1 η δεκάδα θεµάτων επανάληψης

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1 η δεκάδα θεµάτων επανάληψης"

Transcript

1 1 1 η δεκάδα θεµάτων επανάληψης 1. Α. Έστω α = (x 1, y 1 ) και β = (x, y ) δύο διανύσµατα Να γράψετε την αναλυτική έκφραση του εσωτερικού γινοµένου τους i Αν τα διανύσµατα δεν είναι παράλληλα προς τον άξονα y y και λ 1, λ είναι οι συντελεστές διεύθυνσής τους, αποδείξτε την ισοδυναµία α β λλ 1 = 1 ii Αν τα διανύσµατα είναι µη µηδενικά και θ είναι η γωνία τους, δείξτε ότι x1x+ y1y συνθ = x + y x + y 1 1 Β. ίνονται τα διανύσµατα α = (λ, λ 1) και β = (4, λ), λ 0 Για ποια από τις παρακάτω τιµές του λ τα διανύσµατα είναι κάθετα ; λ =1, λ = 3, λ =, λ =, λ = 3. Κυκλώστε την σωστή απάντηση i Αν u = (1, 3 ), ν = (, 3 ), w = ( 3, 1) Να αντιστοιχίσετε κάθε γωνία της στήλης Α µε το µέτρο της, της στήλης Β Στήλη Α Στήλη Β π Γωνία των u και v π Γωνία των u και w 6 π Γωνία των v και w 4 π 3 3π 4 π 3 Α. α β = x1 x + y 1 y Α.i α β α β =0 x1 x + y 1 y = 0 (1) και αφού τα διανύσµατα δεν είναι παράλληλα στον άξονα y y, θα είναι x 1 x 0. x1x Οπότε διαιρώντας τα δύο µέλη της (1) µε x 1 x έχουµε x x + y y 1 x x = 0 1 1

2 Α.ii Γνωρίζουµε ότι α β = α β α β α, β 0 α β 0 α β x1x + y1y Οπότε η () συνθ = = α β x + y x + y Β. α β συνθ (), όπου θ = ( ) α β = 0 4λ + λ(λ 1) = 0 οπότε κυκλώνουµε την τιµή 3 Β. i Είναι συν(u v) = u v = u v Οµοίως βρίσκουµε ότι (u w) λ + 3λ = 0 λ( λ + 3) = 0 λ = 0 ή λ = y 1 x 1 y x = 0 1+ λ 1 λ = 0 λ 1 λ = ( 3) + ( 3) 4 1 π = = Άρα (u v) συν π = 0 Άρα (u w) και συν(v w) = 3 π Άρα (v w) 6

3 3. ίνονται τα σηµεία Α(8, 0) και Β(0, 4) Να βρείτε την εξίσωση της ευθείας που ορίζεται από την αρχή των αξόνων και το µέσο του τµήµατος ΑΒ i Να βρείτε την εξίσωση της ευθείας (ε) που διέρχεται από το και είναι κάθετη στην ευθεία Ο ii Αν Μ τυχαίο σηµείο της (ε), δείξτε ότι ΜΑ +ΜΒ = ΜΟ xa + xb µέσο του ΑΒ x = = y = 4 και A + yb y = = = Η ευθεία Ο που διέρχεται από την αρχή των αξόνων Ο(0, 0) και το (4, ) έχει συντελεστή διεύθυνσης λ = 0 = Εποµένως η εξίσωση της ευθείας Ο είναι y = λx y = 1 x i (ε) Ο λ ε.λ Ο = 1 1 λ ε = 1 λ ε = Επειδή η (ε) διέρχεται από το (4, ) θα έχει εξίσωση y = (x 4) y = x + 10 (1) ii Αν Μ ( x, y) τυχαίο σηµείο της (ε), λόγω της (1) θα είναι Μ( x, x + 10) Οπότε MA = ( xα x Μ, y A y M ) = (8 x, x 10), MB = ( xβ x Μ, y Β y M ) = ( x, 4 + x 10) = ( x, x 6) MO = ( xο x Μ, y Ο y M ) = ( x, x 10) Εποµένως ΜΑ +ΜΒ = ΜΟ ΜΑ + ΜΒ = ΜΟ ( (8 x) + (x 10) ) + ( ( x) + (x 6) ) = ( ( x) + (x 10) ) 64 16x + x + 4x 40x x + 4x 4x + 36 = (x + 4x 40x + 100) 10x 80x + 00 = 10x 80x + 00 η οποία είναι προφανής.

4 4 3. Έστω η εξίσωση (x 1) + y = λ(x + y 1) (1) όπου λ = 1,, 3,, 011. Να δείξετε ότι η (1) είναι εξίσωση κύκλου για όλες τις τιµές του λ, του οποίου κύκλου να βρείτε το κέντρο και την ακτίνα. i Να δείξετε ότι οι κύκλοι που προκύπτουν από την (1) για τα διάφορα λ διέρχονται από σταθερό σηµείο Α του οποίου να βρείτε τις συντεταγµένες. ii Να δείξετε ότι όλοι οι κύκλοι της (1) εφάπτονται της ευθείας x + y 1 = 0 στο σηµείο Α. (x 1) + y = λ(x + y 1) Είναι x x y = λx + λy λ x x y λx λy + λ = 0 x + y + ( λ)x λy + λ + 1= 0 Α +Β 4Γ = ( λ) +( λ) 4(λ+1) = 4 + 8λ + 4λ + 4λ 8λ 4 = 8λ > 0 για κάθε λ = 1,, 3,, 011 Άρα η (1) είναι εξίσωση κύκλου Α Β µε κέντρο : Κ, = Κ λ λ, = Κ(λ + 1, λ) και ακτίνα : ρ = A +Β 4Γ 8λ = = λ i Για λ = 1 και λ = από την (1) προκύπτουν οι κύκλοι C 1 : x + y 4x y +3 = 0 και C : x + y 6x 4y + 5 = 0 Λύνουµε το σύστηµα αυτών των εξισώσεων. Αφαιρώντας κατά µέλη τις εξισώσεις έχουµε x + y = 0 y = 1 x () Η C 1 γίνεται x + (1 x) 4x (1 x) +3 = 0 x + 1 x + x 4x + x + 3 = 0 x 4x + =0 x x + 1= 0 (x 1) = 0 x = 1 και λόγω της () y = 0 Οπότε οι κύκλοι C 1 και C εφάπτονται στο σηµείο µε συντεταγµένες ( 1, 0) Η (1) για x = 1 και y = 0 γίνεται 0 = 0λ πράγµα που σηµαίνει ότι επαληθεύεται για κάθε λ = 1,, 3,,011 Άρα όλοι οι κύκλοι της (1) διέρχονται από το σταθερό σηµείο Α(1, 0) ii Είναι προφανές ότι οι συντεταγµένες του σηµείου Α(1, 0) επαληθεύουν την εξίσωση x + y 1= 0, άρα το Α ανήκει και στην ευθεία (ε) µε εξίσωση x + y 1= 0 y = x +1 της οποίας ο συντελεστής διεύθυνσης είναι : λ ε = 1

5 5 λ 0 H ακτίνα ΚΑ έχει συντελεστή διεύθυνσης: λ ΚΑ = λ+ 1 1 = 1 Επειδή λ ε λ ΚΑ = 1, η ακτίνα ΚΑ είναι κάθετη στην ευθεία (ε) Εποµένως όλοι οι κύκλοι της (1) εφάπτονται στην (ε) στο σηµείο Α. 4. Πότε λέµε ότι ο ακέραιος α διαιρείται µε τον ακέραιο β 0 ; i Αν ο ακέραιος αριθµός λ δεν διαιρείται µε το 3, να δείξετε ότι ο αριθµός λ + 5 είναι πολλαπλάσιο του 3. ii Να αποδείξετε ότι, για κάθε ακέραιο αριθµό κ ο ακέραιος κ(κ + 5) είναι πολλαπλάσιο του 3. Θα λέµε ότι ο ακέραιος α διαιρείται µε τον µη µηδενικό ακέραιο β όταν η διαίρεση του α µε τον β είναι τέλεια, δηλαδή όταν υπάρχει ακέραιος κ έτσι ώστε να ισχύει α = κ β i Αφού ο λ δεν διαιρείται µε το 3, η διαίρεσή του µε το 3 θα αφήνει υπόλοιπο 1 ή, οπότε ο λ θα είναι της µορφής λ = 3κ + 1 ή λ = 3κ + Όταν λ = 3κ + 1 λ + 5 = (3κ+1) + 5 = 9κ + 6κ = 9κ + 6κ + 6 = 3(3κ + κ + ) = 3µ, όπου µ = (3κ + κ + ) Z Άρα λ + 5 = πολ3 Όταν λ = 3κ + λ + 5 = (3κ + ) + 5 = 9κ + 1κ = 9κ + 1κ + 9 = 3(3κ + 4κ + 3) = 3ν, όπου ν = (3κ + 4κ + 3) Z Άρα λ + 5 = πολ3 ii Θα είναι κ = 3µ ή κ = 3µ + 1 ή κ = 3µ + Όταν κ = 3µ κ(κ + 5) = 3µ( 9µ + 5) = 3ρ, όπου ρ = µ( 9µ + 5) Z δηλαδή κ(κ + 5) = πολ3 Όταν κ = 3µ + 1 ή κ = 3µ + Όπως αποδείξαµε στο (i o κ + 5 είναι πολλαπλάσιο του 3, άρα και ο κ( κ + 5) = πολ3.

6 6 5. Στο παρακάτω σχήµα µε καρτεσιανό σύστηµα αξόνων Οxy, τα σηµεία Α, Β, Γ παριστάνουν τις θέσεις τριών χωριών, ο άξονας y y παριστάνει µία εθνική οδό και τα ευθύγραµµα τµήµατα ΑΒ και ΑΓ δύο επαρχιακούς δρόµους µε µήκος 5km και 13km αντίστοιχα. Οι αποστάσεις των χωριών Β και Γ από την εθνική οδό είναι 3km και 5km αντίστοιχα. Να βρείτε Τις συντεταγµένες των σηµείων Α, Β, Γ y i Την απόσταση των χωριών Β και Γ Α ii Την εξίσωση της ευθείας ΒΓ και τις 5 10 συντεταγµένες του σηµείου Σ, Β στο οποίο η ευθεία ΒΓ συναντάει την Κ 3 13 εθνική οδό. 5 Σ Αφού ΟΓ= 5 προφανώς θα είναι Γ( 5, 0) ΑΟ = ΑΓ ΟΓ ΑΟ = 13 5 = = 144 ΑΟ = 144 =1 Εποµένως οι συντεταγµένες του Α είναι Α( 0, 1) ΑΚ = ΑΒ ΒΚ ΑΚ = 5 3 = 5 9 = 16 Ο 5 ΑΚ = 16 = 4 Συνεπώς ΟΚ = ΟΑ ΑΚ = 1 4 = 8, άρα Κ( 0, 8) και εποµένως Β( 3, 8) i ΒΓ = ii = (x x ) + (y y ) Β Γ Β Γ ( 3 5) + (8 0) = 64 = 8 yb yγ Η ευθεία ΒΓ έχει συντελεστή διεύθυνσης λ = = 8 0 xβ xγ 3 5 = 1, και επειδή διέρχεται από το Γ(5, 0), η εξίσωση αυτής θα είναι y 0 = 1(x 5) y = x + 5 Επειδή για x = 0 έχουµε y = 5, το σηµείο τοµής Σ της ΒΓ µε την εθνική οδό έχει συντεταγµένες Σ(0, 5) Γ x

7 7 6. Να γράψετε την εξίσωση του κύκλου που έχει κέντρο Κ(x ο, y ο ) και ακτίνα ρ i Με ποια προϋπόθεση η εξίσωση x + y + Αx + Βy + Γ= 0 παριστάνει κύκλο; Ποιο είναι το κέντρο και η ακτίνα του; ii Να αποδείξετε ότι η εφαπτοµένη του κύκλου x + y = ρ σ ένα σηµείο του Α(x 1, y 1 ) έχει εξίσωση xx 1 + yy 1 = ρ. iν) ίνεται ο κύκλος x + y = 10 και το σηµείο του Μ(1, 3). Η εφαπτοµένη του που διέρχεται από το Μ είναι η ευθεία µε εξίσωση : x + 3y =10, 5x y = 8, x 3y =10, 3x + y = 3, x + y = 10. Κυκλώστε τη σωστή απάντηση. Η ζητούµενη εξίσωση είναι (x x o ) + (y y o ) = ρ i Θα πρέπει να ισχύει Α +Β 4Γ > 0 Α Β Το κέντρο του κύκλου είναι το σηµείο Κ, Α +Β 4Γ ρ = ii Μ( x, y ) τυχαίο σηµείο της εφαπτοµένης στο Α ΟΑ ΑΜ ΟΑ ΑΜ ΟΑ ΑΜ =0 (x 1, y 1 ) (x x 1, y y 1 ) = 0 x 1 (x x 1 ) + y 1 ( y y 1 ) = 0 xx 1 x 1 + yy 1 y 1 = 0 xx 1 + yy 1 = x 1 + y 1 (1) και η ακτίνα του ρ είναι Επειδή το σηµείο Α( x 1, y 1 ) ανήκει στον κύκλο θα είναι x 1 + y 1 = ρ. Η (1) γίνεται xx 1 + yy 1 = ρ iν) Σύµφωνα µε το (ii η ζητούµενη εφαπτοµένη θα έχει εξίσωση x 1 + y ( 3) = 10 x 3y =10 y O ρ A(x 1, y 1 ) x Μ(x, y)

8 8 7. Στην στήλη Α δίνονται οι εξισώσεις δύο κύκλων και στην στήλη Β τα κέντρα και οι ακτίνες τους. Αντιστοιχίστε κάθε κύκλο στο κέντρο και την ακτίνα του. Στήλη Α Στήλη Β C 1 : x + y 6x + 4y 3 = 0 (α) Κ(0, 1), ρ = C : x + (y + 1) = 4 (β) Κ(3, ), ρ = 1 (γ) Κ(3, ), ρ = 4 i Χαρακτηρίστε τις παρακάτω προτάσεις µε τις λέξεις ΣΩΣΤΟ ή ΛΑΘΟΣ δικαιολογώντας την απάντηση σας α) Το σηµείο (1, 1) ανήκει στον κύκλο x + y = β) Ο κύκλος x + y = 4 και η ευθεία y = x εφάπτονται γ) Η εξίσωση x + y + λ = 0, όπου λ πραγµατικός αριθµός, είναι εξίσωση κύκλου. ii Στη στήλη Α δίνονται δύο κύκλοι. Αντιστοιχίστε σε αυτούς τη σχετική τους θέση που αναφέρεται στην στήλη Β δικαιολογώντας την απάντηση σας. Στήλη Α Στήλη Β C 1 : (x 6) + y = 4 (α) Οι κύκλοι τέµνονται C : x + y 4x 6y 1=0 (β) Οι κύκλοι εφάπτονται εσωτερικά (γ) Οι κύκλοι εφάπτονται εξωτερικά O κύκλος C 1 έχει κέντρο το σηµείο Α Β Κ, = Κ( 3, ) A +Β 4Γ και ακτίνα ρ = = = 4 Ο κύκλος C έχει κέντρο το σηµείο Κ( 0, 1) και ακτίνα ρ =. Εποµένως C 1 (γ) και C (α) i α) Επειδή η εξίσωση x + y = επαληθεύεται για x = 1 και y = 1, το δοσµένο σηµείο ανήκει στον κύκλο, άρα η πρόταση είναι ΣΩΣΤΗ. β) Επειδή ο κύκλος x + y = 4 έχει κέντρο το σηµείο Ο(0, 0) από το οποίο διέρχεται η ευθεία y = x, η ευθεία τέµνει τον κύκλο και εποµένως η πρόταση είναι ΛΑΘΟΣ. γ) Η εξίσωση γράφεται x + y = λ µε λ 0, άρα η εξίσωση δεν είναι εξίσωση κύκλου. Εποµένως η πρόταση είναι ΛΑΘΟΣ. ii O κύκλος C 1 έχει κέντρο Κ 1 (6, 0) και ακτίνα ρ 1 = Α Β Ο κύκλος C έχει κέντρο Κ, = Κ (, 3) και ακτίνα ρ = A 4 +Β Γ = = 5

9 9 Η διάκεντρος Κ 1 Κ των δύο κύκλων έχει µήκος Κ 1 Κ = Επίσης ρ ρ 1 = 5 = 3 και ρ + ρ 1 = 5 + = 7 Όµως 3 < 5 < 7, δηλαδή ρ ρ 1 < Κ 1 Κ < ρ + ρ 1 Άρα οι κύκλοι τέµνονται. (6 ) + (0 3) = 5 8. Έστω ο ακέραιος α = 16κ 9, κ Z. Να δείξετε ότι ο α είναι περιττός. i Να βρείτε το υπόλοιπο της διαίρεσης του α µε το 8. ii Να δείξετε ότι ο αριθµός Α = (α + 15)(α 1 ) είναι πολλαπλάσιο του 64 α = 16κ = (8κ 5) + 1 = ρ + 1, όπου ρ = (8κ 5) Z Άρα ο α είναι περιττός i α = 16κ 9 = 16κ = 8(κ ) + 7 = 8π + 7, όπου π = (κ ) Z. Άρα το υπόλοιπο είναι 7 ii Γνωρίζουµε ότι το τετράγωνο κάθε περιττού ακεραίου είναι ακέραιος της µορφής 8λ + 1 Επειδή λοιπόν ο α είναι περιττός θα είναι α = 8λ + 1, λ Z Άρα Α = (8λ )( 8λ + 1 1) = (8λ + 16) 8λ = 8(λ + ) 8λ = 64ν, όπου ν = λ( λ + ) Z Οπότε Α = πολ64.

10 10 9. Για τα διανύσµατα α, β ισχύει α + 3β = (4, ) και α 3β = ( 7, 8) Να δείξετε ότι α = ( 1, ) και β = (, ) i Να βρείτε τον πραγµατικό αριθµό κ ώστε τα διανύσµατα κα + β και α + 3β να είναι κάθετα ii Να αναλυθεί το διάνυσµα γ = (3, 1) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να έχει την διεύθυνση του α. Σύστηµα των εξισώσεων α + 3β = (4, ) (1) και α 3β = ( 7, 8) () Προσθέτοντας κατά µέλη έχουµε 3α = ( 4, ) + ( 7, 8) 3α = ( 3, 6) 3α = 3( 1, ) α = ( 1, ) Η (1) γίνεται ( 1, ) + 3β = ( 4, ) 3β = ( 4, ) ( 1, ) i 3β = ( 4, ) (, 4) 3β = ( 6, 6) 3β = 3(, ) β = (, ) Με βάση το ( έχουµε κα + β = κ( 1, ) + (, ) = ( κ +, κ ) και α + 3β = ( 1, ) + 3(, ) = (, 4 ) + ( 6, 6) = ( 4, ) Οπότε (κα + β ) ( α + 3β ) (κα + β ) ( α + 3β ) = 0 ( κ +, κ ) ( 4, ) = 0 4κ + 8 4κ + 4 = 0 κ = 3 ii Έστω γ = γ1 + γ, όπου γ1 = λα = Είναι α γ = α προβ γ α = α λα = λα προβ γ α και γ γ 1 = λ α ( 1, )(3, 1) = λ(1 + 4) 3 = 5λ λ = 1 Εποµένως γ1 = λα = 1( 1, ) = ( 1, )

11 11 και γ = γ1 + γ Άρα γ = ( 1, ) + (, 1) γ = γ γ 1 = (3, 1) ( 1, ) = (, 1) γ

12 1 10. Αν α = ( x 1, y 1 ) και β = ( x, y ), να γράψετε τις συντεταγµένες των διανυσµάτων α + β και λα +µβ όπου λ, µ πραγµατικοί αριθµοί. i Αν Α(x 1, y 1 ) και Β(x, y ) δύο σηµεία του επιπέδου και (x, y) οι συντεταγµένες του µέσου Μ του ΑΒ να αποδείξετε ότι x + x y + y x = 1 και y= 1 ii Αν Α(x 1, y 1 ) και Β(x, y ) δύο σηµεία του επιπέδου να γράψετε τις σχέσεις που δίνουν τις συντεταγµένες του διανύσµατος ΑΒ και την απόσταση των σηµείων Α, Β iν) Στον παρακάτω πίνακα στη στήλη Α δίνονται οι συντεταγµένες δύο σηµείων Α και Β και στην στήλη Β δίνονται οι συντεταγµένες του διανύσµατος ΑΒ και η απόσταση των σηµείων Α, Β. Να κάνετε τις σωστές αντιστοιχίσεις. Στήλη Α Στήλη Β α. Α(1, 3) και Β(, 5) κ. ΑΒ= ( 3, ) και ( ΑΒ ) = 15 β. Α(, 1) και Β(, 3) λ. ΑΒ= (0, ) και ( ΑΒ ) = γ. Α(4, 3) και Β(6, 3) µ. ΑΒ= ( 3, ) και ( ΑΒ ) = 13 ν. ΑΒ= (,0) και ( ΑΒ ) = ν) Αν Κ(x 1, 6) και Λ( 9, y ) δύο σηµεία του επιπέδου και Μ( 5, 4) το µέσο του τµήµατος ΚΛ, τότε x 1 = 1 και y = x 1 = 1 και y = x 1 = 3 και y = x 1 = 4 και y = 5 τίποτα από αυτά. Κυκλώστε την σωστή απάντηση. α + β = (x 1 + x, y 1 + y ), λα +µβ = (λx 1 + µx, λy 1 + µy ) i Γνωρίζουµε ότι ΟΜ = ( x, y), Ακόµη ΟΜ = 1 (ΟΑ +ΟΒ ΟΑ = ( x 1, y 1 ), ΟΒ = ( x, y ) ) (x, y) = 1 [(x 1, y 1 ) + ( x, y )] (x, y) = 1 (x 1 + x, y 1 + y ) x1+ x y1+ y (x, y) =, x1+ x y + y x = και y = 1

13 13 ii ΑΒ = ( x x 1, y y 1 ) και AB) = (x x ) + (y y ) 1 1 iν) Όταν Α( 1, 3) και Β(, 5) τότε ΑΒ = ( 1, 5 3) = ( 3, ) και (AB) = ( 1) + (5 3) = 13 Εποµένως (α) (µ) Όταν Α(, 1) και Β(, 3) τότε ΑΒ = (, 3 + 1) = ( 0, ) και (AB) = ( ) + ( 3+ 1) = Εποµένως (β) (λ) Όταν Α(4, 3) και Β(6, 3) τότε ΑΒ = (6 4, 3 + 3) = (, 0) Εποµένως (γ) (ν) και (AB) = (4 6) + ( 3+ 3) = ν) x y Είναι 5= x 1 = 1 και 4= y = Οπότε κυκλώνουµε την x 1 = 1 και y =

Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000

Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000 Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 000 Ζήτηµα ο Α.. Να γράψετε την εξίσωση του κύκλου που έχει κέντρο Κ(x 0,y 0 ) και ακτίνα ρ. (Μονάδες ) Α.. Πότε η εξίσωση x + y + Ax + By + Γ 0

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999 Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 999 Ζήτηµα ο Α. Έστω a, ) και β, ) δύο διανύσµατα του καρτεσιανού επιπέδου Ο. α) Να εκφράσετε χωρίς απόδειξη) το εσωτερικό γινόµενο των διανυσµάτων a και

Διαβάστε περισσότερα

2 η δεκάδα θεµάτων επανάληψης

2 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. ίνεται ο κύκλος x + y = 5 και οι εφαπτόµενες σ αυτόν από το σηµείο Μ(0, 0). Αν Α και Β είναι τα σηµεία επαφής, να βρείτε Τις εξισώσεις των εφαπτόµενων Τις συντεταγµένες των

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ o Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων α, β. Μονάδες 4 Β. Να αποδείξετε ότι το εσωτερικό γινόµενο δύο διανυσµάτων

Διαβάστε περισσότερα

v Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων, β

v Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων, β ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o α Α Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων, β Μονάδες 4 Β Να αποδείξετε ότι το εσωτερικό γινόµενο

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ÑÏÌÂÏÓ

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ÑÏÌÂÏÓ ΘΕΜΑ o Α.. Α.. Α.3. Β.. B.. Β.3. ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ - 000 Να γράψετε την εξίσωση του κύκλου που έχει κέντρο Κ(x 0, y 0 ) και ακτίνα ρ. Μονάδες Πότε η εξίσωση x + y + Ax + By

Διαβάστε περισσότερα

Επαναληπτικά συνδυαστικα θέµατα

Επαναληπτικά συνδυαστικα θέµατα Επαναληπτικά συνδυαστικα θέµατα A. Αν α, β i. αβ Θέµα ο µη µηδενικά διανύσµατα και ισχύει α+ β + α β =, τότε να δείξετε ότι: και ii. Αν α β τότε ισχύει α + β =. B. Να βρεθούν οι τιµές του λ ώστε η εξίσωση

Διαβάστε περισσότερα

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R Κεφάλαιο 4ο: ΚΩΝΙΚΕΣ ΤΟΜΕΣ Α. ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση ( x x ) + ( y y ) = k, k R είναι πάντοτε εξίσωση κύκλου. o o. * Η εξίσωση x + y + Ax + By + Γ = 0 παριστάνει κύκλο

Διαβάστε περισσότερα

Επαναληπτικά συνδυαστικα θέµατα

Επαναληπτικά συνδυαστικα θέµατα Επαναληπτικά συνδυαστικα θέµατα Θέµα ο A. Αν α, β µη µηδενικά διανύσµατα και ισχύει α+ β + α β =, τότε να δείξετε ότι: i. αβ και ii. Αν α β τότε ισχύει α + β =. 4 4 B. Να βρεθούν οι τιµές του λ ώστε η

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

ΚΥΚΛΟΣ. Μ(x,y) Ο C ΘΕΩΡΙΑ ΕΠΙΜΕΛΕΙΑ: ΣΩΣΤΟ-ΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΧΡΑΣ ΓΙΑΝΝΗΣ ΑΣΚΗΣΕΙΣ. 3ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ

ΚΥΚΛΟΣ. Μ(x,y) Ο C ΘΕΩΡΙΑ ΕΠΙΜΕΛΕΙΑ: ΣΩΣΤΟ-ΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΧΡΑΣ ΓΙΑΝΝΗΣ ΑΣΚΗΣΕΙΣ. 3ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ Φ3 ΚΥΚΛΟΣ y Μ(x,y) A(x,y) ε Ο C x ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΘΕΩΡΙΑ ΣΩΣΤΟ-ΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ ΚΕΝΤΡΙΚΟ 3ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ Ν. ΣΜΥΡΝΗΣ 0-0 ΘΕΩΡΙΑ. Τι ονομάζεται κύκλος με κέντρο το σημείο K( x0,

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου 4 ο ΘΕΜΑ Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (9//4) Θέματα 4 ης Ομάδας Μαθηματικά Προσανατολισμού Β Λυκείου GI_V_MATHP_4_866 [παράγραφος

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε

Διαβάστε περισσότερα

β = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ...

β = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ... Αµυραδάκη 0, Νίκαια (104903576) ΝΟΕΜΒΡΙΟΣ 01 ΘΕΜΑ 1 ο i) Αν Α( x 1, y 1 ) και Β(x, y ) δυο σηµεία του καρτεσιανού επιπέδου και (x, y) οι συντεταγµένες του µέσου Μ του ΑΒ, να αποδείξετε ότι : x 1 + x x

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Θέμα 1 Α. Να αποδείξετε ότι αν α,β τότε α //β α λβ, λ. είναι δύο διανύσματα, με β 0, Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ 1. Α. Έστω x, y και x, y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. i. Να εκφράσετε (χωρίς απόδειξη) το εσωτερικό γινόμενο των διανυσμάτων και συναρτήσει των συντεταγμένων τους.

Διαβάστε περισσότερα

Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-2004

Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-2004 Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-004 Περιεχόµενα 1 Θέµατα 1999.......................................... 3 Θέµατα 000..........................................

Διαβάστε περισσότερα

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 63 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Η Εξίσωση Αx + Βy + Γ = 0, με Α 0 ή Β 0 Έστω ε μια ευθεία στο καρτεσιανό επίπεδο Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο Σ (, 0 β ) και έχει συντελεστή διεύθυνσης

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. Μονάδες 8 Β. η εξίσωση της μεσοκάθετης της ΑΓ Μονάδες 9

ΘΕΜΑΤΑ. Μονάδες 8 Β. η εξίσωση της μεσοκάθετης της ΑΓ Μονάδες 9 ΓΕΛ ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β 331 Α. α. Τι ονομάζουμε εσωτερικό γινόμενο των μη μηδενικών διανυσμάτων α, β. Μονάδες 5 β. Εάν ορίζονται οι συντελεστές διεύθυνσης των διανυσμάτων α, β αντιστοίχως να δείξετε ότι:

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 2 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (18/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 2 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (18/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου ο ΘΕΜΑ Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (8//04) Θέματα ης Ομάδας ο ΘΕΜΑ Μαθηματικά Προσανατολισμού Β Λυκείου GI_V_MATHP 8556

Διαβάστε περισσότερα

Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 2001

Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 2001 Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 00 Ζήτηµα ο Α.. Έστω α, β, γ ακέραιοι αριθµοί. Να δείξετε ότι ισχύουν οι επόµενες ιδιότητες: α. Αν α β, τότε α λβ για κάθε ακέραιο λ. β. Αν α β και α

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΑΠΟ ΤΗΝ ΘΕΩΡΙΑ ΔΙΑΝΥΣΜΑΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΔΙΑΝΥΣΜΑΤΟΣ Αρχή και Πέρας Φορέας Διεύθυνση (Συγγραμμικά διανύσματα) Μέτρο Κατεύθυνση (Ομόρροπα Αντίρροπα διανύσματα)

Διαβάστε περισσότερα

Επαναληπτικά Θέµατα Εξετάσεων

Επαναληπτικά Θέµατα Εξετάσεων Επαναληπτικά Θέµατα Εξετάσεων Καθηγητές : Νικόλαος Κατσίπης 25 Απριλίου 2014 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας ευχόµαστε καλό διάβασµα και...

Διαβάστε περισσότερα

Kόλλιας Σταύρος 1

Kόλλιας Σταύρος  1 Kόλλιας Σταύρος http://usersschgr/stkollias Θέμα ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΕΡΙΟΥ ΔΕΥΤΕΡΑ 4 ΙΟΥΝΙΟΥ 007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Αα ) Τι ονομάζουμε εσωτερικό γινόμενο

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

ΦΑΣΜΑ GROUP προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι.

ΦΑΣΜΑ GROUP προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. Σύγχρονο www.fasma.fro.gr ΦΑΣΜΑ GROUP προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. Μαθητικό Φροντιστήριο Κατά το πέρας της εξέτασης οι λύσεις θα αναρτηθούν στο και στο site του φροντιστηρίου. 5ης Μαρτίου 111 ΠΕΤΡΟΥΠΟΛΗ

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ( ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ( ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (4-6-000) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο : Α.1. Να γράψετε την εξίσωση του κύκλου που έχει κέντρο ( x, ) K 0 y 0 και ακτίνα ρ. Μονάδες Α.. Πότε η εξίσωση

Διαβάστε περισσότερα

3.1 Ο ΚΥΚΛΟΣ. 1. Εξίσωση κύκλου (Ο, ρ) 2. Παραµετρικές εξισώσεις κύκλου. 3. Εφαπτοµένη κύκλου

3.1 Ο ΚΥΚΛΟΣ. 1. Εξίσωση κύκλου (Ο, ρ) 2. Παραµετρικές εξισώσεις κύκλου. 3. Εφαπτοµένη κύκλου 3. Ο ΚΥΚΛΟΣ ΘΕΩΡΙΑ. Εξίσωση κύκλου (Ο, ρ) + y ρ. Παραµετρικές εξισώσεις κύκλου ρσυνφ και y ρηµφ 3. Εφαπτοµένη κύκλου + yy ρ 4. Εξίσωση κύκλου µε κέντρο το σηµείο Κ( o, y ο ) και ακτίνα ρ ( o ) + (y y ο

Διαβάστε περισσότερα

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά

Διαβάστε περισσότερα

Ερωτήσεις αντιστοίχισης

Ερωτήσεις αντιστοίχισης Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Β Λυκείου Κύκλος. Ασκήσεις Κύκλος

Μαθηµατικά Κατεύθυνσης Β Λυκείου Κύκλος. Ασκήσεις Κύκλος Ασκήσεις Κύκλος 1. Να βρείτε αν οι παρακάτω εξισώσεις παριστάνουν κύκλο. Έπειτα να βρείτε το κέντρο και την ακτίνα τους. i) x 2 + y 2 2x 4y + 1 = 0 (Απ.: (x 1) 2 + (y 2) 2 = 4) x 2 + y 2 2x + 4y + 5 =

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0

ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0 ΚΕΦΑΛΑΙΟ 3 Ο Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0 2. Να βρεθεί η εξίσωση της εφαπτομένης του κύκλου x

Διαβάστε περισσότερα

Ο κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ έχει εξίσωση: B,- 2 A 2

Ο κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ έχει εξίσωση: B,- 2 A 2 3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΚΥΚΛΟΣ Κύκλος είναι ο γεωμετρικός τόπος των σημείων του επιπέδου που απέχουν σταθερή απόσταση από ένα σταθερό σημείο του επιπέδου αυτού. Το σταθερό σημείο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ 2 ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΠΙΜΕΛΕΙΑ ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΔΙΑΝΥΣΜΑΤΙΚΟ ΛΟΓΙΣΜΟ Διάνυσμα λέγεται ένα προσανατολισμένο ευθύγραμμο

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΚΑΙ

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΚΑΙ 1.1.. ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΚΑΙ ΕΜΑ ΟΝ ΤΡΙΓΩΝΟΥ ΘΕΩΡΙΑ 1. Εξίσωση γραµµής C Μια εξίσωση µε δύο αγνώστους x, y λέγεται εξίσωση µιας γραµµής C, όταν οι συντεταγµένες των σηµείων της C, και µόνον αυτές, την επαληθεύουν..

Διαβάστε περισσότερα

π (α,β). Έστω τα διανύσματα π (α,β) να βρεθούν:

π (α,β). Έστω τα διανύσματα π (α,β) να βρεθούν: ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Β ΚΑΤΕΥΘΥΝΣΗΣ 1. Για τα διανύσματα α, β δίνεται ότι α =1, β = και u α β, v α - β.να υπολογίσετε: π (α,β). Έστω τα διανύσματα α. το εσωτερικό γινόμενο α β β. τα μέτρα u, v των διανυσμάτων

Διαβάστε περισσότερα

3.1. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας

3.1. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας 3. Ασκήσεις σχολικού βιβλίου σελίδας 87 89 Οµάδας. Να βρείτε την εξίσωση του κύκλου µε κέντρο την αρχή των αξόνων σε καθεµιά από τις παρακάτω περιπτώσεις : (i) Όταν διέρχεται από το σηµείο Α(, 3 ) (ii)

Διαβάστε περισσότερα

ΘΕΜΑ ίνονται τα διανύσµαταα, β. α) Να υπολογίσετε τη γωνία. β) Να αποδείξετε ότι 2α+β= β) το συνηµίτονο της γωνίας των διανυσµάτων

ΘΕΜΑ ίνονται τα διανύσµαταα, β. α) Να υπολογίσετε τη γωνία. β) Να αποδείξετε ότι 2α+β= β) το συνηµίτονο της γωνίας των διανυσµάτων ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΣΕ ΟΛΗ ΤΗΝ ΥΛΗ! ΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΙΑΝΥΣΜΑ ΘΕΜΑ 005 Θεωρούµε τα σηµεία Ρ, Λ, Κ και Μ του επιπέδου για τα οποία ισχύει η σχέση 5ΡΛ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ÅÐÉËÏÃÇ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΘΕΜΑ Α Ηµεροµηνία: Σάββατο 8 Απριλίου 2017 ιάρκεια Εξέτασης: 3 ώρες Α1. Θεωρία. Σχολικό βιβλίο σελίδα 83 Α2. α) Σωστό β) Λάθος γ) Σωστό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Α) Συµπληρώστε τα κενά στις παρακάτω προτάσεις: 1) Ο κύκλος µε κέντρο Κ(α, β) και ακτίνα ρ > έχει εξίσωση... ) Η εξίσωση του κύκλου µε κέντρο στην αρχή

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 1

Σημειώσεις Μαθηματικών 1 Σημειώσεις Μαθηματικών 1 Αναλυτική Γεωμετρία Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 4 Αναλυτική Γεωμετρία 4.1 Εξίσωση Καμπύλης Έστω C μια καμπύλη στο R. H C αποτελείται από άπειρα σημεία Μ(x,y). Έξίσωση μιας

Διαβάστε περισσότερα

Επαναληπτικά Θέµατα Εξετάσεων

Επαναληπτικά Θέµατα Εξετάσεων Επαναληπτικά Θέµατα Εξετάσεων Καθηγητής : Νικόλαος. Κατσίπης 19 Απριλίου 2013 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας εύχοµαι καλό διάβασµα και...

Διαβάστε περισσότερα

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ 1 4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ ΘΕΩΡΙΑ 1. Θεώρηµα Αν α, β ακέραιοι µε β 0, τότε υπάρχουν µοναδικοί ακέραιοι κ και υ, έτσι ώστε α = κβ + υ µε 0 υ < β. 2. Τέλεια διαίρεση Αν το υπόλοιπο υ της Ευκλείδειας

Διαβάστε περισσότερα

( )( ) ( )( ) Βασικές γνώσεις A 2

( )( ) ( )( ) Βασικές γνώσεις A 2 Βασικές γνώσεις Ευθεία που τέµνει τους άξονες : yλx+β. Ευθεία που διέρχεται από την αρχή των αξόνων : yλx. Ευθεία παράλληλη στον άξονα x x και τέµνει τον y y στο (0, y 0 ) : y y0. Ευθεία παράλληλη στον

Διαβάστε περισσότερα

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;

Διαβάστε περισσότερα

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5.

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Ευθεία Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Εξίσωση γραμμής Συντελεστής διεύθυνσης ευθείας Συνθήκες καθετότητας και παραλληλίας ευθειών Εξίσωση ευθείας ειδικές περιπτώσεις Σχόλιο Το σημείο είναι ο θεμελιώδης λίθος της

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου (Σεπτέµβριος 1999)

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου (Σεπτέµβριος 1999) Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου (Σεπτέµβριος 1999) Θέµα1ο Α. Έστω Οxy ένα καρτεσιανό σύστηµα συντεταγµένων στο επίπεδο. Να αποδείξετε ότι ο κύκλος µε κέντρο το σηµείο Ο και ακτίνα ρ έχει

Διαβάστε περισσότερα

201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ Α. ΘΕΩΡΙΑ. i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η

201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ Α. ΘΕΩΡΙΑ. i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η 201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ - 1-1. Να αποδείξετε ότι: Α. ΘΕΩΡΙΑ i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η C : x 2 y 2 ρ 2. Να αποδείξετε ότι η εφαπτομένη του κύκλου C: χ 2 + ψ 2 = ρ 2

Διαβάστε περισσότερα

1. Η ευθεία y = 5 είναι κάθετη στον άξονα y y. Σ Λ. 2. Η ευθεία x = - 2 είναι παράλληλη προς τον άξονα x x. Σ Λ

1. Η ευθεία y = 5 είναι κάθετη στον άξονα y y. Σ Λ. 2. Η ευθεία x = - 2 είναι παράλληλη προς τον άξονα x x. Σ Λ ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις του τύπου «σωστό-λάθος» 1. Η ευθεία y = 5 είναι κάθετη στον άξονα y y. Σ Λ 2. Η ευθεία x = - 2 είναι παράλληλη προς τον άξονα x x. Σ Λ 3. Οι ευθείες x = κ και y

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μάκος Σπύρος Μαρωνίτη

Διαβάστε περισσότερα

Μονάδες 5,5 γ) Αν τα διανύσματα a, είναι μη μηδενικά και θ είναι η γωνία των a. λ 0. Για ποια από τις παρακάτω τιμές του λ τα διανύσματα a.

Μονάδες 5,5 γ) Αν τα διανύσματα a, είναι μη μηδενικά και θ είναι η γωνία των a. λ 0. Για ποια από τις παρακάτω τιμές του λ τα διανύσματα a. ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑ 1 ο (Πανελλήνιες θετικής κατεύθυνσης Β Λυκείου 1999) Α. Έστω a ( x1,) y1 και ( x,) y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. α) Να εκφράσετε (χωρίς απόδειξη) το

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

Ονοµάζουµε παραβολή µε εστία σηµείο Ε και διευθετούσα ευθεία (δ) το γεωµετρικό τόπο των σηµείων του επιπέδου τα οποία ισαπέχουν από το Ε και τη (δ)

Ονοµάζουµε παραβολή µε εστία σηµείο Ε και διευθετούσα ευθεία (δ) το γεωµετρικό τόπο των σηµείων του επιπέδου τα οποία ισαπέχουν από το Ε και τη (δ) 3. Η ΠΑΡΑΒΟΛΗ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε παραβολή µε εστία σηµείο Ε και διευθετούσα ευθεία (δ) το γεωµετρικό τόπο των σηµείων του επιπέδου τα οποία ισαπέχουν από το Ε και τη (δ). Εξίσωση παραβολής p, όπου

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Επαναληπτικές Ασκήσεις 1 Έστω Α, Β, Κ, Λ και Μ τυχαία σημεία του χώρου Α ισχύει η σχέση ΑΚ + ΜΑ = ΚΒ 2ΑΒ + ΒΛ, να αποδείξετε ότι: α) τα σημεία Κ, Λ και Μ είναι συνευθειακά, β) ΚΛ ΚΜ, γ) ΚΛ = ΚΜ 2 Έστω

Διαβάστε περισσότερα

Ασκήσεις Κύκλος. 6. Για ποια τιμή του λ το σημείο Μ(2λ + 1, λ) ανήκει στον κύκλο με εξίσωση (x 3) 2 + (y + 4) 2 = 100

Ασκήσεις Κύκλος. 6. Για ποια τιμή του λ το σημείο Μ(2λ + 1, λ) ανήκει στον κύκλο με εξίσωση (x 3) 2 + (y + 4) 2 = 100 Ασκήσεις Κύκλος 1. Να βρείτε το κέντρο και την ακτίνα του κύκλου (x + 5) + (y 5) =. Να βρείτε το κέντρο και την ακτίνα του κύκλου x + y 8x + 4y + 11 = 0 3. Ποια πρέπει να είναι η ακτίνα του κύκλου (x 1)

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Επαναληπτικές Ασκήσεις Έστω ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου ( x ) α Να γράψετε την ταυτότητα της διαίρεσης β Να βρείτε τα 0 και Ρ γ Αν το πολυώνυμο ( x) είναι x να βρείτε: x + x είναι 3x

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Κωνικές τοµ ές) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής

Διαβάστε περισσότερα

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού 117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά Μαθηματικού Περιεχόμενα 1. Διανύσματα (47) ελ. - 9. Ευθεία (18) ελ. 10-1 3. Κύκλος (13).ελ. 13-15 4. Παραβολή (14) ελ. 16-18 5. Έλλειψη (18)..

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj qwφιertyuiopasdfghjklzερυυξnmηq σwωψerβνtyuςiopasdρfghjklzcvbn mqwertyuiopasdfghjklzcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj Προχωρώντας από τη Β στη Γ Λυκείου klzcvλοπbnαmqwertyuiopasdfghjklz «5 βασικά

Διαβάστε περισσότερα

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες

Διαβάστε περισσότερα

Έστω ε μια ευθεία του καρτεσιανού επιπέδου, με εξίσωση ) ένα σημείο εκτός αυτής. Θέλουμε y (1)

Έστω ε μια ευθεία του καρτεσιανού επιπέδου, με εξίσωση ) ένα σημείο εκτός αυτής. Θέλουμε y (1) 7 ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ Απόσταση Σημείου από Ευθεία Έστω ε μια ευθεία του καρτεσιανού επιπέδου, με εξίσωση M ( x, y ) ένα σημείο εκτός αυτής Θέλουμε y να υπολογίσουμε την απόσταση d( M, ε) του ε σημείου M από

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 05 Ε_.ΒΜλΘ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ηµεροµηνία: Κυριακή 6 Απριλίου 05 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία σχολικού βιβλίου, σελίδα.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ 4 5 Γιάννης Ζαµπέλης Μαθηµατικός 867 (Αναρτήθηκε 8 4 ) ίνονται τα διανύσµατα a και b µε µέτρα, 6 αντίστοιχα και ϕ [, π] a b+ x+ a b y 5= () δίνεται η εξίσωση ( ) ( ) α) Να αποδείξετε

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος Κεφάλαιο 2ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ 2. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. Για ποιες τιµές του, αν υπάρχουν, ισχύει κάθε µία από τις ισότητες α. log = log( ) β. log = log γ. log 4 log = Να λυθεί η εξίσωση 4 log ( ) + = 0 6 α) Θα πρέπει > 0 και > 0,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ ΕΞΙΣΩΣΗ ΠΑΡΑΒΟΛΗΣ 8. Να βρεθεί η εξίσωση της παραβολής με κορυφή το (0, 0) στις παρακάτω περιπτώσεις: α) είναι συμμετρική ως προς το θετικό ημιάξονα Οx και έχει παράμετρο p = 5 β)

Διαβάστε περισσότερα

ΜΕΘΟΔΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Β ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΕΘΟΔΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Β ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΔΙΑΝΥΣΜΑΤΑ ΜΕΘΟΔΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Β ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 1) Δίνονται διανύσματα α και β, με α π = 4 και (α, β ) = 3 Αν ισχύει ότι το α (α + 2β ) = 28, να βρείτε: α) το εσωτερικό γινόμενο α β, β) το μέτρο

Διαβάστε περισσότερα

( ) Άρα το 1 είναι ρίζα του P, οπότε το x 1 είναι παράγοντάς του. Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x 1) είναι:

( ) Άρα το 1 είναι ρίζα του P, οπότε το x 1 είναι παράγοντάς του. Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x 1) είναι: ( x) Άρα το είναι ρίζα του P, οπότε το x είναι παράγοντάς του 4 Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x ) είναι: 3 π ( x) = x + x x + 3 Η ταυτότητα της προηγούμενης διαίρεσης είναι: 4 3 x 3x + 5x

Διαβάστε περισσότερα

i. εστίες Ε' (-4, 0), Ε(4, 0) και η απόσταση των κορυφών είναι 5, ii. εστίες Ε'(0, -10), Ε(0, 10) και η απόσταση των κορυφών είναι 8.

i. εστίες Ε' (-4, 0), Ε(4, 0) και η απόσταση των κορυφών είναι 5, ii. εστίες Ε'(0, -10), Ε(0, 10) και η απόσταση των κορυφών είναι 8. ΥΠΕΡΒΟΛΗ ΕΞΙΣΩΣΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΥΠΕΡΒΟΛΗΣ 1) Να βρεθεί η εξίσωση της υπερβολής αν έχει: i) Εστιακή απόσταση γ=0 και άξονα β=16, 5 ii) Άξονα α=16 και εκκεντρότητα ε=. 4 ) Να βρείτε την εξίσωση της υπερβολής,

Διαβάστε περισσότερα

Προσεγγισεις. Γεωμετρικοι Τοποι. Επ ι με λ ε ι α : Τακης Τσακαλακ ος

Προσεγγισεις. Γεωμετρικοι Τοποι. Επ ι με λ ε ι α : Τακης Τσακαλακ ος Προσεγγισεις Γεωμετρικοι Τοποι Επ ι με λ ε ι α : Τακης Τσακαλακ ος Τ ο π ο ι ( Δ ι α ν υ σ μ α τ α ) ΜΕΘΟΔΟΣ Μ ο ρ φ η δ ο σ μ ε ν η ς σ χ ε σ η ς : Ισοτητα μετρων παραστασεων διανυσματων. Z η τ ο υ μ

Διαβάστε περισσότερα

Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12

Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12 Τράπεζα 0- Πολλαπλασιασμός αριθμού με διάνυσμα.58 Θεωρούμε τα διανύσματα α,β,γ και τυχαίο σημείο Ο. Αν α β 5γ, α 3β 4γ και 3α β 6γ, τότε: α) να εκφράσετε τα διανύσματα, συναρτήσει των διανυσμάτων α,β,γ.

Διαβάστε περισσότερα

2 η δεκάδα θεµάτων επανάληψης

2 η δεκάδα θεµάτων επανάληψης 1 η δεκάδα θεµάτων επανάληψης 11. Σε κάθε τρίγωνο να αποδείξετε ότι το τετράγωνο µιας πλευράς που βρίσκεται απέναντι από οξεία γωνία, ισούται µε το άθροισµα των τετραγώνων των δύο άλλων πλευρών ελαττωµένο

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβίου Μαθηµατικών Προσαναταισµού Β Λυκείου. Η έννοια του διανύσµατος. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός ποαπασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβίου

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 2ο κεφάλαιο: Ευθείες Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Μαθηµατικά Προσανατολισµού Β Λυκείου Αποστόλου Γιώργος Μαθηµατικός Copyright 2015 Αποστόλου Γιώργος Αποστόλου

Διαβάστε περισσότερα

44 Ευθεία Τύποι - Βασικές έννοιες Εξίσωση ευθείας EΥΘΕΙΑ: Τύποι - Βασικές έννοιες α Η εξίσωση ευθείας (ε) η οποία διέρχεται από το σημείο ( x,y) συντε

44 Ευθεία Τύποι - Βασικές έννοιες Εξίσωση ευθείας EΥΘΕΙΑ: Τύποι - Βασικές έννοιες α Η εξίσωση ευθείας (ε) η οποία διέρχεται από το σημείο ( x,y) συντε Ο μαθητής που έχει μελετήσει το κεφάλαιο της ευθείας θα πρέπει να είναι σε θέση: Να βρίσκει τον συντελεστή διεύθυνσης μιας ευθείας Να διατυπώνει τις συνθήκες παραλληλίας και καθετότητας δύο ευθειών, και

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟ ΚΥΚΛΟ. 1. Να βρεθεί η εξίσωση του κύκλου που περνά από τα σηµεία Α(2,0) και Β(0,0) και έχει το κέντρο του στην ευθεία 2x-3y=0

ΑΣΚΗΣΕΙΣ ΣΤΟ ΚΥΚΛΟ. 1. Να βρεθεί η εξίσωση του κύκλου που περνά από τα σηµεία Α(2,0) και Β(0,0) και έχει το κέντρο του στην ευθεία 2x-3y=0 ΑΣΚΗΣΕΙΣ ΣΤΟ ΚΥΚΛΟ 1. Να βρεθεί η εξίσωση του κύκλου που περνά από τα σηµεία Α(2,0) και Β(0,0) και έχει το κέντρο του στην ευθεία 2x-3y=0 2. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σηµείο Κ(1,2)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος». * Συντελεστής διεύθυνσης µιας ευθείας (ε) είναι η εφαπτοµένη της γωνίας που σχηµατίζει η ευθεία (ε) µε τον άξονα x x. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΟ φροντιστήριο ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Θέµα ο κ ΙΑΓΩΝΙΣΜΑ Α Α. ώστε τον ορισµό της υπερβολής και γράψτε τις εξισώσεις των ασύµπτωτων της ( C ): (Μονάδες 9) α β Β. Να διατυπώσετε τέσσερις

Διαβάστε περισσότερα

3.2. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας

3.2. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας 3. Ασκήσεις σχολικού βιβλίου σελίδας 99 A Οµάδας. Να βρεθεί η εξίσωση της παραβολής που έχει κορυφή την αρχή των αξόνων και άξονα συµµετρίας τον άξονα σε καθεµιά από τις παρακάτω περιπτώσεις : (i) Όταν

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία ΜΑΘΗΜΑ 8. B.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία Θεωρία Ασκήσεις γ. τόπου και µεγιστο ελάχιστου Στις ασκήσεις αυτού του µαθήµατος χρησιµοποιούµε ανισωτικές σχέσεις από την Ευκλείδεια Γεωµετρία. Θυµίζουµε

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία

Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία Ασκήσεις Ευθεία 1. Να βρεθεί η εξίσωση της ευθείας η οποία διέρχεται από το σηµείο τοµής των ευθειών 3x + 4y 11 = 0 και 2x 3y + 21 = 0 και να γίνει η γραφική της παράσταση όταν είναι: i) παράλληλη στην

Διαβάστε περισσότερα

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1 ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου ορισµού της λέγεται γνησίως αύξουσα και πότε γνησίως φθίνουσα; 2. Να αποδείξετε ότι η παράγωγος

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ

ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΚΕΦΑΛΑΙΟ Διάνυσμα ορίζεται ένα ευθύγραμμο τμήμα στο οποίο έχει ορισθεί ποια είναι η αρχή, ή σημείο εφαρμογής του

Διαβάστε περισσότερα

1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: 2π 3

1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: 2π 3 Ερωτήσεις ανάπτυξης 1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: α) ω = 3 π β) ω = 2π 3 γ) ω = π 2. * Να βρείτε τη γωνία ω που σχηµατίζει µε τον άξονα

Διαβάστε περισσότερα

ΑΣΚΗΣΗ ΣΤΟΝ ΚΥΚΛΟ. Ε. i) Να βρείτε τη σχετική θέση των τροχιών του 4ου και του 12ου μαθητή.

ΑΣΚΗΣΗ ΣΤΟΝ ΚΥΚΛΟ. Ε. i) Να βρείτε τη σχετική θέση των τροχιών του 4ου και του 12ου μαθητή. ΑΣΚΗΣΗ ΣΤΟΝ ΚΥΚΛΟ Θεωρούμε μια ομάδα 5 μαθητών Κάθε μαθητής χαρακτηρίζεται από έναν αριθμό μ =,,,,5 και κινείται στο καρτεσιανό επίπεδο Ο xy διαγράφοντας τροχιά με εξίσωση: Cμ x y μx μy μ μ : + + + 6 6

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. 2. ίνεται το Ρ(x) αν το ρ είναι ρίζα Ρ(2x) 2x τότε το ρ είναι ρίζα του Ρ( Ρ(2x)) 2x.

ΑΣΚΗΣΕΙΣ. 2. ίνεται το Ρ(x) αν το ρ είναι ρίζα Ρ(2x) 2x τότε το ρ είναι ρίζα του Ρ( Ρ(2x)) 2x. ΑΣΚΗΣΕΙΣ. ίνονται τα πολυώνυµα Ρ (x), Ρ (x), Ρ (x) αν τα πολυώνυµα Ρ (x) και Ρ (x) δεν έχουν κοινή ρίζα και ισχύει : ( Ρ (x)) + (Ρ (x)) = (Ρ (x)) για κάθε x R να δείξετε ότι το Ρ (x) δεν έχει πραγµατική

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος Κεφάλαιο ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό

Διαβάστε περισσότερα

Ασκήσεις στην ευθεία. 2. Θεωρούµε την γραµµή µε εξίσωση x 2 +y 2-2x+y-5=0. Βρείτε τα σηµεία της καµπύλης, αν υπάρχουν, µε τετµηµένη -1.

Ασκήσεις στην ευθεία. 2. Θεωρούµε την γραµµή µε εξίσωση x 2 +y 2-2x+y-5=0. Βρείτε τα σηµεία της καµπύλης, αν υπάρχουν, µε τετµηµένη -1. Ασκήσεις στην ευθεία 1. Να βρείτε τα σηµεία τοµής των γραµµών µε εξισώσεις : α) 7x-11y+1=0, x+y-=0 β) y-3x-=0, x +y =4 γ) x +y =α, 3x+y+α=0. Θεωρούµε την γραµµή µε εξίσωση x +y -x+y-5=0. Βρείτε τα σηµεία

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 7.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων. Να βρείτε το γεωµετρικό τόπο των µιγαδικών z, για τους οποίους οι εικόνες των µιγαδικών z, i, iz είναι συνευθειακά σηµεία. Έστω z = x + i,

Διαβάστε περισσότερα

1.5. Ασκήσεις σχολικού βιβλίου σελίδας A Oµάδας ( )

1.5. Ασκήσεις σχολικού βιβλίου σελίδας A Oµάδας ( ) .5 Ασκήσεις σχολικού ιλίου σελίδας 47 50 A Oµάδας. Αν α (, 3) και (, 5), τότε Να ρείτε τα εσωτερικά γινόµενα α, (α ).(-3 ) και (α ). (3α + ) Να ρείτε τη σχέση που συνδέει τους κ, λ R, ώστε το εσωτερικό

Διαβάστε περισσότερα

x y Ax By 0 για τις διάφορες τιμές των Α, Β,Γ (μον.8)

x y Ax By 0 για τις διάφορες τιμές των Α, Β,Γ (μον.8) ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 94 Ον/μο:.. Β Λυκείου Ύλη:Διανύσματα- Ευθεία Θετ-Τεχν Κατ. Κωνικές τομές 6-01-14 ΘΕΜΑ 1 ο : A.1. Να αποδείξετε ότι η εξίσωση της ευθείας που διέρχεται από το σημείο Α(x 0,y 0

Διαβάστε περισσότερα