολοκληρωµάτων

14 Εφαρµογές των ολοκληρωµάτων 14 Εφαρµογές των ολοκληρωµάτων 14.1 Υπολογισµός εµβαδών µε την µέθοδο των παράλληλων διατοµών Θεωρούµε µια ϕραγµένη επίπεδη επιφάνεια A µε οµαλό σύνορο, δηλαδή που περιγράφεται από µια συνεχή συνάρτηση.

Διαβάστε περισσότερα

5.6 5.9. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 110 112. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ. Απάντηση Στο σχήµα (α) :

5.6 5.9. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 110 112. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ. Απάντηση Στο σχήµα (α) : 5.6 5.9 σκήσεις σχολικού βιβλίου σελίδας 0 ρωτήσεις Κατανόησης. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ (α ) ( β ) A x x, 5 ( γ) ψ x +, 5 x, 5 ε ε ε ε 4 δ δ ε ε B ε ε 4 (δ ) ψ ψ x 60 o 4 (ε) B 5

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 3 Νοεµβρίου 2016 Ασκηση 1. Αφού ϐρείτε

Διαβάστε περισσότερα

Ασκήσεις σχ. Βιβλίου σελίδας Γενικές ασκήσεις 5 ου Κεφαλαίου (1) (2) (1)

Ασκήσεις σχ. Βιβλίου σελίδας Γενικές ασκήσεις 5 ου Κεφαλαίου (1) (2) (1) σκήσεις σχ. ιβλίου σελίδας 6 7 ενικές ασκήσεις 5 ου Κεφαλαίου. ίνεται τρίγωνο (β γ) µε Â = 60 ο, τα ύψη του, και τα µέσα Μ, Ν των, αντίστοιχα. Να αποδείξετε ότι Μ = Ν. Τρ. ορθογώνιο µε Â = 60 ο M N ˆB

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ. «Ευκλείδης» Ημερομηνία: 4/03/2017 Ώρα εξέτασης: 10:00-14:30

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ. «Ευκλείδης» Ημερομηνία: 4/03/2017 Ώρα εξέτασης: 10:00-14:30 ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ «Ευκλείδης» Ημερομηνία: 4/03/2017 Ώρα εξέτασης: 10:00-14:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα αιτιολογώντας πλήρως τις απαντήσεις σας. 2.

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 3 Μαρτίου 2012 ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-6778 - F: 605 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR 06

Διαβάστε περισσότερα

Γεωμετρία. I. Εισαγωγή

Γεωμετρία. I. Εισαγωγή I. Εισαγωγή Γεωμετρία Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι μαθητές έχουν έρθει σε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

1 m z. 1 mz. 1 mz M 1, 2 M 1

1 m z. 1 mz. 1 mz M 1, 2 M 1 Σύνοψη Κεφαλαίου 6: Υπερβολική Γεωμετρία Υπερβολική γεωμετρία: το μοντέλο του δίσκου 1. Στο μοντέλο του Poincaré της υπερβολικής γεωμετρίας, υπερβολικά σημεία είναι τα σημεία του μοναδιαίου δίσκου, D =

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία

Διαβάστε περισσότερα

4 η εκάδα θεµάτων επανάληψης

4 η εκάδα θεµάτων επανάληψης 4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και το µέσο του. Η τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i Ο = 4 Τα ορθογώνια τρίγωνα και έχουν = και = άρα είναι

Διαβάστε περισσότερα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Διαβάστε περισσότερα

Καλή Επιτυχία!!! ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

Καλή Επιτυχία!!! ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αµυραδάκη 0, Νίκαια (10-4903576) ΝΟΕΜΒΡΙΟΣ 011 ΘΕΜΑ 1 Ο Να αποδείξετε ότι, σε ένα ορθογώνιο τρίγωνο, το τετράγωνο µιας κάθετης πλευράς του ισούται µε το γινόµενο της υποτείνουσας επί την προβολή της στην

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

Γραμμή. Σημείο. κεφαλαίο γράμμα. Κάθε γραμμή. αποτελείται. Ευθεία κι αν αρχή και χωρίς. τέλος! x x

Γραμμή. Σημείο. κεφαλαίο γράμμα. Κάθε γραμμή. αποτελείται. Ευθεία κι αν αρχή και χωρίς. τέλος! x x 1. Οι Πρωταρχικές Γεωμετρικές Έννοιες Σημείο Γραμμή Δεν έχει διαστάσεις!! Υπάρχει μόνο στο μυαλό μας. Συμβολίζεται με κεφαλαίο γράμμα. Κάθε γραμμή αποτελείται από άπειρα σημεία. Ευθεία Δεν είναι εύκολο

Διαβάστε περισσότερα

ΤΟ ΘΕΩΡΗΜΑ MORLEY. Σχ.1 Όµοια ορίζεται και η τριχοτόµος Οτ που είναι προσκείµενη στην γωνία Οψ.

ΤΟ ΘΕΩΡΗΜΑ MORLEY. Σχ.1 Όµοια ορίζεται και η τριχοτόµος Οτ που είναι προσκείµενη στην γωνία Οψ. ΤΟ ΘΕΩΡΗΜΑ MORLEY Ένα από τα ποιο εκπληκτικά θεωρήµατα της στοιχειώδους Γεωµετρίας ανακαλύφτηκε γύρω στο 899 από τον Morley, ο οποίος το ανέφερε στους φίλους του κι εκείνοι το διέδωσαν σ όλο τον κόσµο

Διαβάστε περισσότερα