ΜΑΘΗΜΑΤΙΚΑ B ΓΥΜΝΑΣΙΟΥ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΑΘΗΜΑΤΙΚΑ B ΓΥΜΝΑΣΙΟΥ"

Transcript

1 ΜΑΘΗΜΑΤΙΚΑ α x +β<0 B ΓΥΜΝΑΣΙΟΥ α.(β+γ)=α. β+α. γ =δ. π+υ Τα σύμβολα «+» και «-», όταν γράφονται πριν (μπροστά) από τους αριθμούς τους χαρακτηρίζουν, αντίστοιχα, ως θετικούς ή αρνητικούς και λέγονται πρόσημα. Το μηδέν δεν είναι ούτε θετικός ούτε αρνητικός αριθμός. Ομόσημοι λέγονται οι αριθμοί που έχουν το ίδιο πρόσημο. Κατά συνέπεια: - Όλοι οι θετικοί αριθμοί είναι ομόσημοι: +3, +2,18, Το πρόσημο «+» που χαρακτηρίζει τους θετικούς αριθμούς μπορεί και να παραλειφθεί, όταν δεν υπάρχει κίνδυνος σύγχυσης. - Όλοι οι αρνητικοί αριθμοί είναι ομόσημοι: -16, -3,56, - 9 8

2 4 Κεφάλαιο 1 ο Ετερόσημοι λέγονται οι αριθμοί που έχουν διαφορετικό πρόσημο. Κατά συνέπεια: - Ένας θετικός και ένας αρνητικός είναι ετερόσημοι: +97, Οι φυσικοί αριθμοί, οι δεκαδικοί και τα κλάσματα μαζί με τους αντίστοιχούς τους αρνητικούς αποτελούν τους ρητούς αριθμούς. Ειδικότερα, οι φυσικοί αριθμοί μαζί με τους αντίστοιχούς τους αρνητικούς α- ποτελούν τους ακέραιους αριθμούς. Κάθε ρητός αριθμός παριστάνεται με ένα σημείο πάνω σε έναν άξονα και α- ποτελεί την τετμημένη του σημείου αυτού. Η απόλυτη τιμή ενός ρητού αριθμού α συμβολίζεται με α και είναι ίση με την απόσταση του σημείου, που παριστάνει τον αριθμό α (δηλαδή του σημείο με τετμημένη α), από την αρχή του άξονα. Αφού εκφράζει απόσταση, η απόλυτη τιμή ενός ρητού είναι πάντοτε μη αρνητικός αριθμός (δηλαδή θετικός ή μηδέν). Προφανώς, είναι 0 = 0 και α >0, για κάθε ρητό α 0. Δύο αριθμοί που είναι ετερόσημοι και έχουν την ίδια απόλυτη τιμή ονομάζονται αντίθετοι. Ο αντίθετος του x συμβολίζεται με x. Αν ο x είναι θετικός, τότε ο x (αντίθετός του) είναι αρνητικός. Αν ο x είναι αρνητικός, τότε ο x (αντίθετός του) είναι θετικός. Επομένως, το σύμβολο x δε δηλώνει απαραίτητα έναν αρνητικό αριθμό. Το πρόσημο του x (και κατά συνέπεια, αν ο x είναι θετικός ή αρνητικός) εξαρτάται μόνο από το πρόσημο του x. Από τον τρόπο με τον οποίο έγινε η αντιστοίχιση των ρητών αριθμών στα σημεία του άξονα καθώς και από τους παραπάνω ορισμούς προκύπτουν τα α- κόλουθα:

3 Κεφάλαιο 1 ο 5 Η απόλυτη τιμή ενός θετικού αριθμού είναι ο ίδιος ο αριθμός. Η απόλυτη τιμή ενός αρνητικού αριθμού είναι ο αντίθετός του. Δηλαδή: α, για α 0 α = -α, για α <0 (Με άλλα λόγια, όταν δεν ξέρουμε το πρόσημο του αριθμού που βρίσκεται μέσα στην απόλυτη τιμή, οφείλουμε να διακρίνουμε περιπτώσεις. Περισσότερα για το συγκεκριμένο θέμα θα μάθετε σε επόμενες τάξεις). Πρακτικά (και μόνο για σταθερούς (γνωστούς) αριθμούς, για να βρούμε την απόλυτη τιμή ενός αριθμού, αρκεί να τον γράψουμε χωρίς το πρόσημό του. 7 7 Έτσι είναι: -3,2 = 3,2, + = 8 8. ΠΡΟΣΘΕΣΗ ΡΗΤΩΝ ΑΡΙΘΜΩΝ ΠΡΟΣΘΕΣΗ ΔΥΟ ΟΜΟΣΗΜΩΝ Προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμα βάζουμε το κοινό τους πρόσημο. (+7)+(+3) =+ ( ) = +(7+3)= +10 = 10 (-6) + (-5) = - ( -6 ) + -5 ) = - (6+5) = -11 ΠΡΟΣΘΕΣΗ ΔΥΟ ΕΤΕΡΟΣΗΜΩΝ Αφαιρούμε από τη μεγαλύτερη απόλυτη τιμή τη μικρότερη και στη διαφορά βάζουμε το πρόσημο του αριθμού με τη μεγαλύτερη απόλυτη τιμή. (+8) + (-12) = - ( ) = - (12-8) =-4 (-17)+(+28)=+( )=+(28-17)=+11= 11 ΑΦΑΙΡΕΣΗ ΡΗΤΩΝ ΑΡΙΘΜΩΝ Για να βρούμε τη διαφορά του β από τον α, προσθέτουμε στον α (μειωτέο) τον αντίθετο του β (αφαιρετέου). Δηλαδή: α β = α + (-β). (+6) - (+9) = (+6) +(-9) = -(9-6)= -3 (+9) - (+6) = (+9) + (-6) = + (9-6) = +3 =3 (+6) -(-9) = (+6) + (+9) = + (6+9)= +15 = 15 (-6) (-9) = (-6) + (+9) = + (9-6) = +3 = 3

4 6 Κεφάλαιο 1 ο ΙΔΙΟΤΗΤΕΣ ΠΡΟΣΘΕΣΗΣ ΡΗΤΩΝ ΑΡΙΘΜΩΝ ΙΔΙΟΤΗΤΑ ΛΕΚΤΙΚΟ ΠΑΡΑΔΕΙΓΜΑ Αντιμεταθετική α +β = β +α Το άθροισμα δύο αριθμών δεν αλλάζει, αν αλλάξουμε τη σειρά των προσθετέων. (-5) +(+3) = (+3)+(-5) = -(5-3)= -2 Προσεταιριστική α + (β + γ) = (α +β) +γ Το άθροισμα τριών αριθμών δεν αλλάζει, αν αλλάξουμε τη σειρά με την οποία προσθέτουμε τους αριθμούς (η παρένθεση, κάθε φορά, υποδεικνύει ποια από τις προσθέσεις προηγείται). (+3)+ [(-2)+ (+4)] = (+3) + [ + (4-2)] = (+3) + (+2) = + (3 +2) = +5 = 5 [ (+3) +(-2)] +(+4) = +(3-2) + (+4) = (+1) + (+4) = + (1+4) = +5 = 5 Ουδέτερο στοιχείο α + 0 = 0 +α = α Το μηδέν όταν προστεθεί σε έναν αριθμό δεν τον μεταβάλλει (-5) + 0 = (+3) = +3= 3 α + (-α) = 0 Το άθροισμα δύο αντίθετων αριθμών είναι ίσο με το μηδέν (+8) + (-8) = 0

5 Κεφάλαιο 1 ο 7 Η προσεταιριστική ιδιότητα μας επιτρέπει να συμβολίζουμε καθένα από τα ίσα αθροίσματα (α+β) + γ και α + (β +γ) με α + β + γ, το οποίο ονομάζεται ά- θροισμα των αριθμών α, β και γ. Το άθροισμα τριών ή περισσότερων αριθμών, εξ ορισμού υπολογίζεται ως εξής: Προσθέτουμε τους δύο πρώτους αριθμούς, στο άθροισμα αυτών προσθέτουμε τον τρίτο, στο νέο άθροισμα τον τέταρτο και συνεχίζουμε μέχρι να τελειώσουν όλοι οι όροι. Για παράδειγμα: ( ) ( ) ( ) ( ) ( ) ( ) (-4) + (+2) = ( 2) + ( 3) = ( 5) + ( + 4) + 7 = ( 1) + ( 7) = 8 Άμεση συνέπεια της αντιμεταθετικής και της προσεταιριστικής ιδιότητας της πρόσθεσης είναι ότι μπορούμε να προσθέσουμε τρεις ή περισσότερους αριθμούς με όποια σειρά θέλουμε: Επομένως, αντί της παραπάνω διαδικασίας, μπορούμε να δουλέψουμε ως εξής: 1 ο βήμα: Διαγράφουμε τους αντίθετους όρους, αν υπάρχουν. 2 ο βήμα: Χωρίζουμε τους αρνητικούς από τους θετικούς. 3 ο βήμα: Προσθέτουμε χωριστά τους αρνητικούς και τους θετικούς. 4 ο βήμα: Προσθέτουμε τα επιμέρους αθροίσματα για να βρούμε το τελικό αποτέλεσμα.

6 8 Κεφάλαιο 1 ο ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΡΗΤΩΝ ΑΡΙΘΜΩΝ ΓΙΝΟΜΕΝΟ ΔΥΟ ΟΜΟΣΗΜΩΝ: ΘΕΤΙΚΟΣ Πολλαπλασιάζουμε τις απόλυτες τιμές τους και στο γινόμενο βάζουμε το πρόσημο «+». (+3) (+4) =+ ( ) = +(3 4)= +12 = 12 (-3) (-4) = + ( -3-4 ) = + (3 4) = +12 =12 ΓΙΝΟΜΕΝΟ ΔΥΟ ΕΤΕΡΟΣΗΜΩΝ: ΑΡΝΗΤΙΚΟΣ Πολλαπλασιάζουμε τις απόλυτες τιμές τους και στο γινόμενο βάζουμε το πρόσημο -. (+3) (-4) = - ( +3-4 ) = - (3 4) = -12 (-3) (+4)= - ( )=- (3 4)= -12 ΓΙΝΟΜΕΝΟ ΠΟΛΛΩΝ ΠΑΡΑΓΟΝΤΩΝ (ΤΡΙΩΝ Ή ΠΕΡΙΣΣΟΤΕΡΩΝ) Άρτιου πλήθους αρνητικών παραγόντων: Θετικό Περιττού πλήθους αρνητικών παραγόντων: Αρνητικό Ένας τουλάχιστον παράγοντας ίσος με μηδέν: Μηδέν. (+1) (-2) ( +3) (-4) (+5) = +120 (2 αρνητικοί παράγοντες: γινόμενο θετικό) (-1) (+2) (-3) (+4) (-5) = -120 ( 3 αρνητικοί παράγοντες: γινόμενο αρνητικό) (+137) (-248) (-356) 0 (-217) (+943) (-2357) (+5847) = 0 (έστω και ένας παράγοντας ίσος με το μηδέν: γινόμενο ίσο με το μηδέν). ΔΙΑΙΡΕΣΗ ΡΗΤΩΝ ΑΡΙΘΜΩΝ (ΔΙΑΙΡΕΤΗΣ ΔΙΑΦΟΡΟΣ ΤΟΥ ΜΗΔΕΝΟΣ) ΠΗΛΙΚΟ ΟΜΟΣΗΜΩΝ: ΘΕΤΙΚΟΣ Διαιρούμε τις απόλυτες τιμές τους και στο πηλίκο βάζουμε το πρόσημο «+». (-8) : (-2) =+ ( -8 : -2 ) = + (8 :2) = +4 = =+ = + =+4= (+8) : (+2) = +( +8 : +2 )=+ (8 :2) = +4 = =+ = + =+4= ΠΗΛΙΚΟ ΕΤΕΡΟΣΗΜΩΝ: ΑΡΝΗΤΙΚΟΣ Διαιρούμε τις απόλυτες τιμές τους και στο γινόμενο βάζουμε το πρόσημο «-». (-8):(+2)= -( -8 : +2 )=- ( -8 : +2 ) =-(8:2) = =- =- = (+8) : (-2) = - ( 8 : -2 )= - (8 :2) = =- =- =

7 Κεφάλαιο 1 ο 9 ΙΔΙΟΤΗΤΕΣ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΡΗΤΩΝ ΑΡΙΘΜΩΝ ΙΔΙΟΤΗΤΑ ΛΕΚΤΙΚΟ ΠΑΡΑΔΕΙΓΜΑ Αντιμεταθετική α β = β α Προσεταιριστική α (β γ) = (α β) γ Ουδέτερο στοιχείο 1 α = α 1 = α Απορροφητικό στοιχείο 0 α = α 0 = 0 1 α =1, α 0 α Το γινόμενο δύο αριθμών δεν αλλάζει, αν αλλάξουμε τη σειρά των παραγόντων. Το γινόμενο τριών αριθμών δεν αλλάζει, αν αλλάξουμε τη σειρά με την οποία πολλαπλασιάζουμε τους αριθμούς (η παρένθεση, κάθε φορά, υποδεικνύει ποιος από τους πολλαπλασιασμούς προηγείται). Όταν ένας ρητός πολλαπλασιάζεται με το 1 δε μεταβάλλεται Όταν ένας ρητός πολλαπλασιάζεται με το 0 μηδενίζεται Γινόμενο αντιστρόφων ι- σούται με τη μονάδα (-5) (+3) = -(5 3)= -15 (+3) (-5) =-(3 5) = -15 (-2) [(-3) (+4)] =(-2) [- (3 4)] = (-2) (-12) = + (2 12) = + 24 =24 [(-2) (-3)] (+4) = [+ (2 3)] (+4) = (+6) (+4) = + (6 4) = +24 =24 (-8) 1 = -8 1 (+3) = +3= 3 (-8) 0 = 0 0 (+3) = = + 5 = + 1= = + 5 = + 1= ( ) ( ) ΕΠΙΜΕΡΙΣΤΙΚΗ ΙΔΙΟΤΗΤΑ ΤΟΥ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΩΣ ΠΡΟΣ ΤΗΝ ΠΡΟΣΘΕΣΗ α (β + γ) = α β + α γ (-25) (20 +2) = (-25) 22 = - (25 22) =-550 (-25) 20 + (-25) 2= -(25 20) + [- (25 2) ] = (-50) = -( ) = -550 ΩΣ ΠΡΟΣ ΤΗΝ ΑΦΑΙΡΕΣΗ α (β - γ) = α β α γ (-25) (20-2) = (-25) 18 = - (25 18) = -450 (-25) 20 -(-25) 2= -(25 20)-[-(25 2)] =-500 -(-50) = -500+(+50) =-(500 50) = -450

8 10 Κεφάλαιο 1 ο Οι αντίστροφοι αριθμοί είναι ομόσημοι. Πράγματι, έστω α 0. Τότε ο αντίστροφός του είναι ο 1. ιακρίνουμε τις εξής περιπτώσεις: α α > 0 Επειδή 1 > 0, οι αριθμοί 1 και α είναι ομόσημοι. Επομένως, το πηλίκο τους είναι θετικό. ηλαδή 1 >0 α και άρα ομόσημο του α. α < 0 Επειδή 1 > 0, οι αριθμοί 1 και α είναι ετερόσημοι. Επομένως, το πηλίκο τους είναι αρνητικό. ηλαδή 1 <0 α και άρα ομόσημο του α. Η επιμεριστική ιδιότητα του πολλαπλασιασμού ως προς την πρόσθεση (και την αφαίρεση) εφαρμόζεται και στην περίπτωση που και οι δύο παράγοντες είναι αθροίσματα (ή διαφορές), αφού μπορούμε να θεωρήσουμε το περιεχόμενο, π.χ. της πρώτης παρένθεσης ως ένα αριθμό. Είναι: (κ+λ) (β + γ) = κ+λ (β + γ) = κ+λ β + κ+λ γ = (κ + λ) β + (κ + λ) γ =κ β + λ β + κ γ + λ γ ηλαδή τελικά: (κ + λ) (β + γ) = κβ + λβ + κγ + λγ Με άλλα λόγια, για να πολλαπλασιάσουμε δύο αθροίσματα, πολλαπλασιάζουμε κάθε προσθετέο του ενός με κάθε προσθετέο του άλλου και στο τέλος αθροίζουμε τα γινόμενα.

9 Κεφάλαιο 1 ο 11 Παρατηρούμε ότι, με τη βοήθεια της επιμεριστικής ιδιότητας επιτυγχάνουμε την απαλοιφή παρενθέσεων. Ας θυμηθούμε και πώς αλλιώς και ας συνοψίσουμε: ΑΠΑΛΟΙΦΗ ΠΑΡΕΝΘΕΣΕΩΝ i) Αν μπροστά από μια παρένθεση υπάρχει πρόσημο (+) τότε παραλείπουμε το (+) και την παρένθεση και γράφουμε τους αριθμούς που ήταν μέσα σ' αυτήν με τα πρόσημα που έχουν. ii) Αν μπροστά από μια παρένθεση υπάρχει πρόσημο (-) τότε παραλείπουμε το (-) και την παρένθεση και γράφουμε τους αριθμούς που ήταν μέσα σ' αυτήν με αντίθετο πρόσημο. iii) Αν η παρένθεση πολλαπλασιάζεται με έναν αριθμό τότε πολλαπλασιάζουμε τον αριθμό αυτό με κάθε αριθμό που υπάρχει στην παρένθεση (προσέχοντας τα πρόσημα) και δεν βάζουμε παρένθεση (αυτή είναι η ε- πιμεριστική ιδιότητα του πολλαπλασιασμού). ΠΑΡΑ ΕΙΓΜΑΤΑ i) 18 + ( ) = ii) 10 - ( ) = iii) = επειδή μπροστά από την παρένθεση υπάρχει (+), θα γράψουμε τους αριθμούς της παρένθεσης με τα πρόσημα τους αμέσως μετά το 18 (το 7 θεωρείται ότι έχει (+).) επειδή μπροστά από την παρένθεση υπάρχει (-), θα γράψουμε τους αριθμούς της παρένθεσης με αλλαγμένα πρόσημα αμέσως μετά το 10. πολλαπλασιάζουμε το -5 με τους αριθμούς +2, -4, +9 διαδοχικά όπως δείχνουν τα τόξα και βάζουμε το κατάλληλο πρόσημο σε κάθε γινόμενο.

10 12 Κεφάλαιο 1 ο 1.1 Η έννοια της μεταβλητής Η έννοια της μεταβλητής είναι θεμελιώδης για τα μαθηματικά και για όλες βέβαια τις θετικές επιστήμες και αποτελεί αναντικατάστατο εργαλείο τους. Έστω κι αν δεν έχουμε ορίσει ακόμα την έννοια «μεταβλητή», εντούτοις, έχουμε ήδη χρησιμοποιήσει ευρύτατα μεταβλητές, κυρίως στη διατύπωση ορισμών και κανόνων, για να συμβολίσουμε με συντομία έναν οποιονδήποτε αριθμό ενός συγκεκριμένου συνόλου και να μεταφράσουμε εκφράσεις από τη φυσική γλώσσα στη γλώσσα των μαθηματικών. Ας θυμηθούμε κάποιες από αυτές τις περιπτώσεις από τα μαθηματικά της Α Γυμνασίου. Πολλαπλάσια ενός φυσικού αριθμού α είναι οι αριθμοί που προκύπτουν από τον πολλαπλασιασμό του με όλους τους φυσικούς αριθμούς: 0, α, 2α, 3α, 4α... Στην περίπτωση αυτή το γράμμα α είναι μια μεταβλητή και παριστάνει έναν οποιονδήποτε φυσικό. Όταν θελήσουμε να βρούμε τα πολλαπλάσια ενός συγκεκριμένου φυσικού αριθμού, π.χ. του 3, αρκεί να αντικαταστήσουμε το γράμμα α με τον αριθμό 3 (ή όπως λέμε να θέσουμε α =3) και να κάνουμε τις πράξεις. Έτσι, τα πολλαπλάσια του 3 είναι τα: 0, 3, 2 3, 3 3, 4 3,... ή 0, 3, 6, 9, Για να μετατρέψουμε ένα σύνθετο κλάσμα σε απλό εργαζόμαστε ως εξής: α β α δ = γ β γ δ Στην περίπτωση αυτή τα γράμματα α, β, γ, δ είναι μεταβλητές και παριστάνουν έναν οποιονδήποτε ακέραιο αριθμό διαφορετικό από το μηδέν (το α μπορεί να πάρει και την τιμή 0), ώστε να ορίζονται όλα τα κλάσματα.

11 Κεφάλαιο 1 ο 13 Ένα κλάσμα του οποίου ένας τουλάχιστον όρος του είναι κλάσμα, ονομάζεται σύνθετο κλάσμα. Για να ορίζεται ένα κλάσμα πρέπει ο παρονομαστής του είναι διαφορετικός από το 0. Επομένως, πρέπει να είναι β 0 για να ορίζεται ο αριθμητής του σύνθετου κλάσματος, δ 0 για να ορίζεται ο παρονομαστής του σύνθετου κλάσματος και γ 0 για να ορίζεται το σύνθετο κλάσμα, δηλαδή ο παρονομαστής του γ δ να είναι διαφορετικός του μηδενός. Έτσι, για παράδειγμα, το σύνθετο κλάσμα μετατρέπεται σε απλό ως εξής: = = όπου τη θέση των μεταβλητών α, β, γ, δ έχουν πάρει οι συγκεκριμένοι αριθμοί: 3, 8, 7, 5 αντίστοιχα. Το σύμβολο α% ονομάζεται ποσοστό επί τοις εκατό ή απλούστερα ποσοστό α και είναι ίσο με το 100. Το ποσοστό α% του β είναι α β 100 Και στην περίπτωση αυτή, τα γράμματα α και β είναι μεταβλητές. Αν θέλουμε να υπολογίσουμε, για παράδειγμα, το ΦΠΑ (19%) που αντιστοιχεί σε ένα προϊόν με αξία 150, δηλαδή να βρούμε το 19% των 150, αρκεί να θέσουμε α = 19 και 19 β = 150, οπότε βρίσκουμε 150 = 28, Επομένως, για να παραστήσουμε με σύντομο τρόπο έναν οποιονδήποτε αριθμό (ενός συγκεκριμένου συνόλου), χρησιμοποιούμε ένα γράμμα, πεζό (μικρό) ή κεφαλαίο, του ελληνικού ή λατινικού αλφαβήτου: α, β, γ... ή y, z, t... που το ονομάζουμε μεταβλητή.

12 14 Κεφάλαιο 1 ο Τη θέση των γραμμάτων για το συμβολισμό μιας μεταβλητής θα μπορούσε να έχει ένα οποιοδήποτε άλλο σύμβολο (π.χ. για να εκφράσουμε την αντιμεταθετική ιδιότητα θα μπορούσαμε να γράψουμε: + O = Ο + ). Παρόλα αυτά, κυρίως για λόγους πρακτικούς, δε συνηθίζεται (αν και μερικές φορές, θα μπορούσε να είναι καταλληλότερος τρόπος). Για να μπορέσουμε να εκμεταλλευτούμε τις εξαιρετικές δυνατότητες που μας παρέχουν τα μαθηματικά για την επίλυση προβλημάτων πραγματικών ή θεωρητικών, είναι απαραίτητο να μπορούμε να εκφράζουμε τις σχέσεις μεταξύ των δεδομένων του προβλήματος με μαθηματικό τρόπο, δηλαδή να μεταφράζουμε τις εκφράσεις της φυσικής γλώσσας σε μαθηματικές σχέσεις και παραστάσεις, αλλά και το αντίστροφο, ώστε να ερμηνεύουμε τα αποτελέσματα στα οποία καταλήγουμε. Στο σημείο αυτό, η χρήση των μεταβλητών είναι απαραίτητη και αναντικατάστατη, όπως θα φανεί και από τα ακόλουθα παραδείγματα. 1. Να παρασταθούν με συμβολικό τρόπο. ένας αριθμός αυξημένος κατά 2 το τριπλάσιο ενός αριθμού το πενταπλάσιο ενός αριθμού μειωμένο κατά 8 το μισό ενός αριθμού αυξημένο κατά 3 μονάδες το διπλάσιο του αθροίσματος δύο αριθμών. Θα παραστήσουμε με συμβολικό τρόπο τις προτάσεις Ένας αριθμός αυξημένος κατά 2 Έστω x ο αριθμός. Για να αυξηθεί κατά 2, αρκεί να του προσθέσουμε το 2. Δηλαδή είναι: x + 2 Το τριπλάσιο ενός αριθμού Έστω x ο αριθμός. Γνωρίζουμε ότι το τριπλάσιο του x, είναι ο αριθμός που προκύπτει από τον πολλαπλασιασμό του x με το 3. Δηλαδή είναι: 3 x

13 Κεφάλαιο 1 ο 15 Το πενταπλάσιο ενός αριθμού μειωμένο κατά 8 Έστω x ο αριθμός. Το πενταπλάσιο του x είναι ίσο με 5 φορές τον x, δηλαδή 5 x. Για να το μειώσουμε κατά 8, αρκεί να αφαιρέσουμε το 8. Δηλαδή είναι: 5 x 8 Επειδή ο πολλαπλασιασμός προηγείται ως πράξη σε σχέση με την αφαίρεση, το γινόμενο 5 x δε χρειάζεται να μπει σε παρένθεση. Το μισό ενός αριθμού x αυξημένο κατά 3 μονάδες Έστω x ο αριθμός. Εφόσον ζητείται το μισό του x θα διαιρέσουμε το x με το 2. Έπειτα θα προσθέσουμε το 3. Δηλαδή είναι: x ή x: Και σε αυτήν την περίπτωση, επειδή η διαίρεση προηγείται ως πράξη σε σχέση με την αφαίρεση, το x 2 (ή x :2) δε χρειάζεται να μπει σε παρένθεση. Το διπλάσιο του αθροίσματος δύο αριθμών. Έστω x και y οι αριθμοί. Θα πρέπει πρώτα να προσθέσουμε τους αριθμούς x και y και στη συνέχεια να πολλαπλασιάσουμε το άθροισμά τους με το 2. Το άθροισμα των x και y είναι: x +y, οπότε το διπλάσιο του αθροίσματος είναι: 2 (x + y). Προσοχή Πρέπει να βάλουμε παρένθεση στο άθροισμα, ώστε να προηγηθεί η πρόσθεση του πολλαπλασιασμού.

14 16 Κεφάλαιο 1 ο 2. Να εκφραστούν με λόγια οι παρακάτω παραστάσεις: 1 x+ x 2 3 x x 3 (x + 5) 1 x + x 2 Ένας αριθμός αυξημένος κατά το μισό του. 3 x+25 Το τριπλάσιο ενός αριθμού αυξημένο κατά x Το 10 μειωμένο κατά έναν αριθμό 3 (x + 5) Το τριπλάσιο ενός αριθμού αυξημένου κατά 5 ή το τριπλάσιο του αθροίσματος ενός αριθμού με το 5. Γενικά, η χρήση των μεταβλητών μας παρέχει τις εξής πολύ σημαντικές δυνατότητες: i) τη μετάβαση από το μερικό στο γενικό. Τοποθετώντας μεταβλητές στη θέση συγκεκριμένων αριθμών, καταλήγουμε σε σχέσεις μεταξύ των μεγεθών ενός προβλήματος, οι οποίες έχουν γενικότερη ισχύ. ii) τη μετάβαση από το γενικό στο μερικό. Αντικαθιστώντας τις μεταβλητές με συγκεκριμένους αριθμούς, προβαίνουμε σε υπολογισμούς που αφορούν σε συγκεκριμένα προβλήματα. Για να γίνουμε πιο σαφείς, ας δούμε ένα παράδειγμα: Έστω ότι θέλουμε να βρούμε πόσα lt αναψυκτικού περιέχονται σε: i) 3 μπουκάλια του 1,5 lt και σε 2 εξάδες κουτάκια των 330 ml. ii) 2 μπουκάλια του 1,5 lt και σε 3 εξάδες κουτάκια των 330 ml. Αφού σε 1 μπουκάλι περιέχονται 1,5 lt αναψυκτικού, τότε i) σε 3 μπουκάλια του 1,5 lt περιέχονται 3 1,5 = 4,5 lt αναψυκτικού ii) σε 2 μπουκάλια του 1,5 lt περιέχονται 2 1,5 = 3 lt αναψυκτικού

15 Κεφάλαιο 1 ο 17 και γενικά, σε x μπουκάλια του 1,5 lt περιέχονται x 1,5 lt (ή 1,5 x lt) αναψυκτικού, αφού, όπως φαίνεται και από τα αριθμητικά παραδείγματα, αρκεί να πολλαπλασιάσουμε τον αριθμό των μπουκαλιών με το περιεχόμενο του ενός (1,5 lt) για να βρούμε το συνολικό τους περιεχόμενο εξάδα περιέχει 6 κουτάκια των 330 ml δηλαδή 6 lt = 6 0,33lt 1000 =1,98 lt αναψυκτικού (τα 330 ml είναι 330 lt 1000 γιατί 1lt = 1000 ml). Επομένως: i) οι 2 εξάδες κουτάκια των 330 ml περιέχουν 2 1,98 lt = 3,96 lt αναψυκτικού ii) οι 3 εξάδες κουτάκια των 330 ml περιέχουν 3 1,98 lt = 5,94 lt αναψυκτικού και γενικά οι y εξάδες κουτάκια των 330 ml περιέχουν y 1,98 lt ( 1,98 y lt) αναψυκτικού. Προσοχή Μέσα στο ίδιο πρόβλημα παριστάνουμε μια μεταβλητή ΠΑΝΤΑ με το ίδιο γράμμα. Σε περίπτωση που υπάρχει και δεύτερη διαφορετική μεταβλητή τότε πρέπει να χρησιμοποιήσουμε διαφορετικό γράμμα. Άρα για να απαντήσουμε στο πρόβλημα αρκεί να υπολογίσουμε σε κάθε περίπτωση τα εξής αθροίσματα: 330 i) 3 1, = 4, ,33 = 4,5 + 3,96 = 8,46 lt ii) 2 1, = ,33 = 3 + 5,94 = 8,94 lt 1000 Γενικά σε x μπουκάλια του 1,5 lt και σε y εξάδες των 330 ml, περιέχονται: 330 1,5x + 6 y = 1,5x + 6 0,33y = 1,5x + 1,98y lt αναψυκτικού. 1000

16 18 Κεφάλαιο 1 ο Παρατηρούμε λοιπόν ότι πολλές φορές, όταν επιλύουμε ένα πρόβλημα, καταλήγουμε σε εκφράσεις που περιέχουν πράξεις μόνο μεταξύ αριθμών και γι αυτό ονομάζονται αριθμητικές παραστάσεις. Για παράδειγμα, οι εκφράσεις 2 (-5) (-6) και ριθμητικές παραστάσεις. ( ) ( )( ) είναι α- Ο αριθμός στον οποίο καταλήγουμε όταν εκτελέσουμε τις πράξεις αυτές, ονομάζεται τιμή της αριθμητικής παράστασης. Εάν όμως χρησιμοποιήσουμε μεταβλητές αντί συγκεκριμένων αριθμών, ώστε να δημιουργήσουμε ένα «τύπο» που θα μας παρέχει τη λύση του ίδιου προβλήματος, αλλά για διάφορες τιμές των μεταβλητών ποσοτήτων, τότε καταλήγουμε σε εκφράσεις οι οποίες περιέχουν πράξεις με αριθμούς και μεταβλητές και ονομάζονται αλγεβρικές παραστάσεις. 2 8x y + 4 Για παράδειγμα οι εκφράσεις 7x 3 + 4y - (-6) xy και ( 5 ) x+ 2 ( y ) παραστάσεις. είναι αλγεβρικές Όμως Στις αλγεβρικές παραστάσεις, συνήθως δε βάζουμε (παραλείπουμε)το σύμβολο ( ) του πολλαπλασιασμού μεταξύ των αριθμών και των μεταβλητών ή μεταξύ των μεταβλητών. Γράφουμε δηλαδή: 3xy αντί για 3 x y Το σύμβολο του πολλαπλασιασμού χρησιμοποιείται ΑΠΑΡΑΙΤΗΤΑ για τον πολλαπλασιασμό φυσικών αριθμών (στην περίπτωση ακεραίων που βρίσκονται σε παρένθεση μπορεί επίσης να παραληφθεί). Αν σε μια αλγεβρική παράσταση αντικαταστήσουμε τις μεταβλητές με αριθμούς και κάνουμε τις πράξεις, θα προκύψει ένας αριθμός που λέγεται αριθμητική τιμή, ή α- πλά τιμή της αλγεβρικής παράστασης. Έτσι στο προηγούμενο παράδειγμα, αν στην αλγεβρική παράσταση θέσουμε x = 3 και y =2 για την περίπτωση (i) και x = 2 και y =3 για την περίπτωση (ii) και κάνουμε τις πράξεις βρίσκουμε την αριθμητική τιμή της αλγεβρικής παράστασης που προφανώς ταυτίζεται με την τιμή της αριθμητικής παράστασης κάθε περίπτωσης.

17 Κεφάλαιο 1 ο 19 Οι προσθετέοι μιας αλγεβρικής παράστασης λέγονται όροι της. Για παράδειγμα, η αλγεβρική παράσταση 3x 2 + 5xy 2ω + x + 8 6xy 2 έχει τους εξής όρους: 3x 2, 5xy, - 2ω, x, 8, - 6xy 2. Παρατηρούμε ότι στη θέση του όρου μιας αλγεβρικής παράστασης μπορεί να είναι: Το γινόμενο ενός αριθμού και μιας μεταβλητής, υψωμένης ή όχι σε κάποια δύναμη (μεγαλύτερη ή ίση του 2): 3x 2, -2ω, x (= 1 x). Το γινόμενο ενός αριθμού και δύο (ή περισσότερων) μεταβλητών, υψωμένων ή όχι σε κάποια δύναμη (μεγαλύτερη ή ίση του 2): 5xy, - 6xy 2. Ένας σταθερός αριθμός: 8. Στις περιπτώσεις των όρων που είναι γινόμενα αριθμού και μεταβλητής (ή μεταβλητών), ο αριθμητικός παράγοντας του γινομένου ονομάζεται συντελεστής του όρου, ενώ η μεταβλητή (ή το γινόμενο των μεταβλητών), ονομάζεται κύριο μέρος του όρου (όπως θα μάθετε στην επόμενη τάξη). Για τους παραπάνω όρους είναι: όρος συντελεστής κύριο μέρος 3x 2 3 x 2 5xy 5 xy -2ω -2 ω x 1 x -6xy 2-6 xy 2 Στο σημείο αυτό έχουμε να παρατηρήσουμε τα εξής: Όπως έχουμε μάθει, η αφαίρεση είναι πρόσθεση του αντιθέτου. Γι αυτό άλλωστε, μιλάμε για προσθετέους της αλγεβρικής παράστασης. Έτσι, η αφαίρεση γίνεται πρόσθεση, τα σύμβολα των πράξεων αλλάζουν αντίστοιχα και μαζί με αυτά και το πρόσημο του συντελεστή του όρου. (Για παράδειγμα, η αλγεβρική παράσταση του παραδείγματος γράφεται ως εξής: 3x 2 + 5xy 2ω + x + 8-6xy 2 = 3x 2 +5xy + (-2) ω + x +8 + (-6) xy 2 ). Ο όρος x έχει συντελεστή και είναι ο αριθμός 1 αφού 1 x =x. Προσοχή, λοιπόν, αφού είναι ΛΑΘΟΣ να πούμε σε μια τέτοια περίπτωση ότι το x δεν έχει συντελεστή, μόνο και μόνο επειδή δεν τον βλέπουμε γραμμένο.

18 20 Κεφάλαιο 1 ο Ένας σταθερός αριθμός μπορούμε να θεωρήσουμε ότι είναι όρος με κύριο μέρος το γινόμενο των εμφανιζόμενων διαφορών του μηδενός μεταβλητών, υψωμένων στη μηδενική δύναμη (αφού x 0 = 1, για x 0, οπότε α x 0 = α 1 = α, για α ρητό). Οι όροι μιας αλγεβρικής παράστασης που έχουν το ίδιο κύριο μέρος, δηλαδή περιέχουν τις ίδιες μεταβλητές, υψωμένες (ή όχι) στην ίδια δύναμη λέγονται ό- μοιοι όροι (όμοιοι όροι είναι βέβαια και όλοι οι σταθεροί αριθμοί). Για παράδειγμα, οι όροι: 3x, 7x, x 6xy, -9xy, 2xy x 3, -4x 3, -8x 3 2, 5, -6 είναι όμοιοι όροι. Ενώ οι όροι: 6x, 2y -3xy, 5y 3x 2, 3xy 2-3xy, 3x 2 y δεν είναι όμοιοι. Όταν μια αλγεβρική παράσταση περιέχει όμοιους όρους, μπορούμε να την απλοποιήσουμε αντικαθιστώντας τους όμοιους όρους με το άθροισμά τους (θυμίζουμε ότι κάθε αφαίρεση ανάγεται σε πρόσθεση του αντιθέτου). Η διαδικασία αυτή ονομάζεται αναγωγή όμοιων όρων. Έτσι: 9x + 6x = (9 +6) x = 15x δηλαδή 9 xι και 6 xι κάνουν =15 xι ακριβώς όπως 9 μήλα και 6 μήλα θα έκαναν = 15 μήλα ή 9 μολύβια και 6 μολύβια θα έκαναν = 15 μολύβια. Επίσης, εάν είχαμε 9 μήλα και 3 πορτοκάλια και μετά από μερικές μέρες πετούσαμε 2 μήλα και 1 πορτοκάλι γιατί σάπισαν, θα μας έμεναν 9 2 =7 μήλα και 3-1 = 2 πορτοκάλια. Ομοίως: 9x + 3y -2x y = (9x 2x) + (3y -y) = (9-2) x + (3-1) y = 7x +2y. Παρατηρούμε ότι: Για να προσθέσουμε όμοιους όρους αρκεί να προσθέσουμε τους συντελεστές τους και να πολλαπλασιάσουμε το άθροισμα αυτό με το κοινό κύριο μέρος των όρων. Όπως ακριβώς δεν μπορούμε να προσθέσουμε (ή να αφαιρέσουμε) ανόμοια αντικείμενα με την ίδια λογική δε μπορούμε να προσθέσουμε (ή να αφαιρέσουμε) ανόμοιους όρους.

19 Κεφάλαιο 1 ο 21 Προσοχή Υπενθυμίζουμε ότι όταν δεν είναι γραμμένος ο συντελεστής ενός όρου εννοείται ο αριθμός 1. Κατά συνέπεια, δεν πρέπει να τον ξεχνάμε ή να τον παραλείπουμε, όταν υπολογίζουμε το άθροισμα των συντελεστών κατά την αναγωγή ομοίων όρων. Η αναγωγή ομοίων όρων βασίζεται στη γνωστή μας από την Α Γυμνασίου επιμεριστική ιδιότητα του πολλαπλασιασμού ως προς την πρόσθεση: (α+ β) γ = αγ + βγ. αρκεί, βέβαια, να «διαβάσουμε» την ισότητα από τα δεξιά προς τα αριστερά, δηλαδή α γ + β γ = (α +β) γ. Για παράδειγμα, η ισότητα: (αβ) ν = α ν β ν. Μια ισότητα πρέπει να τη «διαβάζουμε» και προς τη μία (από τα αριστερά προς τα δεξιά) και προς την άλλη κατεύθυνση (από τα δεξιά προς τα αριστερά), γιατί, διαφορετικά, μπορεί να μας «ξεφύγουν» πολύτιμες πληροφορίες. όταν «διαβάζεται» από τα αριστερά προς τα δεξιά μας «λέει» ότι για να υψώσουμε ένα γινόμενο σε μία δύναμη, υψώνουμε στη δύναμη αυτή καθέναν από τους παράγοντες του γινομένου. όταν «διαβάζεται» από τα δεξιά προς τα αριστερά, μας «λέει» ότι το γινόμενο δύο αριθμών υψωμένων στην ίδια δύναμη είναι ίσο με τη δύναμη που έχει βάση το γινόμενο των βάσεων και εκθέτη τον κοινό τους εκθέτη. Αν δε μάθουμε, λοιπόν, να διαβάζουμε τις ισότητες και προς τις δύο κατευθύνσεις, υπάρχει η περίπτωση να μπορούμε να εφαρμόσουμε με άνεση την ιδιότητα, π.χ. (3x) 2 = 3 2 x 2 = 9x 2, αλλά να μην μπορούμε να ακολουθήσουμε την αντίστροφη πορεία 9x 2 = 3 2 x 2 = (3x) 2 κάτι που είναι εξίσου σημαντικό και απαραίτητο.

20 22 Κεφάλαιο 1 ο Παραδείγματα: Να απλοποιηθεί η αλγεβρική παράσταση: 8x -3y +4x +2-6y. H αλγεβρική παράσταση 8x -3y+4x +2-6y αποτελείται από 5 όρους, από τους ο- ποίους όμοιοι όροι είναι οι 8x και 4x, -3y και -6y, ενώ για το 2 δεν υπάρχει όμοιος όρος, αφού δεν υπάρχει άλλος σταθερός αριθμός. Εργαζόμαστε λοιπόν ως εξής: 8x -3y +4x +2-6y = 8x + 4x -3y -6y +2 Εφαρμόζουμε την αντιμεταθετική ιδιότητα της πρόσθεσης για να ομαδοποιήσουμε τους όμοιους όρους = (8+ 4) x + (-3-6)y +2 Κάνουμε αναγωγή ομοίων όρων. Σε παρένθεση μπροστά από κάθε διαφορετικό όρο τοποθετούμε όλους τους συντελεστές με τους οποίους εμφανίζεται στην αλγεβρική παράσταση. Μπροστά από κάθε παρένθεση υπάρχει το σύμβολο της πρόσθεσης. = 12x + (-9)y + 2 Εκτελούμε τις πράξεις στις παρενθέσεις = 12x -9y +2 Απαλείφουμε την παρένθεση Όπως ακριβώς 3x + 4x = (3+4) x = 7x με αντίστοιχο τρόπο 3x + 3y = 3 (x+y). (x φορές το 3 και άλλες y φορές το 3 μας κάνει x +y φορές το 3). Σε μια τέτοια περίπτωση, δε λέμε ότι κάνουμε αναγωγή ομοίων όρων, αλλά «βγάζουμε κοινό παράγοντα» (στο συγκεκριμένο παράδειγμα, τον αριθμό 3). Αν λοιπόν γνωρίζουμε με τι είναι ίσο το x +y αλλά όχι την τιμή κάθε μεταβλητής ξεχωριστά, με τον παραπάνω τρόπο μπορούμε να υπολογίσουμε την τιμή της αλγεβρικής παράστασης.

21 Κεφάλαιο 1 ο 23 Παράδειγμα Αν x y =2 να υπολογιστεί η τιμή της παράστασης: 5x -2y +8-3y. Είναι: 5x -2y +8-3y = 5x -2y -3y +8 Εφαρμόζουμε την αντιμεταθετική ιδιότητα = 5x -5y +8 Κάνουμε αναγωγή ομοίων όρων = 5 (x-y) +8 Βγάζουμε κοινό παράγοντα (το 5) = Αντικαθιστούμε το x y με την τιμή του = Εκτελούμε τον πολλαπλασιασμό = 18 Εκτελούμε την πρόσθεση

22 24 Κεφάλαιο 1 ο 1. Να αντιστοιχίσετε τις λεκτικές εκφράσεις της στήλης Α με τις αντίστοιχες μαθηματικές της στήλης Β: Α Β Το τριπλάσιο ενός αριθμού ελαττωμένο κατά πέντε Το τριπλάσιο ενός αριθμού ελαττωμένου κατά πέντε Το τριπλάσιο ενός αριθμού αυξημένο κατά πέντε Το τριπλάσιο ενός αριθμού αυξημένου κατά πέντε 3 (x+5) 3x 5 3x+5 3 (x-5) 2. Να χαρακτηρίσετε με Σωστό ή Λάθος τις παρακάτω προτάσεις: Σ Λ i) Η αλγεβρική παράσταση 3x -2y + 5 έχει όμοιους όρους ii) iii) iv) Η αλγεβρική παράσταση 3x 2y + 5 έχει 3 όρους Στην αλγεβρική παράσταση 3x 2y +5 ο συντελεστής της μεταβλητής x είναι 3 Στην αλγεβρική παράσταση 3x 2y +5 ο συντελεστής της μεταβλητής y είναι 2 v) Η αλγεβρική παράσταση 2 + x 5 αντιστοιχεί στη λεκτική έκφραση «Πρόσθεσε έναν αριθμό στο 2 και πολλαπλασίασε το άθροισμά τους με το 5». vi) Ο αντίθετος του x είναι ο x vii) Η απόλυτη τιμή του x είναι ίση με x. ηλαδή x = x viii) Ο x είναι αρνητικός αριθμός

23 Κεφάλαιο 1 ο Α Β Το τριπλάσιο ενός αριθμού ελαττωμένο κατά πέντε Το τριπλάσιο ενός αριθμού ελαττωμένου κατά πέντε Το τριπλάσιο ενός αριθμού αυξημένο κατά πέντε Το τριπλάσιο ενός αριθμού αυξημένου κατά πέντε 3 (x+5) 3x 5 3x+5 3 (x-5) 2. Σ Λ i) Η αλγεβρική παράσταση 3x -2y + 5 έχει όμοιους όρους Χ ii) Η αλγεβρική παράσταση 3x 2y + 5 έχει 3 όρους Χ iii) iv) Στην αλγεβρική παράσταση 3x 2y +5 ο συντελεστής της μεταβλητής x είναι 3 Στην αλγεβρική παράσταση 3x 2y +5 ο συντελεστής της μεταβλητής y είναι 2 v) Η αλγεβρική παράσταση 2 + x 5 αντιστοιχεί στη λεκτική έκφραση «Πρόσθεσε έναν αριθμό στο 2 και πολλαπλασίασε το άθροισμά τους με το 5». vi) Ο αντίθετος του x είναι ο x Χ Χ Χ Χ vii) Η απόλυτη τιμή του x είναι ίση με x. ηλαδή x = x Χ viii) Ο x είναι αρνητικός αριθμός Χ

24 26 Κεφάλαιο 1 ο Δραστηριότητα 1 η Η ομιλία σε κινητό τηλέφωνο κοστίζει 0,005 το δευτερόλεπτο. Πόσο κοστίζει ένα τηλεφώνημα διάρκειας 10 δευτερολέπτων, ένα άλλο διάρκειας 15 δευτερολέπτων και ένα άλλο διάρκειας 27 δευτερολέπτων; Εφόσον η ομιλία σε κινητό τηλέφωνο κοστίζει 0,005 το δευτερόλεπτο, για να βρούμε πόσο κοστίζει ένα τηλεφώνημα διάρκειας 10, 15 και 27 δευτερολέπτων, αρκεί κάθε φορά να πολλαπλασιάζουμε τη διάρκεια του τηλεφωνήματος σε δευτερόλεπτα με το 0,005 (δηλαδή το κόστος ομιλίας 1 δευτερολέπτου). Επομένως, Ένα τηλεφώνημα 10 δευτερολέπτων κοστίζει: 10 0,005 = 0,05 Ένα τηλεφώνημα 15 δευτερολέπτων κοστίζει: 15 0,005 = 0,075 Ένα τηλεφώνημα 27 δευτερολέπτων κοστίζει: 27 0,005 = 0,135 (και γενικά το κόστος κάθε τηλεφωνήματος διάρκειας x δευτερολέπτων είναι: x 0,005 όπου το x μπορεί να είναι, θεωρητικά (!!!), οποιοσδήποτε φυσικός αριθμός)

25 Κεφάλαιο 1 ο 27 Δραστηριότητα 2 η Στο διπλανό σχήμα δύο ορθογώνια (1) και (2) είναι «τοποθετημένα» έτσι ώστε να σχηματίζουν ένα μεγάλο ορθογώνιο. Να υπολογίσετε το εμβαδόν του μεγάλου ορθογωνίου. Μπορούμε να υπολογίσουμε το εμβαδόν του μεγάλου ορθογωνίου με δύο τρόπους: 1 ος τρόπος: Πολλαπλασιάζοντας τη βάση με το ύψος του. Το εμβαδόν ενός ορθογωνίου ισούται με το γινόμενο της βάσης επί το ύψος του. Το μεγάλο ορθογώνιο έχει: - βάση το άθροισμα των βάσεων των ορθογωνίων (1) και (2), δηλαδή ίση με α + β, - ύψος (το κοινό ύψος των τριών ορθογωνίων) ίσο με γ. Επομένως, το εμβαδόν του είναι ίσο με: Ε ορθ = (α+β) γ Προσοχή Το α + β πρέπει να μπει σε παρένθεση για να μεταβληθεί η σειρά των πράξεων, δηλαδή να προηγηθεί ο υπολογισμός του αθροίσματος σε σχέση με τον πολλαπλασιασμό.

26 28 Κεφάλαιο 1 ο 2 ος τρόπος: Αθροίζοντας τα εμβαδά των μικρότερων ορθογωνίων (1) και (2) που το αποτελούν. Το ορθογώνιο (1) έχει: βάση ίση με α, ύψος ίσο με γ, οπότε το εμβαδόν του είναι ίσο με: Ε (1) = α γ. Το ορθογώνιο (2) έχει: βάση ίση με β, ύψος ίσο με γ, οπότε το εμβαδόν του είναι ίσο με: Ε (2) = β γ. Επομένως, το εμβαδόν του μεγάλου ορθογωνίου είναι: Ε ορθ = Ε (1) + Ε (2) = α γ + β γ Αφού όμως το εμβαδόν δεν εξαρτάται από τον τρόπο που το υπολογίζουμε (αλλά, όπως θα δούμε στη γεωμετρία, από τη μονάδα μέτρησης), οι δύο τρόποι που είδαμε οδηγούν υποχρεωτικά στο ίδιο αποτέλεσμα. Συνεπώς είναι: (α + β) γ = α γ + β γ δηλαδή η γνωστή σε όλους μας επιμεριστική ιδιότητα του πολλαπλασιασμού ως προς την πρόσθεση.

27 Κεφάλαιο 1 ο Να γράψετε με απλούστερο τρόπο τις παραστάσεις: α) 2x + 5x, β) 3α + 4α -12α γ) ω + 3ω + 5ω + 7ω Θα κάνουμε αναγωγή ομοίων όρων. Θα βασιστούμε στην ιδιότητα: α γ + β γ = (α + β) γ Όταν ο συντελεστής της μεταβλητής (ο αριθμός με τον οποίο πολλαπλασιάζεται η μεταβλητή) παραλείπεται, εννοείται ο αριθμός 1. Για να προσθέσουμε δύο ομόσημους αριθμούς, προσθέτουμε τις απόλυτες τιμές τους και στο αποτέλεσμα βάζουμε το κοινό τους πρόσημο. Για να προσθέσουμε δύο ετερόσημους αριθμούς, αφαιρούμε τη μικρότερη απόλυτη τιμή από τη μεγαλύτερη και στο αποτέλεσμα βάζουμε το πρόσημο του ρητού με τη μεγαλύτερη απόλυτη τιμή. α) 2x + 5x = (2+5) x Βάζουμε σε παρένθεση τους αριθμούς με τους οποίους πολλαπλασιάζεται η μεταβλητή. = 7x Εκτελούμε την πρόσθεση

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις 24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΔΑΜΑΝΤΙΟΣ ΣΧΟΛΗ ΤΑΞΗ Δ ΟΝΟΜΑ α. Αντιμεταθετική ιδιότητα 1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Π Ρ Ο Σ Θ Ε Σ Η Α. ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΠΡΟΣΘΕΣΗΣ 8 + 7 = 15 ή 7 + 8 = 15 346 ή 517 ή 82 + 517 + 82 + 346 82 346 517 945 945

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος Μαθηματικά Γ'Γυμνασίου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της Γ Γυµνασίου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν ίσως το αποκορύφωµα των

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Τεύχος 6. Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Περιεχόμενα

Τεύχος 6. Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Περιεχόμενα Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Τεύχος 6 Περιεχόμενα Σελίδα 5: Σελίδα 17: Α Γυμνασίου, Μέρος Α, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί, Α.7.8. Δυνάμεις

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν () Στρογγυλοποίησε τον αριθμό 8.987. στις πλησιέστερες: (α) δ ε- κάδες, (β) εκατοντάδες, (γ) χιλιάδες,

Διαβάστε περισσότερα

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός.

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός. 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρον φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Διορθώσεις - Βελτιώσεις. στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου

Διορθώσεις - Βελτιώσεις. στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου Διορθώσεις - Βελτιώσεις στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου 1 Μαθηματικά Α Γυμνασίου A/A Σελίδα Αντί Να γραφεί 1 11, 1 η Δραστηριότητα Βρες τους έξι διαφορετικούς τριψήφιους αριθμούς που. Βρες

Διαβάστε περισσότερα

Μαθηματικα A Γυμνασιου

Μαθηματικα A Γυμνασιου Μαθηματικα A Γυμνασιου Θεωρια & παραδειγματα livemath.eu σελ. απο 45 ΠΕΡΙΕΧΟΜΕΝΑ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 4 ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΟΡΙΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΑΦΑΙΡΕΣΗ ΦΥΣΙΚΩΝ

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1. Ένα ψυγείο την περίοδο των εκπτώσεων πωλείται µε έκπτωση 18% αντί του ποσού των 779. Να βρείτε πόση ήταν η αξία του ψυγείου πριν τις εκπτώσεις. Αν x ήταν η αξία του ψυγείου

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Μαθηματικά. Β'Γυμνασίου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Β'Γυμνασίου. Μαρίνος Παπαδόπουλος Μαθηματικά Β'Γυμνασίου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της B Γυµνασίου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν βάση των µαθηµατικών του

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι Α λ γ ό ρ ι θ μ ο ι Αριθμητικοί τελεστές Οι αριθμητικοί τελεστές είναι: πρόσθεση, αφαίρεση, πολλαπλασιασμός και διαίρεση +,-,*,/ ύψωση σε δύναμη ^ πηλίκο ακέραιης διαίρεσης δύο ακεραίων αριθμών div υπόλοιπο

Διαβάστε περισσότερα

ΑΝΙΣΩΣΕΙΣ. 3.1 ΑΝΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Οι ανισώσεις: αx + β > 0 και αx + β < 0

ΑΝΙΣΩΣΕΙΣ. 3.1 ΑΝΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Οι ανισώσεις: αx + β > 0 και αx + β < 0 3 ΝΙΣΩΣΕΙΣ 31 ΝΙΣΩΣΕΙΣ 1 ου ΒΘΜΟΥ Οι ανισώσεις: α + β > 0 και α + β < 0 Γνωρίσαμε στο Γυμνάσιο τη διαδικασία επίλυσης μιας ανίσωσης της μορφής α β 0 ή της μορφής α β 0, με α και β συγκεκριμένους αριθμούς

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr III Όριο Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ Πεπερασμένο Όριο στο Α Ορισμός Όριο στο : Όταν οι τιμές μιας συνάρτησης f προσεγγίζουν όσο θέλουμε έναν πραγματικό αριθμό,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Κάθε φυσικός αριθμός έχει έναν επόμενο αριθμό. Κάθε φυσικός αριθμός (εκτός από το 0) έχει έναν προηγούμενο φυσικό αριθμό.

Κάθε φυσικός αριθμός έχει έναν επόμενο αριθμό. Κάθε φυσικός αριθμός (εκτός από το 0) έχει έναν προηγούμενο φυσικό αριθμό. A.1.1 Φυσικοί αριθμοί Διάταξη φυσικών Στρογγυλοποίηση Φυσικοί αριθμοί OÚÈÛÌfi 1. Φυσικοί αριθμοί λέγονται οι αριθμοί 0, 1, 2, 3,... και συμβολίζονται με το γράμμα Ν (το οποίο είναι το αρχικό γράμμα της

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

Δυνάμεις πραγματικών αριθμών

Δυνάμεις πραγματικών αριθμών Κεφάλαιο 1 ο 45 Β. Δυάμεις πραγματικώ αριθμώ Α έχουμε έα γιόμεο της μορφής (-) (-) (-) (-) όπου κάθε παράγοτας είαι (δηλαδή ο ίδιος ο αριθμός) μπορούμε α το συμβολίσουμε με μια πιο απλή μορφή : (-) 4.

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 =

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 = ΕΞΙΩΕΙ-ΑΝΙΩΕΙ ου ΒΑΘΜΟΥ - 38 - ΚΕΦΑΑΙΟ 4 ΚΕΦΑΑΙΟ 4 ο Εξισώσεις - Ανισώσεις β βαθµού 5.1. Μορφή και διερεύνηση της εξίσωσης β βαθµού Άθροισµα και γινόµενο των ριζών της Κάθε εξίσωση β βαθµού πριν τη λύσουµε,

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

Δύο λόγια από τη συγγραφέα

Δύο λόγια από τη συγγραφέα Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου

Διαβάστε περισσότερα

Δυνάμεις Φυσικών Αριθμών

Δυνάμεις Φυσικών Αριθμών Δυνάμεις Φυσικών Αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Δυνάμεις φυσικών αριθμών Δύναμη ονομάζουμε το γινόμενο πολλών ίσων παραγόντων Πχ: 8 8= 64, 4 4 4= 64, 3 3 3 3= 81. Έτσι, το γινόμενο

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 5 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 3: Πραγματικοί αριθμοί Πυθαγόρειο Θεώρημα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 2: Πραγματικοί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ 2.1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ.

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ 2.1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. Στην πρώτη στήλη του παρακάτω πίνακα δίνονται κάποιες προτάσεις στην φυσική τους γλώσσα. Να συμπληρώσετε την δεύτερη στήλη

Διαβάστε περισσότερα

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου 1 ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΚΑΙ ΠΡΟΤΕΡΑΙΟΤΗΤΑ ΠΡΑΞΕΩΝ 1.1 Προτεραιότητα Πράξεων Η προτεραιότητα των πράξεων είναι: (Από τις πράξεις που πρέπει να γίνονται πρώτες,

Διαβάστε περισσότερα

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι) 77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα

Διαβάστε περισσότερα

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ 5. ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ασκήσεις σχολικού βιβλίου σελίδας 9-3 A Oμάδας.i) Να βρείτε το ν-οστό όρο της αριθμητικής προόδου 7, 0, 3,... = + (ν ) ω = 7 + (ν ) 3 = 7 + 3ν 3 = 3ν + 4.ii) Να βρείτε το ν-οστό όρο

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

Η Έννοια του Κλάσµατος

Η Έννοια του Κλάσµατος Η Έννοια του Κλάσµατος Κεφάλαιο ο. Κλασµατική µονάδα λέγεται το ένα από τα ίσα µέρη, στα οποία χωρίζουµε την ακέραια µονάδα. Έχει τη µορφή, όπου α µη µηδενικός φυσικός αριθµός (α 0, α διάφορο του µηδενός).

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί Ενδεικτικός Προγραμματισμός ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί 12 περίοδοι Δείκτες επιτυχίας: Ορίζουν την έννοια της νιοστής ρίζας ενός αριθμού α και αποδεικνύουν τις ιδιότητες ριζών, όταν ν N, ν 0, 1, α R

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου ΑΛΓΕΒΡΑ Α' τάξης Γενικού Λυκείου ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας ΟΜΑΔΑ ΑΝΑΜΟΡΦΩΣΗΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος

Διαβάστε περισσότερα

Αφιέρωση Στα παιδιά µας Στους µαθητές που ατενίζουν µε αισιοδοξία το µέλλον

Αφιέρωση Στα παιδιά µας Στους µαθητές που ατενίζουν µε αισιοδοξία το µέλλον Αφιέρωση Σταπαιδιάµας Στουςµαθητέςπουατενίζουν µεαισιοδοξίατοµέλλον Φίληµαθήτρια,φίλεµαθητή Τοβιβλίοαυτόέχειδιπλόσκοπό: Νασεβοηθήσειστηνάρτιαπροετοιµασίατουκαθηµερινούσχολικού µαθήµατος. Νασουδώσειόλατααπαραίτηταεφόδια,ώστενααποκτήσειςγερές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ. Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΑΣΚΗΣΕΙΣ 1 ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ 1ο : ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1ο ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ Ανακεφαλαίωση ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ: 1, 2,,, Άρτιοι αριθμοί είναι οι φυσικοί

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ.

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 1. Οι φυσικοί αριθμοί. Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 0, 1,2,3,4,5,6,7,8,9, 10,..., 100,..., 1.000,..., 10.0000,10.001,..., 100.000, 100.001, 100.002,..., 200.000,...,

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 1) Δίνεται η εξίσωση x 2-2(λ + 2) χ + 2λ 2-17 = 0. Να βρείτε το λ ώστε η εξίσωση να έχει μία ρίζα διπλή. Υπολογίστε τη ρίζα. Aσκήσεις στις εξισώσεις Β βαθμού Για να έχει η εξίσωση μία ρίζα διπλή πρέπει:

Διαβάστε περισσότερα

1.5 Αξιοσημείωτες Ταυτότητες

1.5 Αξιοσημείωτες Ταυτότητες 1.5 Αξιοσημείωτες Ταυτότητες Ορισμός: Κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της λέγεται ταυτότητα. Ταυτότητες που πρέπει να γνωρίζουμε: Τετράγωνο αθροίσματος

Διαβάστε περισσότερα