Συμπληρωματικές Σημειώσεις για τη Διάλεξη 8

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Συμπληρωματικές Σημειώσεις για τη Διάλεξη 8"

Transcript

1 Συμπληρωματικές Σημειώσεις για τη Διάλεξη 8 Ένα από τα παράδοξα της ισορροπίας Nash που μπορεί να θεωρηθεί και σαν αδυναμία της είναι ότι σε κάποια παίγνια οι παίκτες έχουν μεγαλύτερο όφελος αν δεν διαλέξουν την ισορροπία Nash και διαλέξουν άλλη στρατηγική. Ενώ η ισορροπία Nash δίνει την ελκυστικότερη λύση για όλους τους παίκτες, οδηγώντας στο σημείο ισορροπίας, εντούτοις υπάρχουν κάποια διάσημα παίγνια που είναι εξαίρεση στον κανόνα. Κάποια από αυτά τα παίγνια χρησιμοποιήθηκαν στην έρευνα και θα αναλυθούν στη συνέχεια. Το δίλημμα του φυλακισμένου Prisoner s dilemma Το πιο γνωστό και σημαντικό παίγνιο στην ιστορία της θεωρίας παιγνίων είναι το παίγνιο του διλήμματος του φυλακισμένου(prisoner, s dilemma). Τον Ιανουάριο του 1950 οι Melvin Dresher και Merrill Flood επινόησαν το συγκεκριμένο παίγνιο και το χρησιμοποίησαν σαν παράδειγμα στο RAND Corporation. Αργότερα όταν παρουσιάστηκε αυτό το παράδειγμα σε ένα σεμινάριο στο Stanford University, ο Albert W. Tucker σκαρφίστηκε μία ιστορία πάνω στην οποία βάσισε όλη του την διάλεξη. Το παίγνιο αυτό έμεινε από τότε στην ιστορία κάνοντας την θεωρία παιγνίων γνωστή σε όλες τις κοινωνικές επιστήμες, ενώ και πάρα πολλοί μελετητές έχουν ασχοληθεί με αυτό γράφοντας διάφορα βιβλία. [39] Η ιστορία του Tucker έχει ως εξής: Δύο ύποπτοι για ένα έγκλημα συλλαμβάνονται από την αστυνομία και κρατούνται σε διαφορετικά κελιά, ώστε να μην έχουν μεταξύ τους επικοινωνία. Οι αστυνομικοί είναι σίγουροι για την ενοχή τους αλλά ελλείψει αποδεικτικών στοιχείων τους προσφέρουν μια συμφωνία: αν και οι δύο ομολογήσουν ότι διέπραξαν το έγκλημα θα καταδικαστούν μόνο σε τρία χρόνια φυλάκισης. Αν μόνο ο ένας ομολογήσει θα αφεθεί ελεύθερος ενώ ο άλλος που θα αρνηθεί θα φυλακιστεί για πέντε χρόνια. Τέλος, αν κανένας δεν ομολογήσει, και οι δύο θα περάσουνε έναν χρόνο στη φυλακή. [40] Το παραπάνω πρόβλημα μπορεί να παρουσιαστεί στον επόμενο πίνακα Πίνακας 2.3 Το δίλημμα του φυλακισμένου(αρχική μορφή) [41] 1

2 Το δίλημμα αυτό παίρνει τη μορφή του παρακάτω παιγνίου, όπου τα νούμερα είναι η ωφέλεια που αποκομίζει ο παίκτης. Πίνακας 2.4 Το δίλημμα του φυλακισμένου(τελική μορφή) [42] Το δίλημμα εμφανίζεται όταν κάποιος υποθέτει ότι και οι δύο φυλακισμένοι νοιάζονται μόνο για να ελαχιστοποιήσουν την ποινή τους. Κάθε παίκτης έχει δύο στρατηγικές επιλογές : είτε να ομολογήσει και να συνεργαστεί με την αστυνομία (confess), είτε να παραμείνει σιωπηλός (not confess). Για παράδειγμα το καλύτερο αποτέλεσμα για τον παίκτη Α είναι να ομολογήσει και ο παίκτης Β να μείνει σιωπηλός. Το επόμενο καλύτερο αποτέλεσμα για τον Α είναι να μη μιλήσει κανένας από τους δύο, ενώ το χειρότερο σενάριο είναι να μιλήσει ο Β ενώ ο Α θα παραμείνει σιωπηλός. Το αντίστοιχο ισχύει και για τον παίκτη Β. Είναι λοιπόν φανερό πως οτιδήποτε και να σκοπεύει να κάνει ο Β, ο παίκτης Α θα πρέπει να επιλέξει την πρώτη στρατηγική(να ομολογήσει δηλαδή), αφού έτσι θα έχει καλύτερα αποτελέσματα. Ομοίως ισχύει και για τον Β παίκτη ο οποίος θα προτιμήσει και αυτός να μη μιλήσει. Σε αυτό το σημείο υπάρχει το δίλημμα αφού από τον πίνακα φαίνεται πως οι παίκτες θα αποκομίσουν μεγαλύτερο όφελος αν και οι δύο επιλέξουν να μη μιλήσουν από το να τα ομολογήσουν όλα.. Έτσι η καλύτερη στρατηγική για τον καθένα ξεχωριστά, παράγει ένα αποτέλεσμα που δεν είναι καλό για την ομάδα, κάνοντας τα ατομικά κίνητρα να υπονομεύουν το κοινό συμφέρον. Πρόκειται για ένα παιχνίδι όπου τα κέρδη προέρχονται από τη συνεργασία. Το καλύτερο αποτέλεσμα και για τους δύο παίκτες είναι να μη μιλήσουν στους αστυνομικούς. Παρόλα αυτά, κάθε παίκτης έχει ένα μεγάλο κίνητρο να γίνει προδότης. Οτιδήποτε και να κάνει ο ένας παίκτης, ο αντίπαλος προτιμάει να ομολογήσει. Έτσι το παίγνιο αυτό έχει μία μοναδική Nash ισορροπία, μία κυρίαρχη στρατηγική, η οποία είναι η λύση (Α1,Β1)=(1,1), η από κοινού ομολογία.[43] Σε κάθε παίγνιο η λύση παρουσιάζεται και με τη βοήθεια του προγράμματος Gambit, το οποίο είναι χρήσιμο εργαλείο στη θεωρία παιγνίων αφού έχει πολλές εφαρμογές και βρίσκει τις ισορροπίες Nash και σε καθαρές και σε μεικτές στρατηγικές. Στην παρακάτω εικόνα βλέπουμε τη λύση που δίνει το πρόγραμμα για το συγκεκριμένο παίγνιο. 2

3 Τα κόκκινα νούμερα αντιπροσωπεύουν τον Α παίκτη ενώ τα μπλε τον Β. Και εδώ η λύση είναι η επιλογή (Α1, Β1)=(1, 1) αφού η ανάλυση δείχνει πως ο πρώτος παίκτης(ο Α) επιλέγει την πρώτη του στρατηγική επιλογή(την Α1) και ο δεύτερος παίκτης(ο Β) επιλέγει την πρώτη του κι αυτός στρατηγική επιλογή(την Β1). Το παράδοξο του αποτελέσματος εξηγείται από το γεγονός ότι οι φυλακισμένοι βρίσκονται σε ξεχωριστά κελιά και δεν μπορούν να επικοινωνήσουν μεταξύ τους για να αποφασίσουν από κοινού τι θα κάνουν. Αν μπορούσαν να το συζητήσουν ίσως να έβλεπαν πως η καλύτερη λύση είναι να μη μιλήσει κανένας τους. Αλλά ακόμη και με μια προφορική συμφωνία οι φυλακισμένοι ίσως προσπαθήσουν να προδώσουν τον υποτιθέμενο αντίπαλο τους, προλαβαίνοντας τον από μια πιθανή προδοσία.[44] Εδώ επέρχεται ο παράγοντας της αξιοπιστίας: υπάρχει μια έφεση προς συνεργασία με εκείνους που πιστεύουμε ότι έχουν αντίστοιχη έφεση να συνεργαστούν. Ανορθόδοξη επίσης είναι η απόφαση να προδώσουν ο ένας τον άλλον, μιας και η σιωπή αποτελεί ύψιστη τιμή σε τέτοιες κοινωνικές ομάδες. Μια άλλη περίπτωση είναι οι δύο ύποπτοι να μην ομολογήσουν, μόνο αν έχουν ξαναπεράσει όλο αυτό και γνωρίζουν πως δεν πρόκειται να προδοθούν Αυτή η ισορροπία λέγεται υπό παιγνιακή τέλεια ισορροπία Nash όπου οι φυλακισμένοι έχουν μάθει να μην καρφώνουν ο ένας τον άλλον και έτσι ελαχιστοποιούν την συλλογική ποινή τους. [45] Όταν το δίλημμα του φυλακισμένου αφορά πάνω από δύο πρόσωπα ονομάζεται free rider problem^ πρόβλημα των τζαμπατζήδων). Έχει την ίδια δομή με το δίλημμα του φυλακισμένου αφού και εδώ η κυρίαρχη ατομική στρατηγική υπερέχει της κοινής λογικής. Αφορά όλες τις περιπτώσεις δημοσίων αγαθών(όλοι τα εκμεταλλεύονται άσχετα αν έχουν πληρώσει γι αυτά, όπως για παράδειγμα η καθαρή ατμόσφαιρα) όπου η πρόσβαση δεν μπορεί να περιοριστεί σε αυτούς που έχουν πληρώσει και στους άλλους, τους τζαμπατζήδες, οι οποίοι δεν συνεισφέρουν αλλά τα χρησιμοποιούν. Το πιο διάσημο παιχνίδι στην ιστορία της θεωρίας παιγνίων μελετήθηκε εκτενέστατα από πάρα πολλούς ανθρώπους, ανάμεσα τους ο John Nash(που αναφέρθηκε παραπάνω) και ο Robert Axelrod. Στα τέλη της δεκαετίας του 70 ο 3

4 Axelrod προσπάθησε να προσεγγίσει το πρόβλημα όταν αυτό επαναλαμβάνεται, αφού έτσι γίνεται πιο περίπλοκο και δεν είναι απόλυτα σαφές ποια στρατηγική είναι βέλτιστη. Έτσι λοιπόν οργάνωσε ένα πρωτάθλημα όπου κάλεσε θεωρητικούς των παιγνίων να δημιουργήσουν αλγορίθμους που να περιέχουν από μία στρατηγική και τους έβαλε να διαγωνιστούν για έναν καθορισμένο αριθμό γύρων. Οι άπληστες στρατηγικές έτειναν να έχουν άσχημη έκβαση, σε αντίθεση με τις πιο αλτρουιστικές που τα πήγαν καλύτερα. Νικητής αναδείχτηκε ο Anatol Rapoport που δημιούργησε τον πιο απλό αλγόριθμο, τον Tit for Tat, δηλαδή μία σου και μία μου. Πρόκειται για μία στρατηγική δεσμευμένης συνεργασίας όπου ο παίκτης ξεκινάει με συνεργασία, σαν κίνηση καλής θέλησης, και έπειτα αντιγράφει την στρατηγική που επέλεξε ο αντίπαλος στον προηγούμενο γύρο. Το πείραμα επαναλήφθηκε και για την περίπτωση όπου η ακολουθία των αγώνων μεταξύ των δύο παικτών θα τερματιζόταν τυχαία με νικητή πάλι τον ίδιο αλγόριθμο. Η σοφία αυτής της στρατηγικής έχει να κάνει με τον συνδυασμό αυστηρότητας απέναντι στους αποστάτες(αφού τους τιμωρείς άμεσα) αλλά και ηπιότητας(αφού μέσα σε έναν γύρο μπορείς να τον συγχωρήσεις).[46] Τελικά φαίνεται πως αυτός που δεν συμπεριφέρεται εγωιστικά, είναι αυτός που κερδίζει. Το δίλημμα του φυλακισμένου αν και φαίνεται άσχετο με την καθημερινότητα του ανθρώπου, μπορούμε να το διακρίνουμε παντού, σε όλα τα κοινωνικά φαινόμενα. Υπάρχει μια τεράστια βιβλιογραφία που το αναλύει και μάλιστα πολλοί πιστεύουν πως αποτελεί τον κεντρικό πυρήνα της κοινωνικής ζωής. Οι εφαρμογές του λοιπόν στην καθημερινότητα ποικίλλουν από την οικονομία, την πολιτική και την κοινωνιολογία έως την εθνολογία και την εξελικτική βιολογία. [47] Στην πολιτική για παράδειγμα αυτό το παίγνιο χρησιμοποιείται για να επεξηγήσει το πρόβλημα που έχουν δύο κράτη με την απόκτηση όπλων. Υπάρχουν δύο στρατηγικές επιλογές για τα κράτη: είτε να αυξήσουν την στρατιωτική τους δύναμη και να αγοράσουν καινούριο εξοπλισμό, είτε να κάνουν μια συμφωνία έτσι ώστε να μειώσουν την χρησιμοποίηση όπλων. Κανένα κράτος δεν είναι βέβαιο ότι το άλλο θα κρατήσει την υπόσχεση του και επομένως και τα δύο κλίνουν στο να αγοράσουν τελικά τα όπλα. Παράδειγμα για αυτήν την περίπτωση αποτελεί η διαμάχη Αμερικής Ρωσίας τη δεκαετία του 50(όταν πρωτομελετήθηκε το συγκεκριμένο παίγνιο) για την απόκτηση πυρηνικού εξοπλισμού. [48] Επίσης στον αθλητισμό πολλοί παλαιστές καταφεύγουν στο χάσιμο πολλών κιλών με σκοπό να διαγωνιστούν με ελαφρύτερους αντιπάλους, πηγαίνοντας στην μικρότερη κατηγορία. Αυτό μπορεί να το κάνουν πολλοί διαγωνιζόμενοι με αποτέλεσμα να υποβαθμίζεται ο συναγωνισμός. Ακόμη όμως και αν κάποιος διαγωνιζόμενος παραμείνει στο αρχικό του βάρος, είναι πολύ πιθανό να συναγωνιστεί κάποιον που έχει χάσει αρκετό βάρος. [49] Είναι φανερό πως σε κάθε συναλλαγή ή σύγκρουση ατομικών συμφερόντων που θίγει τους ανθρώπους, υπάρχει κάπου εκεί το δίλημμα του φυλακισμένου. Τα παραδείγματα ποικίλλουν από τα πολιτικά παζάρια και τους πλειστηριασμούς έως την συμπεριφορά των οδηγών στους δρόμους και την επιλογή δύο αντιμαχόμενων 4

5 μερών για το αν θα χρησιμοποιήσουν δικηγόρους ή/ και θα καταφύγουν στα δικαστήρια για να λύσουν τις διαφορές τους. [50]Το κοινό στοιχείο σε όλα αυτά τα παραδείγματα είναι ότι αν ο καθένας δράσει συνεργατικά θα υπάρξει το καλύτερο αποτέλεσμα. Δυστυχώς σχεδόν όλοι σκέφτονται μόνο το προσωπικό συμφέρον, με αποτέλεσμα να οδηγηθούν σε μη επιθυμητά αποτελέσματα. [51] Πηγή: Μεταπτυχιακή Διατριβή της Βλαχοπούλου Αθανασίας, 2010, Αναφορές [39] Straffin D. Philip(1993), Game Theory and Strategy, The Mathematical Association of America [40, 42, 43] Osborne J.Martin and Rubinstein Ariel (1998), A Course in Game Theory, London, The MIT Press Cambridge [41] en.wikipedia.org/wiki/prisoner s_dilemma [44] kockesen [45] [46] Βαρουφάκης Γιάνης, Θεωρία Παιγνίων: Η θεωρία που φιλοδοξεί να ενοποιήσει τις κοινωνικές επιστήμες, Gutenberg [47] en.wikipedia.org/wiki/prisoner s_dilemma [48] Osborne J.Martin (2002), An introduction to game theory, Oxford University Press [49] s_dilemma [50] Rasmusen Eric (2001), Games and Information: An introduction to Game Theory, fourth edition [51] kockesen 5

Βασικές Αρχές της Θεωρίας Παιγνίων

Βασικές Αρχές της Θεωρίας Παιγνίων Βασικές Αρχές της Θεωρίας Παιγνίων - Ορισμός. Αν οι επιλογές μιας επιχείρησης εξαρτώνται από την αναμενόμενη αντίδραση των υπόλοιπων επιχειρήσεων που συμμετέχουν στην αγορά, τότε υπάρχει στρατηγική αλληλεπίδραση

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Παιγνίων

Βασικές Έννοιες Θεωρίας Παιγνίων Βασικές Έννοιες Θεωρίας v. 01/06/2014 Παύλος Σ. Εφραιμίδης Βασικές Έννοιες Θεωρίας Περιεχόμενα Τι είναι η θεωρία παιγνίων Ο ρόλος ενός μαθηματικού μοντέλου Το δίλημμα του φυλακισμένου Σημείο ισορροπίας

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Παιγνίων

Βασικές Έννοιες Θεωρίας Παιγνίων Παύλος Σ. Εφραιμίδης Περιεχόµενα Τι είναι η θεωρία παιγνίων Ο ρόλος ενός µαθηµατικού µοντέλου Το δίληµµα του φυλακισµένου Σηµείο ισορροπίας Nash Θεωρία Παιγνίων Η θεωρία παιγνίων (game theory) µας βοηθάει

Διαβάστε περισσότερα

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29 Διάλεξη 7 Θεωρία παιγνίων VA 28, 29 Θεωρία παιγνίων Στη θεωρία παιγνίων χρησιμοποιούμε υποδείγματα για τη στρατηγική συμπεριφορά των οικονομικών μονάδων που καταλαβαίνουν ότι οι ενέργειές τους επηρεάζουν

Διαβάστε περισσότερα

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας Θεωρία Παιγνίων Μελέτη στοιχείων που χαρακτηρίζουν καταστάσεις ανταγωνιστικής άλληλεξάρτησης με έμφαση στη διαδικασία λήψης αποφάσεων περισσοτέρων από ένα ληπτών απόφασης (αντιπάλων). Παίγνια δύο παικτών

Διαβάστε περισσότερα

Αλγοριθμική Θεωρία Παιγνίων

Αλγοριθμική Θεωρία Παιγνίων Αλγοριθμική Θεωρία Παιγνίων ιδάσκοντες: E. Ζάχος, Α. Παγουρτζής,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πολύπλοκα Συστήματα

Διαβάστε περισσότερα

To Δίλημμα του Κρατουμένου (The Prisoner s Dilemma PD)

To Δίλημμα του Κρατουμένου (The Prisoner s Dilemma PD) To Δίλημμα του Κρατουμένου (The Prisoner s Dilemma PD) Το πρόβλημα/παίγνιο Δύο ληστές, ο Α και ο Β, συλλαμβάνονται και κρατούνται για ανάκριση Κάθε κρατούμενος ανακρίνεται ξεχωριστά οπότε Δεν μπορεί ο

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 ΚΟΙΝΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ Players-Παίκτες Rules- Κανόνες. Τιµωρείσαι εάν τους παραβιάσεις.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Παρασκευή 16 Οκτωβρίου 2007 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1

Διαβάστε περισσότερα

Μελέτη πάνω στην εφαρμογή της θεωρίας παιγνίων σε θέματα πολεμικών τακτικών και στρατηγικής.

Μελέτη πάνω στην εφαρμογή της θεωρίας παιγνίων σε θέματα πολεμικών τακτικών και στρατηγικής. Μελέτη πάνω στην εφαρμογή της θεωρίας παιγνίων σε θέματα πολεμικών τακτικών και στρατηγικής. Ιστορική αναδρομή 1713 Ο Francis Waldegrave, σε ένα γράμμα του, παρουσίασε την πρώτη μικτή στρατηγική μεγίστου

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0 ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Παίγνιο: Συμμετέχουν τουλάχιστον δύο παίκτες με τουλάχιστον δύο στρατηγικές ο καθένας και αντίθετα συμφέροντα. Το αποτέλεσμα για κάθε παίκτη καθορίζεται από τις συνδυασμένες επιλογές όλων

Διαβάστε περισσότερα

Μεταξύ του µονοπωλίου και του τέλειου ανταγωνισµού

Μεταξύ του µονοπωλίου και του τέλειου ανταγωνισµού Ολιγοπώλιο Μεταξύ του µονοπωλίου και του τέλειου ανταγωνισµού Ο ατελής ανταγωνισµός αναφέρεται σε εκείνες τις δοµές µ της αγοράς που κυµαίνονται µεταξύ του τέλειου ανταγωνισµού και του µονοπωλίου. Μεταξύ

Διαβάστε περισσότερα

Ένα Παίγνιο (game) ορίζεται ως μια δραστηριότητα με τα ακόλουθα τρία χαρακτηριστικά:

Ένα Παίγνιο (game) ορίζεται ως μια δραστηριότητα με τα ακόλουθα τρία χαρακτηριστικά: Γενικοί Ορισμοί Η Θεωρία Παιγνίων (game theory) εξετάζει δραστηριότητες στις οποίες το αποτέλεσμα της απόφασης ενός ατόμου εξαρτάται όχι μόνο από τον τρόπο με τον οποίο επιλέγει ανάμεσα από διάφορες εναλλακτικές

Διαβάστε περισσότερα

Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ» Του σπουδαστή ΚΑΡΑΜΙΓΚΟΥ ΘΕΜΙΣΤΟΚΛΗ

Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ» Του σπουδαστή ΚΑΡΑΜΙΓΚΟΥ ΘΕΜΙΣΤΟΚΛΗ Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ» Του σπουδαστή ΚΑΡΑΜΙΓΚΟΥ ΘΕΜΙΣΤΟΚΛΗ Επιβλέπων Δρ. ΓΕΡΟΝΤΙΔΗΣ ΙΩΑΝΝΗΣ Αναπληρωτής Καθηγητής ΚΑΒΑΛΑ 2006 0 ΠΕΡΙΕΧΟΜΕΝA Σελίδα ΕIΣΑΓΩΓΗ 3 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Games)

Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Games) Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Gaes) Το δίληµµα των φυλακισµένων, όπως ξέρουµε έχει µια και µοναδική ισορροπία η οποία είναι σε αυστηρά κυρίαρχες στρατηγικές. C N C -8, -8 0, -10 N -10,

Διαβάστε περισσότερα

Extensive Games with Imperfect Information

Extensive Games with Imperfect Information Extensive Games with Imperfect Information Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εκτεταµένα παίγνια µε ατελή πληροφόρηση

Διαβάστε περισσότερα

Ολιγοπώλιο. Εισαγωγή στην Οικονομική Επιστήμη Ι. Αρ. Διάλεξης: 11

Ολιγοπώλιο. Εισαγωγή στην Οικονομική Επιστήμη Ι. Αρ. Διάλεξης: 11 Ολιγοπώλιο Εισαγωγή στην Οικονομική Επιστήμη Ι Αρ. Διάλεξης: 11 Μορφές Αγορών μεταξύ Μονοπωλίου και Τέλειου Ανταγωνισμού Ο Ατελής Ανταγωνισμός αναφέρεται στην διάρθρωση της αγοράς εκείνης η οποία βρίσκεται

Διαβάστε περισσότερα

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ: Ο ΡΟΛΟΣ ΤΩΝ ΚΕΝΤΡΙΚΩΝ ΤΡΑΠΕΖΩΝ ΣΕ ΕΝΑ ΣΕΝΑΡΙΟ ΑΠΟΣΤΑΘΕΡΟΠΟΙΗΣΗΣ

Διαβάστε περισσότερα

Αλληλεπιδράσεις πρακτόρων. Πώς σχεδιάζουμε κοινωνίες πρακτόρων;

Αλληλεπιδράσεις πρακτόρων. Πώς σχεδιάζουμε κοινωνίες πρακτόρων; Αλληλεπιδράσεις πρακτόρων Πώς σχεδιάζουμε κοινωνίες πρακτόρων; Δεν υπάρχει σύστημα ενός πράκτορα! πράκτορας οργανωσιακή σχέση πρακτόρων αλληλεπίδραση πρακτόρων σφαίρα επιρροής πράκτορα περιβάλλον 2 Δεν

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Μερική Παρατηρησιµότητα Θεωρία Παιγνίων Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Reinforcement Learning (RL)

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I.

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. Γενικά Σε μαθήματα όπως η επιχειρησιακή έρευνα και ή λήψη αποφάσεων αναφέραμε τις αποφάσεις κάτω από συνθήκες βεβαιότητας, στις οποίες και εφαρμόζονται κυρίως οι τεχνικές της επιχειρησιακής

Διαβάστε περισσότερα

ΤΖΟΝ ΦΟΡΜΠΣ ΝΑΣ. A beautiful mind Εργασία α λυκείου

ΤΖΟΝ ΦΟΡΜΠΣ ΝΑΣ. A beautiful mind Εργασία α λυκείου ΤΖΟΝ ΦΟΡΜΠΣ ΝΑΣ A beautiful mind Εργασία α λυκείου Γεωργακλής Ιωάννης Δαβία Ιωάννα Κλάγκου Δάφνη Ευάγγελος Ραφτόπουλος Υπέυθ. Καθηγητές : κ. Γκάγκαρη, κ.μαυρόγιαννης ΒΙΟΓΡΑΦΙΑ Την ημέρα του γάμου του με

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 007 ιδάσκων : Ηλίας Κουτσουπιάς Μάθηµα : Overview Of The Algorithmic Game Theory Ηµεροµηνία : 007/04/19 Σηµειώσεις : Ελενα Χατζηγιωργάκη,

Διαβάστε περισσότερα

Θεωρία Παιγνίων. Εισαγωγικές έννοιες και Τεχνικές

Θεωρία Παιγνίων. Εισαγωγικές έννοιες και Τεχνικές Θεωρία Παιγνίων Εισαγωγικές έννοιες και Τεχνικές Η επιβίωση μας εξαρτάται από την αλληλεπίδραση με άλλα άτομα Η επιβίωση μας εξαρτάται από την αλληλεπίδραση με άλλα άτομα Η επιβίωση μας εξαρτάται από την

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 7: Τέλεια ισορροπία Nash για υποπαίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 7: Τέλεια ισορροπία Nash για υποπαίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 7: Τέλεια ισορροπία Nash για υποπαίγνια Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να - Παράδειγμα. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να αποκρούσει ένας τερματοφύλακας. - Αν οι δύο παίκτες επιλέξουν

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΙ ΠΑΤΡΑΣ ΤΕΙ ΠΑΤΡΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΙ ΠΑΤΡΑΣ ΤΕΙ ΠΑΤΡΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Α Κ Α Η Μ Α Ι Κ Ο Ε Τ Ο Σ 2 0 1 1-2 0 1 2 ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT Ο συγκεκριµένος οδηγός για το πρόγραµµα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Τρίτη 15 Ιανουαρίου 2008 ιάρκεια εξέτασης: 3 ώρες (13:00-16:00) ΘΕΜΑ 1 ο (2,5

Διαβάστε περισσότερα

1 ο ΕΠΑ.Λ Αμαρουσίου Project

1 ο ΕΠΑ.Λ Αμαρουσίου Project 1 ο ΕΠΑ.Λ Αμαρουσίου Project1 2011-2012 Γίνεται ένα παιχνίδι σύγκρουσης ή συνεργασίας να είναι δουλειά των μαθηματικών και των οικονομολόγων; Γίνεται να αποδειχθεί με μαθηματικά πότε μας συμφέρει να δίνουμε

Διαβάστε περισσότερα

1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions

1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Συμπληρωματικές σημειώσεις για τον μηχανισμό VCG 1 Εισαγωγή στις Συνδυαστικές

Διαβάστε περισσότερα

Κεφάλαιο 4. Στο προηγούµενο κεφάλαιο ορίσαµε την ισορροπία κατά Nash και είδαµε ότι µια ισορροπία

Κεφάλαιο 4. Στο προηγούµενο κεφάλαιο ορίσαµε την ισορροπία κατά Nash και είδαµε ότι µια ισορροπία Κεφάλαιο 4 Στο προηγούµενο κεφάλαιο ορίσαµε την ισορροπία κατά Nash και είδαµε ότι µια ισορροπία κατά Nash είναι: (α) ένα διάνυσµα από στρατηγικές, έτσι ώστε δεδοµένων των υπολοίπων στρατηγικών, ο παίκτης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜ ΕΦΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙ ΠΙΓΝΙΩΝ Εξετάσεις 13 Φεβρουαρίου 2004 ιάρκεια εξέτασης: 2 ώρες (13:00-15:00) ΘΕΜ 1 ο (2.5) α) Για δύο στρατηγικές

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΑΣΚΗΣΗ 3 (ΜΟΝΑΔΕΣ 25) Σε ένα αγώνα ποδοσφαίρου οι προπονητές των δύο αντίπαλων ομάδων αποφάσισαν ότι έχουν 4 και 3 επιλογές συστήματος, αντίστοιχα. Η αναμενόμενη διαφορά τερμάτων δίνεται από τον παρακάτω

Διαβάστε περισσότερα

ΜΟΝΟΠΩΛΙΑΚΟΣ ΑΝΤΑΓΩΝΙΣΜΟΣ, ΟΛΙΓΟΠΩΛΙΑ, ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΜΟΝΟΠΩΛΙΑΚΟΣ ΑΝΤΑΓΩΝΙΣΜΟΣ, ΟΛΙΓΟΠΩΛΙΑ, ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΜΟΝΟΠΩΛΙΑΚΟΣ ΑΝΤΑΓΩΝΙΣΜΟΣ, ΟΛΙΓΟΠΩΛΙΑ, ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Κεφάλαιο 7 Ε. Σαρτζετάκης Μονοπωλιακός ανταγωνισμός Η μορφή αγοράς του μονοπωλιακού ανταγωνισμού περιέχει στοιχεία πλήρους ανταγωνισμού (ελεύθερη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΜΕΤΑΠΤΥΧΙΑΚΟ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Master in Business Administration - M.B.A.)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΜΕΤΑΠΤΥΧΙΑΚΟ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Master in Business Administration - M.B.A.) ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Master in Business Administration - M.B.A.) ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΗΣ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ ΠΑΤΡΑ 2014 ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Θεωρία Παιγνίων Μαρκωβιανά Παιχνίδια Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Μερική αρατηρησιµότητα POMDPs

Διαβάστε περισσότερα

ακριβώς συμπεράσματα. Ο φυγάς ίσως να σκεφτεί ότι η γέφυρα Α συνεχίζει να είναι η καλύτερη επιλογή του επειδή είναι σε καλή κατάσταση και επιτρέπει

ακριβώς συμπεράσματα. Ο φυγάς ίσως να σκεφτεί ότι η γέφυρα Α συνεχίζει να είναι η καλύτερη επιλογή του επειδή είναι σε καλή κατάσταση και επιτρέπει . ΕΙΣΓΩΓΗ Η Θεωρία Παιγνίων είναι ο επιστημονικός κλάδος που μελετάει συστηματικά και με χρήση μαθηματικών εργαλείων την συμπεριφορά των ατόμων σε συνθήκες στρατηγικής αλληλεπίδρασης. Στρατηγική αλληλεπίδραση

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΠΕΜΠΤΟ ΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΠΕΜΠΤΟ ΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΠΕΜΠΤΟ ΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Προηγούµενα Μαθήµατα: Παίχτες: είναι αυτοί που λαµβάνουν τις αποφάσεις. Ένα παίγνιο πρέπει

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Προηγούµενο Μάθηµα: Κυρίαρχη Στρατηγική- Κυριαρχούµενη στρατηγική-nash equilibrium Μια στρατηγική

Διαβάστε περισσότερα

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές

Διαβάστε περισσότερα

Μοντέλα των Cournotκαι Bertrand

Μοντέλα των Cournotκαι Bertrand Μοντέλα των Cournotκαι Bertrand Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τι θα πούμε Θα εξετάσουμε αναλυτικά το μοντέλο Cournot

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΚΑΙ ΣΥΜΠΡΑΞΕΙΣ: ΠΑΡΑΒΙΑΣΕΙΣ ΑΝΤΑΓΩΝΙΣΜΟΥ

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΚΑΙ ΣΥΜΠΡΑΞΕΙΣ: ΠΑΡΑΒΙΑΣΕΙΣ ΑΝΤΑΓΩΝΙΣΜΟΥ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΚΑΙ ΣΥΜΠΡΑΞΕΙΣ: ΠΑΡΑΒΙΑΣΕΙΣ ΤΩΝ ΚΑΝΟΝΩΝ ΑΝΤΑΓΩΝΙΣΜΟΥ Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο την απόκτηση του διπλώματος. ΜΕΤΑΠΤΥΧΙΑΚΟΣ ΤΙΤΛΟΣ ΣΠΟΥΔΩΝ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΙΣΟΡΡΟΠΙΑ ΚΑΤΑ NASH ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΙΣΟΡΡΟΠΙΑ ΚΑΤΑ NASH ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΙΣΟΡΡΟΠΙΑ ΚΑΤΑ NASH ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Συνέχεια από πριν.. Στο προηγούμενο μάθημα είδαμε ότι μπορούμε να επιλύσουμε παίγνια με την μέθοδο της απαλοιφής

Διαβάστε περισσότερα

* τη µήτρα. Κεφάλαιο 1o

* τη µήτρα. Κεφάλαιο 1o Κεφάλαιο 1o Θεωρία Παιγνίων Η θεωρία παιγνίων εξετάζει καταστάσεις στις οποίες υπάρχει αλληλεπίδραση µεταξύ ενός µικρού αριθµού ατόµων. Άρα σε οποιαδήποτε περίπτωση, αν ο αριθµός των ατόµων που συµµετέχουν

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 (θεωρία παιγνίων) Οι δύο μεγαλύτερες τράπεζες μιας χώρας, Α και Β, εκτιμούν ότι μια άλλη τράπεζα, η Γ, θα κλείσει στο προσεχές διάστημα και πρόκειται να προχωρήσουν σε διαφημιστικές εκστρατείες

Διαβάστε περισσότερα

Ενημερωτική Διαφοροποίηση Προϊόντος: Ο Ρόλος της Διαφήμισης

Ενημερωτική Διαφοροποίηση Προϊόντος: Ο Ρόλος της Διαφήμισης Ενημερωτική Διαφοροποίηση Προϊόντος: Ο Ρόλος της Διαφήμισης - Οι επιχειρήσεις δεν ανταγωνίζονται μόνο ως προς τις τιμές στις οποίες επιλέγουν να πουλήσουν τα προϊόντα τους. - Ο μη-τιμολογιακός ανταγωνισμός

Διαβάστε περισσότερα

ΑΝΑΘΕΣΗ ΠΟΡΩΝ ΣΕ ΓΝΩΣΤΙΚΑ ΔΙΚΤΥΑ ΜΕ ΧΡΗΣΗ ΘΕΩΡΙΑΣ ΔΗΜΟΠΡΑΣΙΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΑΝΑΘΕΣΗ ΠΟΡΩΝ ΣΕ ΓΝΩΣΤΙΚΑ ΔΙΚΤΥΑ ΜΕ ΧΡΗΣΗ ΘΕΩΡΙΑΣ ΔΗΜΟΠΡΑΣΙΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΑΝΑΘΕΣΗ ΠΟΡΩΝ ΣΕ ΓΝΩΣΤΙΚΑ ΔΙΚΤΥΑ ΜΕ ΧΡΗΣΗ ΘΕΩΡΙΑΣ ΔΗΜΟΠΡΑΣΙΩΝ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 11: Σχεδίαση μηχανισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 11: Σχεδίαση μηχανισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 11: Σχεδίαση μηχανισμών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

Στατικά Παίγνια Ελλιπούς Πληροφόρησης

Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΑΤΙΚΑ ΠΑΙΓΝΙΑ ΕΛΛΙΠΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ 67 Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΟ ΠΑΡOΝ ΚΕΦAΛΑΙΟ ξεκινά η ανάλυση των παιγνίων ελλιπούς πληροφόρησης, τα οποία ονομάζονται και μπεϋζιανά παίγνια (bayesa

Διαβάστε περισσότερα

παίγνια και δίκτυα Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

παίγνια και δίκτυα Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών παίγνια και δίκτυα Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών 1 Διαδίκτυο (1) Είναι µάλλον αποδεκτό ότι το Διαδίκτυο έχει ξεπεράσει

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

ΣΤΡΑΤΗΓΙΚΑ ΠΑΙΓΝΙΑ ΚΑΙ ΥΠΟΔΕΙΓΜΑΤΑ ΟΛΙΓΟΠΩΛΙΟΥ: ΜΙΑ ΕΦΑΡΜΟΓΗ ΣΤΟΝ ΚΛΑΔΟ ΤΗΣ ΚΙΝΗΤΗΣ ΤΗΛΕΦΩΝΙΑΣ. ΙΩΑΝΝΑ ΝΙΚΟΛΟΠΟΥΛΟΥ Διπλωματική εργασία ΠΜΣ.

ΣΤΡΑΤΗΓΙΚΑ ΠΑΙΓΝΙΑ ΚΑΙ ΥΠΟΔΕΙΓΜΑΤΑ ΟΛΙΓΟΠΩΛΙΟΥ: ΜΙΑ ΕΦΑΡΜΟΓΗ ΣΤΟΝ ΚΛΑΔΟ ΤΗΣ ΚΙΝΗΤΗΣ ΤΗΛΕΦΩΝΙΑΣ. ΙΩΑΝΝΑ ΝΙΚΟΛΟΠΟΥΛΟΥ Διπλωματική εργασία ΠΜΣ. ΣΤΡΑΤΗΓΙΚΑ ΠΑΙΓΝΙΑ ΚΑΙ ΥΠΟΔΕΙΓΜΑΤΑ ΟΛΙΓΟΠΩΛΙΟΥ: ΜΙΑ ΕΦΑΡΜΟΓΗ ΣΤΟΝ ΚΛΑΔΟ ΤΗΣ ΚΙΝΗΤΗΣ ΤΗΛΕΦΩΝΙΑΣ ΙΩΑΝΝΑ ΝΙΚΟΛΟΠΟΥΛΟΥ Διπλωματική εργασία ΠΜΣ.ΔΕ 2004 ΣΤΡΑΤΗΓΙΚΑ ΠΑΙΓΝΙΑ ΚΑΙ ΥΠΟΔΕΙΓΜΑΤΑ ΟΛΙΓΟΠΩΛΙΟΥ: ΜΙΑ ΕΦΑΡΜΟΓΗ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Λύσεις 1ης σειράς ασκήσεων Προθεσμία παράδοσης: 22 Απριλίου 2015 Πρόβλημα 1.

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές.

ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές. ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές. Α 1 Α 2 Α 3 Β 1 Β 2 Β 3 1, -1 0, 0-1, 0 0, 0 0, 6 10, -1 2, 0 10, -1-1, -1 Α 1 Α 2 Α 3 Β 1 Β

Διαβάστε περισσότερα

Εισαγωγή στην Οικονομική Ανάλυση

Εισαγωγή στην Οικονομική Ανάλυση Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Εισαγωγή στην Οικονομική Ανάλυση Νίκος Θεοχαράκης Διάλεξη 9 Ιανουάριος 2014 Μορφές αγοράς 1. Τέλειος ανταγωνισμός [Perfect competition] 2. Μονοπωλιακός ανταγωνισμός

Διαβάστε περισσότερα

B 1 A 1 B 2 A 2. t 1. t 3 w. t 2 A 3 B 3. t 4. t 5

B 1 A 1 B 2 A 2. t 1. t 3 w. t 2 A 3 B 3. t 4. t 5 Κεφάλαιο 3 Δυναμικά παίγνια 3.1 Εισαγωγή Μέχρι στιγμής έχουμε αναλύσει παίγνια στα οποία όλοι οι παίκτες επιλέγουν τις στρατηγικές τους ταυτόχρονα. Αυτή η υπόθεση όμως δεν είναι πάντα κατάλληλη. Σε πολλές

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 1: Εισαγωγή. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 1: Εισαγωγή. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 1: Εισαγωγή Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης,

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ» ΕΘΝΙΚΟ ΣΤΡΑΤΗΓΙΚΟ ΠΛΑΙΣΙΟ ΑΝΑΦΟΡΑΣ ΕΣΠΑ 2007-2013 ΔΡΑΣΗ «ΑΡΙΣΤΕΙΑ»

ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ» ΕΘΝΙΚΟ ΣΤΡΑΤΗΓΙΚΟ ΠΛΑΙΣΙΟ ΑΝΑΦΟΡΑΣ ΕΣΠΑ 2007-2013 ΔΡΑΣΗ «ΑΡΙΣΤΕΙΑ» ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ» ΕΘΝΙΚΟ ΣΤΡΑΤΗΓΙΚΟ ΠΛΑΙΣΙΟ ΑΝΑΦΟΡΑΣ ΕΣΠΑ 2007-2013 ΔΡΑΣΗ «ΑΡΙΣΤΕΙΑ» ΕΡΓΟ: ΤΙΤΛΟΣ: TITLE: ΔΙΚΑΙΟΥΧΟΣ: HEPHAESTUS Ευφυή Ενεργειακά Συστήματα Νέας Γενιάς

Διαβάστε περισσότερα

Notes. Notes. Notes Σ -1,-1-9,0 Π 0,-9-6,-6. Notes Σ Π

Notes. Notes. Notes Σ -1,-1-9,0 Π 0,-9-6,-6. Notes Σ Π Θεωρία αιγνίων-υριαρχία ώστας Ρουμανιάς Ο..Α. Τμήμα Δ. Ε. Ο.. Δεκεμβρίου 1 ώστας Ρουμανιάς (Δ.Ε.Ο..) Θεωρία αιγνίων-υριαρχία Δεκεμβρίου 1 1 / Λύσεις αιγνίων. υριαρχούμενες/υρίαρχες στρατηγικές Το δίλημμα

Διαβάστε περισσότερα

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 5 Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων

Διαβάστε περισσότερα

Οι έξι εταιρίες που πλουτίζουν από τους κρατούμενους

Οι έξι εταιρίες που πλουτίζουν από τους κρατούμενους Οι έξι εταιρίες που πλουτίζουν από τους κρατούμενους του Ashley Nicole Black (μετάφραση: barikat) Αυτή τη στιγμή υπάρχουν 2,4 εκατομμύρια άνθρωποι στις αμερικανικές φυλακές. Ο αριθμός αυτός έχει αυξηθεί

Διαβάστε περισσότερα

Το πρόβλημα της ισορροπίας Nash σε κοινοβουλευτικές συμμαχίες

Το πρόβλημα της ισορροπίας Nash σε κοινοβουλευτικές συμμαχίες ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» Μεταπτυχιακή Διατριβή Το πρόβλημα της ισορροπίας Nash σε κοινοβουλευτικές συμμαχίες Στυλιανός Θ. Δρακάτος Επιβλέπων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. ΜΕΡΟΣ Α: «Τέλειος» ανταγωνισµός

ΚΕΦΑΛΑΙΟ 2. ΜΕΡΟΣ Α: «Τέλειος» ανταγωνισµός ΚΕΦΑΛΑΙΟ 2 ΤΟ ΝΕΟΚΛΑΣΙΚΟ ΥΠΟ ΕΙΓΜΑ ΑΚΡΑΙΩΝ ΑΓΟΡΩΝ ΜΕΡΟΣ Α: «Τέλειος» ανταγωνισµός A1. Το υπόδειγµα των εγχειριδίων Στον Πλούτο των Εθνών (1776) ο Adam Smith παρουσίασε το φηµισµένο πλέον επιχείρηµά του

Διαβάστε περισσότερα

ΒΙΩΜΑΤΙΚΗ ΔΡΑΣΗ Α' ΓΥΜΝΑΣΙΟΥ. "Είμαι ο ίδιος μέσα και έξω από την τάξη; Γιατί;" Υπεύθυνη καθηγήτρια: Τζωρτζάτου Μάρια

ΒΙΩΜΑΤΙΚΗ ΔΡΑΣΗ Α' ΓΥΜΝΑΣΙΟΥ. Είμαι ο ίδιος μέσα και έξω από την τάξη; Γιατί; Υπεύθυνη καθηγήτρια: Τζωρτζάτου Μάρια ΒΙΩΜΑΤΙΚΗ ΔΡΑΣΗ Α' ΓΥΜΝΑΣΙΟΥ "Είμαι ο ίδιος μέσα και έξω από την τάξη; Γιατί;" Υπεύθυνη καθηγήτρια: Τζωρτζάτου Μάρια Εισαγωγική Παρουσίαση από την υπεύθυνη καθηγήτρια. Με το παραπάνω θέμα ασχολήθηκαν κατά

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 6 ης διάλεξης

Ασκήσεις μελέτης της 6 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,

Διαβάστε περισσότερα

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ Κεφάλαιο ο Μεικτές Στρατηγικές Τώρα θα δούµε ένα παράδειγµα στο οποίο κάθε παίχτης έχει τρεις στρατηγικές. Αυτό θα µπορούσε να είναι η µορφή που παίρνει κάποιος µετά που έχει απαλείψει όλες τις αυστηρά

Διαβάστε περισσότερα

3. Ανταγωνισμός ως προς τις Τιμές: Το Υπόδειγμα Bertrand

3. Ανταγωνισμός ως προς τις Τιμές: Το Υπόδειγμα Bertrand 3. Ανταγωνισμός ως προς τις Τιμές: Το Υπόδειγμα ertrand - To υπόδειγμα Cournot υποθέτει ότι κάθε επιχείρηση επιλέγει την παραγόμενη ποσότητα προϊόντος, ενώ στην πραγματικότητα οι επιχειρήσεις ανταγωνίζονται

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Μάθηση του παιχνιδιού British square με χρήση Temporal Difference(TD) Κωνσταντάκης Γιώργος

Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Μάθηση του παιχνιδιού British square με χρήση Temporal Difference(TD) Κωνσταντάκης Γιώργος Αυτόνομοι Πράκτορες Εργασία εξαμήνου Μάθηση του παιχνιδιού British square με χρήση Temporal Difference(TD) Κωνσταντάκης Γιώργος 2010030090 Περιγραφή του παιχνιδιού Το British square είναι ένα επιτραπέζιο

Διαβάστε περισσότερα

3. Παίγνια Αλληλουχίας

3. Παίγνια Αλληλουχίας 3. Παίγνια Αλληλουχίας Τα παίγνια αλληλουχίας πραγµατεύονται περιπτώσεις όπου οι κινήσεις των παικτών διαδέχονται η µια την άλλη, σε αντίθεση µε τα παίγνια όπου οι αποφάσεις των παικτών γίνονται ταυτόχρονα

Διαβάστε περισσότερα

ΔΙΑΠΡΑΓΜΑΤΕΥΣΗ ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ ΕΙΣΑΓΩΓΗ ΕΑΡ 2015. Πολιτική Οικονομία και Διαπραγμάτευση

ΔΙΑΠΡΑΓΜΑΤΕΥΣΗ ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ ΕΙΣΑΓΩΓΗ ΕΑΡ 2015. Πολιτική Οικονομία και Διαπραγμάτευση 1 ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ ΔΙΑΠΡΑΓΜΑΤΕΥΣΗ ΕΑΡ 2015 ˑ ΕΙΣΑΓΩΓΗ Πολιτική Οικονομία και Διαπραγμάτευση 1. Σύνδεση Πολιτικής Οικονομίας- Διαπραγμάτευσης παπακωνσταντινίδης Page 1 2 2. Σχηματισμός επιλογής/απόφασης-διαπραγμάτευση/ανισότητες

Διαβάστε περισσότερα

Πρόλογος. 1 Εισαγωγή Θεωρία Παιγνίων υό Λόγια για το Αντικείµενο Μερικά Ιστορικά Στοιχεία Ενα Παράδοξο Παιχνίδι...

Πρόλογος. 1 Εισαγωγή Θεωρία Παιγνίων υό Λόγια για το Αντικείµενο Μερικά Ιστορικά Στοιχεία Ενα Παράδοξο Παιχνίδι... ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xv 1 Εισαγωγή 1 1.1 Θεωρία Παιγνίων υό Λόγια για το Αντικείµενο........ 1 1.2 Μερικά Ιστορικά Στοιχεία..................... 3 1.3 Ενα Παράδοξο Παιχνίδι...................... 4 Μέρος

Διαβάστε περισσότερα

«Γκρρρ,» αναφωνεί η Ζέτα «δεν το πιστεύω ότι οι άνθρωποι μπορούν να συμπεριφέρονται έτσι μεταξύ τους!»

«Γκρρρ,» αναφωνεί η Ζέτα «δεν το πιστεύω ότι οι άνθρωποι μπορούν να συμπεριφέρονται έτσι μεταξύ τους!» 26 σχεδιασε μια ΦωτογρΑΦιΑ τήσ προσκλήσήσ που ελαβεσ Απο τον ΔΑσκΑλο σου. παρουσιασε το λογοτυπο και το σλογκαν που χρήσιμοποιει το σχολειο σου για τήν εβδομαδα κατα τήσ παρενοχλήσήσ. ΗΛΕΚΤΡΟΝΙΚΗ ΠΑΡΕΝΟΧΛΗΣΗ

Διαβάστε περισσότερα

Δημοπρασίες (Auctions)

Δημοπρασίες (Auctions) Δημοπρασίες (Auctions) Παύλος Στ. Εφραιμίδης Τομέας Λογισμικού και Ανάπτυξης Εφαρμογών Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Δημοπρασίες Σε μια δημοπρασία, κάποιο αγαθό πωλείται σε αυτόν

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

2 Πώς πουλάει διαφημιστικό χώρο η Google;

2 Πώς πουλάει διαφημιστικό χώρο η Google; 2 Πώς πουλάει διαφημιστικό χώρο η Google; 2.1. Μία Σύντομη Απάντηση Σήμερα πολλές διαδικτυακές υπηρεσίες και πληροφορίες στον παγκόσμιο ιστό διατίθενται «δωρεάν», λόγω των διαφημίσεων που εμφανίζονται

Διαβάστε περισσότερα

Αυτόνομοι Πράκτορες Μαριάνος Νίκος Αυτόνομοι Πράκτορες. Χειμερινό Εξάμηνο 2016 Κωδικός Μαθήματος ΠΛΗ513 Πρότζεκτ Μαθήματος

Αυτόνομοι Πράκτορες Μαριάνος Νίκος Αυτόνομοι Πράκτορες. Χειμερινό Εξάμηνο 2016 Κωδικός Μαθήματος ΠΛΗ513 Πρότζεκτ Μαθήματος Αυτόνομοι Πράκτορες Χειμερινό Εξάμηνο 2016 Κωδικός Μαθήματος ΠΛΗ513 Πρότζεκτ Μαθήματος Thit O C Gm with ifocmt ig (Ενισχυτική Μάθηση στο παιχνίδι τριάντα μια) Μία εργασία του Νίκου Μαριάνου Α.Μ. 2011030091

Διαβάστε περισσότερα

Διάλεξη 10. Γενική Ισορροπία VA 30

Διάλεξη 10. Γενική Ισορροπία VA 30 Διάλεξη 10 Γενική Ισορροπία V 30 1 Μερική & Γενική Ισορροπία Μέχρι τώρα εξετάζαμε γενικά την αγορά ενός αγαθού μεμονωμένα. Το πώς δηλαδή η προσφορά και η ζήτηση επηρεάζονται από την τιμή του συγκεκριμένου

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΚΑΙ ΜΟΝΤΕΛΑ ΟΛΙΓΟΠΩΛΙΩΝ

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΚΑΙ ΜΟΝΤΕΛΑ ΟΛΙΓΟΠΩΛΙΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΥΤ. ΕΛΛΑ ΑΣ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΚΑΙ ΜΟΝΤΕΛΑ ΟΛΙΓΟΠΩΛΙΩΝ ΤΡΙΑΝΤΑΦΥΛΛΟΠΟΥΛΟΥ ΦΩΤ. ΣΤΑΥΡΟΥΛΑ ΦΡΑΓΚΟΥ ΙΩΑΝ.

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΚΑΙ ΑΠΟΤΥΧΙΕΣ ΤΗΣ ΑΓΟΡΑΣ. (Συνέχεια)

ΔΥΝΑΜΙΚΗ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΚΑΙ ΑΠΟΤΥΧΙΕΣ ΤΗΣ ΑΓΟΡΑΣ. (Συνέχεια) ΔΥΝΑΜΙΚΗ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΚΑΙ ΑΠΟΤΥΧΙΕΣ ΤΗΣ ΑΓΟΡΑΣ (Συνέχεια) Πηγές αποτυχίας των αγορών Δημόσια αγαθά Είναι τα αγαθά των οποίων η χρήση δεν μπορεί να αποκλειστεί και ως εκ τούτου είναι ελευθέρα για

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ ΣΤΙΣ ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ ΣΤΙΣ ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ ΙΑΤΜΗΜΑΤΙΚΟ Μ.Π.Σ. ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ ΣΤΙΣ ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Ι. ΠΟΛΥΡΑΚΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΓΚΡΑΒΑΣ Αριθµός

Διαβάστε περισσότερα

Γ Γυμνασίου: Οδηγίες Γραπτής Εργασίας και Σεμιναρίων. Επιμέλεια Καραβλίδης Αλέξανδρος. Πίνακας περιεχομένων

Γ Γυμνασίου: Οδηγίες Γραπτής Εργασίας και Σεμιναρίων. Επιμέλεια Καραβλίδης Αλέξανδρος. Πίνακας περιεχομένων Γ Γυμνασίου: Οδηγίες Γραπτής Εργασίας και Σεμιναρίων. Πίνακας περιεχομένων Τίτλος της έρευνας (title)... 2 Περιγραφή του προβλήματος (Statement of the problem)... 2 Περιγραφή του σκοπού της έρευνας (statement

Διαβάστε περισσότερα

Και τα τέσσερα κτίρια της Εποχής 1 της επέκτασης μπορούν να ανακαινιστούν. Η ιδιότητα

Και τα τέσσερα κτίρια της Εποχής 1 της επέκτασης μπορούν να ανακαινιστούν. Η ιδιότητα Η επέκταση αυτή εισάγει κάποια νέα στοιχεία ώστε να εμπλουτίσει το βασικό παιχνίδι. Μπορούν να χρησιμοποιηθούν ξεχωριστά ή σε οποιονδήποτε συνδυασμό. Πεμπτοσ Παικτησ Προφητειεσ Ξύλινα κομμάτια για πέμπτο

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΘΕΜΑ ΠΤΥΧΙΑΚΗΣ ΕΡΓΑΣΙΑΣ Εισαγωγή στη Θεωρία Παιγνίων (Introduction in Game Theory) Υποβληθείσα στην καθηγήτρια

Διαβάστε περισσότερα

(γ) Τις μορφές στρατηγικής αλληλεπίδρασης που αναπτύσσονται

(γ) Τις μορφές στρατηγικής αλληλεπίδρασης που αναπτύσσονται Βασικές Έννοιες Οικονομικών των Επιχειρήσεων - Τα οικονομικά των επιχειρήσεων μελετούν: (α) Τον τρόπο με τον οποίο λαμβάνουν τις αποφάσεις τους οι επιχειρήσεις. (β) Τις μορφές στρατηγικής αλληλεπίδρασης

Διαβάστε περισσότερα

ΣΕΜΙΝΑΡΙΟ:Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική Πούλιου Χριστίνα(5543) Κορρέ Πελαγία(5480) Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης

ΣΕΜΙΝΑΡΙΟ:Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική Πούλιου Χριστίνα(5543) Κορρέ Πελαγία(5480) Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης ΣΕΜΙΝΑΡΙΟ:Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική Πούλιου Χριστίνα(55) Κορρέ Πελαγία(580) Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Εαρινό εξάμηνο 0 Ρέθυμνο, 5/6/0 ΠΕΡΙΕΧΟΜΕΝΑ:. Εισαγωγή.

Διαβάστε περισσότερα

Περισσότερες λεπτομέρειες και τρελά βίντεο σας περιμένουν στο: skull-and-roses.com

Περισσότερες λεπτομέρειες και τρελά βίντεο σας περιμένουν στο: skull-and-roses.com Οι συμμορίες τσοπεράδων, επέλεγαν παραδοσιακά τους αρχηγούς τους με έναν διαγωνισμό που ονομάζεται Πίσω στο Πεζοδρόμιο, στον οποίο οι υποψήφιοι προσπαθούσαν να αντέξουν περισσότερο, όσο τους τραβούσε μια

Διαβάστε περισσότερα

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Πρόγραµµα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή ιατριβή Τίτλος ιατριβής ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΟΛΙΤΙΚΩΝ ΑΠΟΦΑΣΕΩΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΟΙΚΟΝΟΜΙΑ

Διαβάστε περισσότερα

Συναλλαγματικές ισοτιμίες και επιτόκια

Συναλλαγματικές ισοτιμίες και επιτόκια Κεφάλαιο 2 Συναλλαγματικές ισοτιμίες και επιτόκια 2.1 Σύνοψη Στο δεύτερο κεφάλαιο του συγγράμματος περιγράφεται αρχικά η συνθήκη της καλυμμένης ισοδυναμίας επιτοκίων και ο τρόπος με τον οποίο μπορεί ένας

Διαβάστε περισσότερα

Και όπως και στη ζωή, έτσι κι εδώ δεν υπάρχει δεύτερος...

Και όπως και στη ζωή, έτσι κι εδώ δεν υπάρχει δεύτερος... ΚΑΝΟΝΕΣ Σ το παιχνίδι αυτό παίρνετε το ρόλο ενός εξερευνητή των πόλων, διαγωνιζόμενοι για το ποιός θα φτάσει πρώτος στο Νότιο Πόλο. Σε κάθε γύρο, επιλέγετε ένα σετ ζαριών με τα οποία θα προσπαθήσετε να

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΙΚΗ & ΕΞΕΛΙΚΤΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΑΛΓΟΡΙΘΜΙΚΗ & ΕΞΕΛΙΚΤΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ ΠΛΗΡΟΦΟΡΙΚΗ ΑΛΓΟΡΙΘΜΙΚΗ & ΕΞΕΛΙΚΤΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΕΠΙΜΕΛΕΙΑ: ΝΑΣΟΣ ΑΘΑΝΑΣΙΟΥ ΕΠΙΒΛΕΨΗ: ΚΑΘΗΓΗΤΗΣ ΓΕΩΡΓΙΟΣ ΤΣΙΧΡΙΝΤΖΗΣ ΑΘΗΝΑ, 2012 Πανεπιστήμιο

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Έγγραφο δικαιωμάτων. Τα δικαιώματά σας:

Έγγραφο δικαιωμάτων. Τα δικαιώματά σας: Έγγραφο δικαιωμάτων Το φυλλάδιο αυτό σας παρέχει σημαντικές πληροφορίες όσον αφορά τα δικαιώματά σας όταν βρίσκεστε στο αστυνομικό τμήμα. Με τον όρο δικαιώματα εννοούμε σημαντικές ελευθερίες και δυνατότητες

Διαβάστε περισσότερα

Βιοµηχανική Οργάνωση

Βιοµηχανική Οργάνωση Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα Οικονοµικής Επιστήµης Βιοµηχανική Οργάνωση Καθηγητής: Γιάννης Κατσουλάκος Πτέρυγα Δεριγνύ, 4 ος Όροφος. Ώρες Γραφείου: Δευτέρα 16:00-17:00, Τρίτη 16:00-17:00. Εισαγωγή

Διαβάστε περισσότερα

Σχεδιασμός Ψηφιακών Εκπαιδευτικών Εφαρμογών ΙI

Σχεδιασμός Ψηφιακών Εκπαιδευτικών Εφαρμογών ΙI Σχεδιασμός Ψηφιακών Εκπαιδευτικών Εφαρμογών ΙI Εργασία 1 ΣΤΟΙΧΕΙΑ ΦΟΙΤΗΤΡΙΑΣ: Τσελίγκα Αρετή, 1312009161, Στ εξάμηνο, κατεύθυνση: Εκπαιδευτική Τεχνολογία και Διαπολιτισμική Επικοινωνία Το γνωστικό αντικείμενο

Διαβάστε περισσότερα

ΑΝΑΖΗΤΩΝΤΑΣ ΤΙΣ ΧΑΜΕΝΕΣ ΜΑΣ ΣΥΝΕΡΓΑΣΙΕΣ!!

ΑΝΑΖΗΤΩΝΤΑΣ ΤΙΣ ΧΑΜΕΝΕΣ ΜΑΣ ΣΥΝΕΡΓΑΣΙΕΣ!! ΑΝΑΖΗΤΩΝΤΑΣ ΤΙΣ ΧΑΜΕΝΕΣ ΜΑΣ ΣΥΝΕΡΓΑΣΙΕΣ!! Μάτα Χαροκόπου Ανδρέας Καλλιβωκάς ΤΟ ΟΛΟΝ ΕΙΝΑΙ ΜΕΓΑΛΥΤΕΡΟ ΑΠΟ ΤΟ ΑΘΡΟΙΣΜΑ ΤΩΝ ΜΕΡΩΝ ΤΟΥ Οι συνεργασίες αποτελούν την πεμπτουσία της ανάπτυξης, του διαχρονικού

Διαβάστε περισσότερα