УПРАВЉАЊЕ КРЕТАЊЕМ ЛИФТА У ФУНКЦИЈИ ВРИЈЕДНОСТИ ТРЗАЈА ELEVATOR MOVEMENT CONTROL IN THE FUNCTION OF JERK VALUE

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "УПРАВЉАЊЕ КРЕТАЊЕМ ЛИФТА У ФУНКЦИЈИ ВРИЈЕДНОСТИ ТРЗАЈА ELEVATOR MOVEMENT CONTROL IN THE FUNCTION OF JERK VALUE"

Transcript

1 INFOTEH-JAHORINA Vol., Ref. A-9, p. 4-44, March. УПРАВЉАЊЕ КРЕТАЊЕМ ЛИФТА У ФУНКЦИЈИ ВРИЈЕДНОСТИ ТРЗАЈА ELEVATOR MOVEMENT ONTROL IN THE FUNTION OF JERK VALUE Бојан Кнежевић, Машински факултет, Бања Лука Бранко Блануша, Електротехнички факултет, Бања Лука Sadržaj - Код електричних лифтова при поласку и заустављању јавља се јак трзај који код путника може да изазове нелагодност па чак и да пређе вриједности које људски организам може да поднесе. Неконтролисана вриједност трзаја има штетне утицаје и на електромоторни погон и механички подсистем. Савремени електромоторни погони имају могућност управљања брзином па на индиректан начин и трзајем. У раду је представљен математички модел који генерише референцу за жељену брзину кретања лифта, а у функцији унапријед дефинисане вриједности трзаја. Модел је провјерен симулацијама у програмском пакету Матлаб за реалан случај путничког лифта. Absrac - A srog jer hich ca cause passegers discofor occurs he elecric elevaor sars ad sops. Ucorollable jer value has derieal effecs o he cofor of passegers, elecrical drive ad a echaical subsyse. Moder drives have he abiliy o corol speed, so e ca idirecly corol he jer. This paper preses a aheaical odel ha geeraes a referece o he desired speed of he elevaor i he fucio of pre-defied jer value. The odel as esed i Malab for he real case of passeger elevaor.. УВОД Најчешће рјешење за вертикални превоз путника и робе у стамбеним и пословним зградама представља електрични лифт. Његова конструкција није се битно мијењала још од времена када су конструисани први комерцијални лифтови овог типа. Оно што је константно унапређивано јесу погонске машине, управљачке структуре, сигурносни елементи као и издржљивост погона, његова дуготрајност и економичност. Посебно интересантан елемент модерних лифтова је комфор и удобност путника, а који је доведен у питање већ код брзих, а поготово код експресних лифтова. Данас постоје лифтови чије номиналне брзине достижу и 8/s с циљем да се повећа њихова расположивост у високим пословним зградама са високом фреквенцијом саобраћаја. Код таквих лифтова при поласку и заустављању јавља се јак трзај који код путника може да изазове нелагодност. Код модерних система управљања електромоторним погонима може се реализовати кретање лифта са контролисаним трзајем и зато је идеја овог рада врло актуелна и оправдана, тим прије што се ни у пројектима данашњих лифтова не анализира појава трзаја.. ИДЕАЛАН ДИЈАГРАМ КРЕТАЊА ЛИФТА Трзај, физички, представља брзину промјене убрзања или математички, први извод убрзања по времену: da () = j. () d У () са ј је означен трзај изражен у [rad/s ], а са α угаоно убрзање у [rad/s ]. Од модерних лифтова се захтјева да имају мирно кретање и при поласку и при заустављању, а да при томе вријеме убрзања и успорења буде што краће. Оба захтјева могу бити задовољена ако се брзина кабине трзај убрзање брзина Сл. - Карактеристика брзине лифта са нерегулисаним асинхроним мотором мијења равномјерно, односно са константним трзајем. На основу наведеног може се конципирати начело управљања које каже да захтјевима за великом брзином лифта може да удовољи само специјално управљање, које при највећем дозвољеном и константном трзају, одржава равномјерно убрзање независно од оптерећења лифта []. На овако дефинисан захтјев, који се поставља погону лифта, свакако не може да одговори погон са директно напајаним асинхроним мотором са кратко спојеним ротором. Код погона са нерегулисаним мотором при поласку се јавља трзај високе амплитуде који се послије достизања максималног убрзања смањује на малу вриједност (Сл. ). Код асинхроних мотора са кавезним ротором тврди полазак се пригушује укључивањем статорских отпорника или уградњом додатне замајне масе. То значи да се или смањује момент при убрзавању лифта или се повећавају масе које треба убрзавати. У сваком случају смањује се вршна вриједност трзаја али се зато продужава вријеме поласка па ова рјешења нису погодна за брзе лифтове. Код погона са Вард-Леонардовом групом постиже се кретање блиско претходно описаном начелу управљања (Сл. ). Убрзање се мијења и у току залијетања дозвољени трзај пада на нулу, вријеме убрзања је врло кратко што резултује бржим поласком. 4

2 Сл. - Карактеристика брзине лифта са Вард- Леонардовом групом Посебан проблем је што се сви ови погони различито понашају при различитим оптерећењима, односно, њихова карактеристика се ''спушта'' са порастом оптерећења. Додавање обртних (замајних) маса спријечава искоришћење пуног момента мотора, а растућим временом убрзања и кочења снижава се средња брзина. Смањење брзине повећава трајање вожње што посебно долази до изражаја при већем броју вожњи у јединици времена. Из овог прегледа и поставке жељеног управљања закључујемо да ниједно рјешење, без напредног система управљања, не задовољава тражену карактеристику кретања лифта. На Сл. приказане су временске зависности брзине, убрзања и трзаја лифта за једну вожњу које треба реализовати при управљању погоном. ω α ax /ω j= j= -α ax убрзање трзај брзина Сл. - Жељена карактеристика брзине, убрзања и трзаја Са посматраног дијаграма уочавају се карактеристични периоди током једне вожње: -убрзавање при поласку до тренутка, -кретање константном номиналном брзином од тренутка до тренутка кочења и -успоравање до заустављања од тренутка до тренутка заустављања z. Може се закључити да је трзај константан и поприма двије вриједности једнаке по амплитуди (Сл. ).. ИЗВОЂЕЊЕ МАТЕМАТИЧКОГ МОДЕЛА Да би се могло реализовати управљање лифтом, како је описано претходно у раду, у управљачкој структури треба да постоји генерисање референтне брзине која одговара карактеристици са Сл.. То се може реализовати ако се дати дијаграм представи + z математичким моделом у којем егзистира и којег одређује задата вриједност трзаја. На Сл. може се уочити пет временских интервала: Интервал ; Овај период дефинише се у временским границама од до. У том временском периоду трзај треба да има позитивну константну вриједност: j =. () Користећи () можемо писати: a= ò jd = + A () гдје је А интеграциона константа која се одређује из почетних услова: = Þ a = Þ A = па се добија: a=. (4) На основу (4) користећи везу између брзине и убрзања добија се: = ò a d = + B (5) Почетни услови су исти као у претходном случају па ће коначно израз за брзину бити: =. (6) Из (6) се јасно види да је брзина функција времена и директно је одређена задатом вриједношћу трзаја. Интервал ; Сада по истом принципу може се одредити израз за брзину у временском интервалу од до = у којем трзај поприма негативну вриједност. Користећи исти поступак као у једначинама од () до (5) и уз почетне услове = Þ a = a гдје је a = и ax ax у другом дијелу = Þ = добија се коначан израз за брзину: = (7) Интервал ; У овом периоду (све до тренутка у којем почиње успоравање) брзина има трзај једнак нули, а брзину константну и једнаку номиналној, односно: j = Þ =. (8) Интервал 4а; Период од до + односи се на случај када са номиналне брзине лифт почиње да успорава. Случај када лифт треба да успорава, а да није достигао номиналну брзину биће дефинисан касније. Слиједећи поступак као у претходним случајевима може се написати израз за угаону брзину у овом интервалу: = (9) Интервал 5а; За временске границе од + до z имамо (): = - ( + ) Претходно изведени изрази, вриједе у случају у којем је лифт достигао номиналну брзину прије успоравања. Када лифт треба да почне да успорава, а да још није постигао номиналну брзину, представља посебан случај који је сасвим реалан и представља ситуацију у којој кабина лифта прелази пут између двије сусједне станице. То растојање сувише је кратко да би лифт развио пуну брзину. На старијим моделима лифтова та ситуација рјешавана је примјеном погона са три брзине. Најспорија 4

3 се користи у поменутом случају, а друге двије за прелазак пута између двије и више станица []. Потребно је анализирати и овај случај. На Сл. 4 и Сл. 5 представљена су графички, са назначеним карактеристичним тачкама, два различита случаја. Први се односи на успоравање када је постигнута брзина при залијетању већа од половине номиналне (криве 4б и 5б), а други када је постигнута брзина мања од те вриједности (крива 5б). ω ω /ω b Сл. 4- Карактеристика брзине за случај < Интервал 4б; Овај случај односи се на интервал од до - (Сл. 4). Друга временска граница добија се из услова да је: - = -. У овом периоду трзај је b негативан као и у случају 4а на Сл. па пратећи претходне процедуре добија се израз за брзину (): 4b = - + ( - ) ω 4б 5б =. () Константа представља тренутак када је постигнута номинална брзина и она је по вриједности једнака : =. (4) Константа је тренутак у ком управљачка структура лифта издаје наредбу да мотор лифта почне успоравати до самог заустављања. Овај тренутак треба одредити из податка о жељеној дестинацији (положају, q ) који се у модел уноси као параметар (прослијеђен из управљачког система). Другим ријечима, треба одредити три зависности =f(θ ) за три различита случаја која су већ класификована у претходним извођењима. Као што је већ изведена математичка представа промјене брзине тако је потребно математичким изразима представити криву која описује путању лифта. Добијени изрази ће омогућити утврђивање граница које ће имати димензију дужине. Успостављајући директну везу тако добијених граница положаја са временским границама добиће се тражене функције =f(θ ). На Сл. 6 дата је зависност промјене положаја у времену за случај када је пређени пут довољно дуг да лифт достигне кретање номиналном брзином прије почетка кочења (аналогно случају са Сл. ). θ θ θ-θ θ /ω θ 5б Сл. 5- Карактеристика брзине за случај < Интервал 5б; Посматрају се два случаја: када кочење почиње са брзине веће од половине номиналне (са криве 4б, Сл. 4) и са брзине мање од половине номиналне (са криве, Сл. 5). При томе временске границе су од до и од - до, респективно. Трзај у овом случају је позитиван и израз за брзину је: = () 5b У до сада изведеним изразима за брзину (осим у (6)) егзистирају константе које имају димензију времена. На Сл., 4 и 5 као и у границама по времену на које се односе изрази за брзину такође се појављују поменуте константе и то, и. Одређивање тренутка (тренутак у којем је брзина једнака половини номиналне брзине при убрзавању) може се извршити полазећи од (6) у који се уврштава = Þ = и добија се за да је: θ + + Сл. 6- Карактеристика положаја за случај > У интервалу промјена положаја може се представити формулом коју добијамо интеграцијом (6), а која се односи на исти период и описује промјену брзине: q = ; 6. (5) Ако се у (5) за вријеме уврсти () добиће се вриједност положаја на граници датог периода, односно: / q =. (6) 6 Коначни изрази за положај у наредна два карактеристична периода су: / q = , (7) ; 6 q = - ; (8) и израз за положај на граници периода : 4

4 q =. (9) Финално, користећи услове да је θ =θ =θ м -θ и = из (8) добија се тражена зависност =f(θ ) за случај у ком је > : q =. () За случајеве када је < < и < за константу добијају се изрази на исти начин као код одређивања () и они гласе, респективно: / æ ö q ç + =, () çè ø q =. () Од три рјешења полинома () бирамо оно које задовољава услов < <. 4. РЕЗУЛТАТИ СИМУЛАЦИЈЕ За провјеру и графички приказ претходно изложене материје искоришћен је програмски пакет Матлаб и његова група алата Симулинк. У ту сврху формирана је С-функција која ће генерисати референцу брзине на основу изведеног математичког модела који је прилагођен запису у М- језику као што је представљено у []. Референца брзине доводи се на улаз општег брзинског модела мотора []. прозору Матлаба. Параметри формираног модела подешавају се у дијелу поменутог скрипта приказаног у Прилогу. Постоји могућност директног постављања вриједности оптерећења и то кроз задавање тежине терета у кабини. Вриједност трзаја може се задати директно или се израчунава из жељене вриједности брзине и убрзања лифта. С обзиром да је у литератури доступан податак о максималном дозвољеном убрзању трзај ће се рачунати по изразу: a ax = (5) ax Максимално убрзање код предложеног управљања погона лифта може да има вриједности од,/s до,5/s []. v;s 5 4 Brzia[/s] i polozaj[] [s] Сл. 8- Резултати симулације за брзину и положај položaj brzia Функција спрегнутог преноса система (Сл. 7) гласи: K K+ pk KT i F() p = () p TT+ pk KT+ K K i i гдје су: L K = i, (4) ' L + L ds r L индуктивност магнећења, L r индуктивност ротора сведена на статор, i ds компонентa струје статора по d-оси, T i интеграциона константа и К појачање регулатора. Симулација реализованог модела стартује уносом команде за позивање М-фајл скрипта у командном Сл. 7- Симулинк модел Добијени резултати приказани су графички (Сл. 8- Сл. ). Оптерећење је подешено на максимално за моторни режим рада што одговара терету у кабини који је једнак максималној носивости. На Сл. 8 може се видјети да дате величине потпуно одговарају оним датим на Сл. што је и био задатак. Положај је једнак задатом, а регулациона структура је добро подешена што се види са приказаних графика. Нема појаве прескока или осцилација у праћењу референтне брзине па тако ни у положају. На Сл. 9 приказано је убрзање, а на Сл. трзај са истим улазним параметрима као и у претходном случају. 4

5 a j - Ubrzaje[/s ] ужад код којих се смањује могућност проклизавања, чиме се продужава њихов радни вијек. За све случајеве стартовања и заустављања који могу да се појаве у пракси вриједност трзаја задржала је задату константну вриједност, а положај који се задаје као жељени параметар достигнут је прецизно и без прескока. У наредним истраживањима требало би анализирати утицај дефинисаних трајекторија на вибрације у погону, (слично [5]) и примјену на другим моделима мотора са реализацијом робусног праћења [s] Сл. 9- Резултати симулације за убрзање 6. ПРИЛОГ Дио М-фајл скрипта за унос параметара у формирани Симулинк модел. Trzaj[/s ] [s] Сл. - Резултати симулације за трзај 5. ЗАКЉУЧАК Иако је лифт по својој природи позициони систем у овом раду погон лифта је брзински регулисан. Такав приступ, што је видљиво из добијених и приказаних карактеристика, даје добре резултате. Сходно одабраном приступу изанализирана је могућност одржавања трзаја, при поласку и заустављању кабине лифта, на задатој вриједности по апсолутном износу. Добијени резултати, који су приказани и анализирани, потврђују, прије свега, исправност математичког модела. У [4] је описан математички модел вишег реда. Модел, презентован у овом раду, састоји се из више једначина које дефинишу референцу брзине у карактеристичним интервалима и другог су реда. Нижи ред модела чини га лакшим и бржим за реализацију у управљачким структурама. Резултати показују да је задавањем референтне брзине одређеног облика фреквенцијски регулисаном асинхроном мотору могуће добити благ и за путнике пријатан полазак кабине лифта. Нема великих оптерећења на механички подсистем, а ни на ужницу и ЛИТЕРАТУРА [] Бранко Шелендић, Вертикални, коси и хоризонтални транспорт, Грађевинска књига, Београд, 98. [] Бојан Кнежевић, Преглед савремених електромоторних погона лифтова и контрола трзаја који се јавља при кретању кабине лифта, дипломски рад, Електротехнички факултет, Бања Лука, 8. [] Владан Вучковић, Електрични погони. Електротехнички факултет, Београд, 997. [4] Paul Labrechs, Mahijis Boerlage, Maare Seibuch, "Trajecory plaig ad feedforard desig for elecroechaical oio syses", orol Egieerig Pracice, Vol., pp , 5. [5] H. Z. Li e al., "Moio profile plaig for reduced jer ad vibraio residuals", SIMTech echical repors, Volue 8, Nuber, pp. -7, Ja-Mar 7. 44

РЕГУЛАЦИЈА БРЗИНЕ КОД ЛИФТОВСКИХ ПОГОНА СА КОНТРОЛОМ ТРЗАЈА

РЕГУЛАЦИЈА БРЗИНЕ КОД ЛИФТОВСКИХ ПОГОНА СА КОНТРОЛОМ ТРЗАЈА УНИВЕРЗИТЕТ У БАЊОЈ ЛУЦИ ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ Бојан Кнежевић РЕГУЛАЦИЈА БРЗИНЕ КОД ЛИФТОВСКИХ ПОГОНА СА КОНТРОЛОМ ТРЗАЈА семинарски рад Бања Лука, октобар 7. Тема: РЕГУЛАЦИЈА БРЗИНЕ КОД ЛИФТОВСКИХ

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

1.2. Сличност троуглова

1.2. Сличност троуглова математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)

Διαβάστε περισσότερα

6.2. Симетрала дужи. Примена

6.2. Симетрала дужи. Примена 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права

Διαβάστε περισσότερα

Скрипта ријешених задатака са квалификационих испита 2010/11 г.

Скрипта ријешених задатака са квалификационих испита 2010/11 г. Скрипта ријешених задатака са квалификационих испита 00/ г Универзитет у Бањој Луци Електротехнички факултет Др Момир Ћелић Др Зоран Митровић Иван-Вања Бороја Садржај Квалификациони испит одржан 9 јуна

Διαβάστε περισσότερα

5.2. Имплицитни облик линеарне функције

5.2. Имплицитни облик линеарне функције математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.

Διαβάστε περισσότερα

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,

Διαβάστε περισσότερα

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни

Διαβάστε περισσότερα

Ротационо симетрична деформација средње површи ротационе љуске

Ротационо симетрична деформација средње површи ротационе љуске Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну

Διαβάστε περισσότερα

Анализа Петријевих мрежа

Анализа Петријевих мрежа Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,

Διαβάστε περισσότερα

Енергетски трансформатори рачунске вежбе

Енергетски трансформатори рачунске вежбе 16. Трофазни трансформатор снаге S n = 400 kva има временску константу загревања T = 4 h, средњи пораст температуре после једночасовног рада са номиналним оптерећењем Â " =14 и максимални степен искоришћења

Διαβάστε περισσότερα

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10 Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису. ЛИНЕАРНА ФУНКЦИЈА 5.. Функција = a + b Функционалне зависности су веома значајне и са њиховим применама често се сусрећемо. Тако, већ су нам познате директна и обрнута пропорционалност ( = k; = k, k ),

Διαβάστε περισσότερα

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ У БЕОГРАДУ КАТЕДРА ЗА ЕЛЕКТРОНИКУ АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ВЕЖБА БРОЈ 2 ПОЈАЧАВАЧ СНАГЕ У КЛАСИ Б 1. 2. ИМЕ И ПРЕЗИМЕ БР. ИНДЕКСА ГРУПА ОЦЕНА ДАТУМ ВРЕМЕ ДЕЖУРНИ

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила. Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,

Διαβάστε περισσότερα

1. Функција интензитета отказа и век трајања система

1. Функција интензитета отказа и век трајања система f(t). Функција интензитета отказа и век трајања система На почетку коришћења неког система јављају се откази који као узрок имају почетне слабости или пропуштене дефекте у току производње и то су рани

Διαβάστε περισσότερα

TAЧКАСТА НАЕЛЕКТРИСАЊА

TAЧКАСТА НАЕЛЕКТРИСАЊА TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични

Διαβάστε περισσότερα

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом

Διαβάστε περισσότερα

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 Метод разликовања случајева је један од најексплоатисанијих метода за решавање математичких проблема. У теорији Диофантових једначина он није свемогућ, али је сигурно

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

Семинарски рад из линеарне алгебре

Семинарски рад из линеарне алгебре Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити

Διαβάστε περισσότερα

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x) ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни

Διαβάστε περισσότερα

Слика 1. Слика 1.2 Слика 1.1

Слика 1. Слика 1.2 Слика 1.1 За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ I Линеарне једначине Линеарне једначине се решавају по следећем шаблону: Ослободимо се разломка Ослободимо се заграде Познате

Διαβάστε περισσότερα

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2 8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

Διαβάστε περισσότερα

САМОПОБУДНИ АСИНХРОНИ ГЕНЕРАТОР SELF-EXCITED ASYNCHRONOUS GENERATOR

САМОПОБУДНИ АСИНХРОНИ ГЕНЕРАТОР SELF-EXCITED ASYNCHRONOUS GENERATOR INFOTEH-JAHORINA Vol. 10, Ref. F-36, p. 1061-1065, March 2011. САМОПОБУДНИ АСИНХРОНИ ГЕНЕРАТОР SELF-EXCITED ASYNCHRONOUS GENERATOR Глуховић Владимир, Електротехнички факултет Источно Сарајево Садржај-У

Διαβάστε περισσότερα

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА 4. Закон великих бројева 4. ЗАКОН ВЕЛИКИХ БРОЈЕВА Аксиоматска дефиниција вероватноће не одређује начин на који ће вероватноће случајних догађаја бити одређене у неком реалном експерименту. Зато треба наћи

Διαβάστε περισσότερα

Закони термодинамике

Закони термодинамике Закони термодинамике Први закон термодинамике Први закон термодинамике каже да додавање енергије систему може бити утрошено на: Вршење рада Повећање унутрашње енергије Први закон термодинамике је заправо

Διαβάστε περισσότερα

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 Лабораторијска вежба број 1 МОНОФАЗНИ ФАЗНИ РЕГУЛАТОР СА ОТПОРНИМ И ОТПОРНО-ИНДУКТИВНИМ ОПТЕРЕЋЕЊЕМ

Διαβάστε περισσότερα

6.5 Површина круга и његових делова

6.5 Површина круга и његових делова 7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност

Διαβάστε περισσότερα

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова 4 Троугао (II део) Хилберт Давид, немачки математичар и логичар Велики углед у свету Хилберту је донело дело Основи геометрије (1899), у коме излаже еуклидску геометрију на аксиоматски начин Хилберт Давид

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

C кплп (Кпндензатпр у кплу прпстпперипдичне струје)

C кплп (Кпндензатпр у кплу прпстпперипдичне струје) C кплп (Кпндензатпр у кплу прпстпперипдичне струје) i u За кплп са слике на крајевима кпндензатпра ппзнате капацитивнпсти C претппставићемп да делује ппзнат прпстпперипдичан наппн: u=u m sin(ωt + ϴ). Услед

Διαβάστε περισσότερα

ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА

ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТ ДРУГО РЕГИОНАЛНО ТАКМИЧЕЊЕ ОДГОВОРИ И РЕШЕЊА ИЗ ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ

Διαβάστε περισσότερα

АСИНХРОНЕ МАШИНЕ МАЛЕ СНАГЕ

АСИНХРОНЕ МАШИНЕ МАЛЕ СНАГЕ АСИНХРОНЕ МАШИНЕ МАЛЕ СНАГЕ Аутор: Ненад Костадиновић Факултет техничких наука, Чачак Електротехничко и рачунарско инжењерство, електроенергетика, школска 0/03 eakota87@gmail.com Ментор рада: Проф. др

Διαβάστε περισσότερα

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре 0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских

Διαβάστε περισσότερα

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика Штампарске грешке у петом издању уџбеника Основи електротехнике део Страна пасус први ред треба да гласи У четвртом делу колима променљивих струја Штампарске грешке у четвртом издању уџбеника Основи електротехнике

Διαβάστε περισσότερα

ДОЊА И ГОРЊА ГРАНИЦА ОПТЕРЕЋЕЊА ПРАВОУГАОНИХ И КРУЖНИХ ПЛОЧА

ДОЊА И ГОРЊА ГРАНИЦА ОПТЕРЕЋЕЊА ПРАВОУГАОНИХ И КРУЖНИХ ПЛОЧА ДОЊА И ГОРЊА ГРАНИЦА ОПТЕРЕЋЕЊА ПРАВОУГАОНИХ И КРУЖНИХ ПЛОЧА Саша Ковачевић 1 УДК: 64.04 DOI:10.14415/zbornikGFS6.06 Резиме: Тема рада се односи на одређивање граничног оптерећења правоугаоних и кружних

Διαβάστε περισσότερα

10.3. Запремина праве купе

10.3. Запремина праве купе 0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка

Διαβάστε περισσότερα

Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља

Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља Универзитет у Машински факултет Београду Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља -семинарски рад- ментор: Александар Томић Милош Живановић 65/

Διαβάστε περισσότερα

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА Стандардна девијација показује расподелу резултата мерења око средње вредности, али не указује на облик расподеле. У табели 1 су дате вредности за 50 поновљених одређивања

Διαβάστε περισσότερα

Аксиоме припадања. Никола Томовић 152/2011

Аксиоме припадања. Никола Томовић 152/2011 Аксиоме припадања Никола Томовић 152/2011 Павле Васић 104/2011 1 Шта је тачка? Шта је права? Шта је раван? Да бисмо се бавили геометријом (и не само геометријом), морамо увести основне појмове и полазна

Διαβάστε περισσότερα

КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН год.

КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН год. КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН 7. год. Тест има задатака. Време за рад је 8 минута. Задаци са редним бројем -6 вреде по поена задаци 7- вреде по 5 поена задаци 5- вреде

Διαβάστε περισσότερα

ЗБИРКА ЗАДАТАКА ЗА ПРИПРМУ ЗА ПРВИ КОНТРОЛНИ ЗАДАТАК

ЗБИРКА ЗАДАТАКА ЗА ПРИПРМУ ЗА ПРВИ КОНТРОЛНИ ЗАДАТАК ЗБИРКА ЗАДАТАКА ЗА ПРИПРМУ ЗА ПРВИ КОНТРОЛНИ ЗАДАТАК СКАЛАРНЕ И ВЕКТОРСКЕ ВЕЛИЧИНЕ Величибе које су одређене само својом бројном вредношћу и одговарајућом јединицом су скаларне величине или кратко, скалари.

Διαβάστε περισσότερα

Једна практична реализација регулисаног електромоторног погoна са синхроним мотором примјеном дигиталног процесора TMS320F2808

Једна практична реализација регулисаног електромоторног погoна са синхроним мотором примјеном дигиталног процесора TMS320F2808 INFOTEH-JAHORINA Vol. 13, March 2014. Једна практична реализација регулисаног електромоторног погoна са синхроним мотором примјеном дигиталног процесора TMS320F2808 Ђорђе Лекић Студент другог циклуса студија

Διαβάστε περισσότερα

Машина за једносмерну струју са независном побудом

Машина за једносмерну струју са независном побудом Машина за једносмерну струју са независном побудом Садржај Садржај... 1 Увод... 1 Опрема која се користи у оквиру лабораторијске поставке... 2 Константе... 4 Ток вежбе... 4 Почетно стање... 4 Припрема

Διαβάστε περισσότερα

УПУТСТВА ЗА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ СИНХРОНИХ МАШИНА

УПУТСТВА ЗА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ СИНХРОНИХ МАШИНА Електротехнички факултет Универзитета у Београду Енергетски одсек Катедра за енергетске претвараче и погоне УПУТСТВА ЗА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ СИНХРОНИХ МАШИНА Име и презиме: Број индекса: Вежба број

Διαβάστε περισσότερα

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: МЕХАНИКА 1 студијски програми: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 3. 1 Садржај предавања: Статичка одређеност задатака

Διαβάστε περισσότερα

ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ

ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ 1. Удео снаге и енергије ветра у производњи електричне енергије - стање и предвиђања у свету и Европи. 2. Навести називе најмање две међународне организације

Διαβάστε περισσότερα

РЕГУЛАЦИЈА ХИДРОСТАТИЧКИХ ПОГОНА МОБИЛНИХ МАШИНА

РЕГУЛАЦИЈА ХИДРОСТАТИЧКИХ ПОГОНА МОБИЛНИХ МАШИНА УНИВЕРЗИТЕТ У НИШУ МАШИНСКИ ФАКУЛТЕТ UNIVERITY OF NI FACULTY OF ECHANICAL ENGINEERING ЧЕТВРТИ СИМПОЗИЈУМ СА МЕЂУНАРОДНИМ УЧЕШЋЕМ ТРАНСПОРТ И ЛОГИСТИКА THE FOURTH YPOIU WITH INTERNATIONAL PARTICIPATION

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 1 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

ОСНОВА ЕЛЕКТРОТЕХНИКЕ

ОСНОВА ЕЛЕКТРОТЕХНИКЕ МИНИСТАРСТВО ПРОСВЕТЕ РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ПЕТНАЕСТО РЕГИОНАЛНО ТАКМИЧЕЊЕ ПИТАЊА И ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕХНИКЕ ЗА УЧЕНИКЕ ДРУГОГ РАЗРЕДА број задатка 3

Διαβάστε περισσότερα

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c 6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c Ако су а, b и с цели бројеви и аb 0, онда се линеарна једначина ах + bу = с, при чему су х и у цели бројеви, назива линеарна Диофантова једначина. Очигледно

Διαβάστε περισσότερα

Апсорпција γ зрачења

Апсорпција γ зрачења Универзитет у Крагујевцу Природно математички факултет Мр Владимир Марковић Предмет: Нуклеарна физика Експериментална вежба: Апсорпција γ зрачења Када сноп γ зрачења пролази кроз материју, његов интензитет

Διαβάστε περισσότερα

У к у п н о :

У к у п н о : ГОДИШЊИ (ГЛОБАЛНИ) ПЛАН РАДА НАСТАВНИКА Наставни предмет: ФИЗИКА Разред: Седми Ред.број Н А С Т А В Н А Т Е М А / О Б Л А С Т Број часова по теми Број часова за остале обраду типове часова 1. КРЕТАЊЕ И

Διαβάστε περισσότερα

Лабораторијске вежбе из електричних машина

Лабораторијске вежбе из електричних машина Лабораторијске вежбе из електричних машина Први циклус вежби Магнетска левитација Демонстрација ефеката обртног магнетског поља Машина за једносмерну струју са независном побудом (за ову вежбу постоји

Διαβάστε περισσότερα

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. = 0.2 dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2.

Διαβάστε περισσότερα

Друштво Физичара Србије Министарство просвете и науке Републике Србије ЗАДАЦИ П Група

Друштво Физичара Србије Министарство просвете и науке Републике Србије ЗАДАЦИ П Група УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 0/0. ГОДИНЕ I РАЗРЕД Друштво Физичара Србије Министарство просвете и науке Републике Србије ЗАДАЦИ П Група СЕНТА.0.0.. Играчи билијара су познати по извођењу специфичних удараца

Διαβάστε περισσότερα

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2 АНАЛИТИЧКА ГЕОМЕТРИЈА d AB x x y - удаљеност између двије тачке y x x x y s, y y s - координате средишта дужи x x y x, y y - подјела дужи у заданом односу x x x y y y xt, yt - координате тежишта троугла

Διαβάστε περισσότερα

Теорија одлучивања. Анализа ризика

Теорија одлучивања. Анализа ризика Теорија одлучивања Анализа ризика Циљеви предавања Упознавање са процесом анализе ризика Моделовање ризика Монте-Карло Симулација Предности и недостаци анализе ризика 2 Дефиниција ризика (квалитативни

Διαβάστε περισσότερα

РЕШАВАЊЕ РАЧУНСКИХ ЗАДАТАКА ПРИ ОБРАДИ НАСТАВНЕ ТЕМЕ СИЛА И КРЕТАЊЕ

РЕШАВАЊЕ РАЧУНСКИХ ЗАДАТАКА ПРИ ОБРАДИ НАСТАВНЕ ТЕМЕ СИЛА И КРЕТАЊЕ Универзитет у Новом Саду Природно математички факултет Департман за физику РЕШАВАЊЕ РАЧУНСКИХ ЗАДАТАКА ПРИ ОБРАДИ НАСТАВНЕ ТЕМЕ СИЛА И КРЕТАЊЕ МАСТЕР РАД ментор: кандитат: Др Маја Стојановић Адријана Сарић

Διαβάστε περισσότερα

МИЋО М. МИТРОВИЋ Практикум ФИЗИКА 7 збирка задатака и експерименталних вежби из физике за седми разред основне школе САЗНАЊЕ Београд, 2013.

МИЋО М. МИТРОВИЋ Практикум ФИЗИКА 7 збирка задатака и експерименталних вежби из физике за седми разред основне школе САЗНАЊЕ Београд, 2013. МИЋО М МИТРОВИЋ Практикум ФИЗИКА 7 збирка задатака и експерименталних вежби из физике за седми разред основне школе САЗНАЊЕ Београд, 1 ПРАКТИКУМ ФИЗИКА 7 Збирка задатака и експерименталних вежби из физике

Διαβάστε περισσότερα

Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ

Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ Испит из предмета Електротехника са електроником 1. Шест тачкастих наелектрисања Q 1, Q, Q, Q, Q 5 и Q налазе се у теменима правилног шестоугла, као на слици. Познато је: Q1 = Q = Q = Q = Q5 = Q ; Q 1,

Διαβάστε περισσότερα

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом).

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом). СЕЧИЦА(СЕКАНТА) ЦЕНТАР ПОЛУПРЕЧНИК ТАНГЕНТА *КРУЖНИЦА ЈЕ затворена крива линија која има особину да су све њене тачке једнако удаљене од једне сталне тачке која се зове ЦЕНТАР КРУЖНИЦЕ. *Дуж(OA=r) која

Διαβάστε περισσότερα

Координатни системи у физици и ОЕТ-у

Координатни системи у физици и ОЕТ-у Материјал Студентске организације Електрон ТРЕЋА ГЛАВА Координатни системи у физици и ОЕТ-у Припремио Милош Петровић 1 -Студентска организација ЕЛЕКТРОН- 1.ДЕКАРТОВ КООРДИНАТНИ СИСТЕМ Декартов координанти

Διαβάστε περισσότερα

Основе теорије вероватноће

Основе теорије вероватноће . Прилог А Основе теорије вероватноће Основни појмови теорије вероватноће су експеримент и исходи резултати. Најпознатији пример којим се уводе појмови и концепти теорије вероватноће је бацање новчића

Διαβάστε περισσότερα

(1) Дефиниција функције више променљивих. Околина тачке (x 0, y 0 ) R 2. График и линије нивоа функције f: (x, y) z.

(1) Дефиниција функције више променљивих. Околина тачке (x 0, y 0 ) R 2. График и линије нивоа функције f: (x, y) z. Дефиниција функције више променљивих Околина тачке R График и линије нивоа функције : Дефиниција Величина се назива функцијом променљивих величина и на скупу D ако сваком уређеном пару D по неком закону

Διαβάστε περισσότερα

Катедра за електронику, Основи електронике

Катедра за електронику, Основи електронике Лабораторијске вежбе из основа електронике, 13. 7. 215. Презиме, име и број индекса. Трајање испита: 12 минута Тест за лабораторијске вежбе 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 5 1 5 1 5 5 2 3 5 1

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 016/017. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5. школска 2016/2017. ШЕСТА ГОДИНА СТУДИЈА

ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5. школска 2016/2017. ШЕСТА ГОДИНА СТУДИЈА ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5 ШЕСТА ГОДИНА СТУДИЈА школска 2016/2017. Предмет: ЗАВРШНИ РАД Предмет се вреднује са 6 ЕСПБ. НАСТАВНИЦИ И САРАДНИЦИ: РБ Име и презиме Email адреса звање 1. Јасмина Кнежевић

Διαβάστε περισσότερα

ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА

ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА ВАЉЕВО, 006 1 1. УВОД 1.1. ПОЈАМ ДИОФАНТОВЕ ЈЕДНАЧИНЕ У једној земљи Далеког истока живео је некад један краљ, који је сваке ноћи узимао нову жену и следећег

Διαβάστε περισσότερα

РЕГЕНЕРАТИВНО КОЧЕЊЕ

РЕГЕНЕРАТИВНО КОЧЕЊЕ XII International Symposium "ROAD ACCIDENTS PREVENTION 2014" Hotel Jezero, Borsko Jezero, 09 th and 10 th October 2014. UDK: РЕГЕНЕРАТИВНО КОЧЕЊЕ Драго Талијан a, Борис Недић b, Борислав Бајић c a Eib

Διαβάστε περισσότερα

ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА ОСНОВНИХ ШКОЛА ШКОЛСКЕ 2012/2013. ГОДИНЕ. која се троши на његово загревање након затварања прекидача.

ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА ОСНОВНИХ ШКОЛА ШКОЛСКЕ 2012/2013. ГОДИНЕ. која се троши на његово загревање након затварања прекидача. ШКОЛСКЕ 0/03. ГОДИНЕ. Друштво физичара Србије VIII Министарство просвете, науке и технолошког РАЗРЕД развоја Републике Србије ЗАДАЦИ. Отпорности у струјном колу приказаном на слици износе R.8, R и R 3.

Διαβάστε περισσότερα

ФИЗИКА. Кинематика. Кинематика

ФИЗИКА. Кинематика. Кинематика ФИЗИКА Кинематика тачке у једној димензији Кинематика кретања у две димензије 1 Кинематика кретање све је у стању кретања кретање промена положаја тела (у односу на друга тела) три типа кретања: транслаторно,

Διαβάστε περισσότερα

Основи системске биофизике. Предиспитне обавезе: Први колоквијум (предавања): Други колоквијум (предавања): Писмени испит (вежбе):

Основи системске биофизике. Предиспитне обавезе: Први колоквијум (предавања): Други колоквијум (предавања): Писмени испит (вежбе): Обавезни предмет Шести семестар Молекуларна биологија и физиологија Наставник: др Мирослав Живић Структура испитних обавеза: Основи системске биофизике Предиспитне обавезе: Први колоквијум (предавања):

Διαβάστε περισσότερα

Примена MATLAB-a за прорачун механике индустријског робота и израда лабораторијског модела применом RP технологија

Примена MATLAB-a за прорачун механике индустријског робота и израда лабораторијског модела применом RP технологија Примена MATLAB-a за прорачун механике индустријског робота и израда лабораторијског модела применом RP технологија Војислав Вујичић Факултет техничких наука, Чачак, Мехатроника, школска година 2015./2016.

Διαβάστε περισσότερα

2.1. Права, дуж, полуправа, раван, полураван

2.1. Права, дуж, полуправа, раван, полураван 2.1. Права, дуж, полуправа, раван, полураван Човек је за своје потребе градио куће, школе, путеве и др. Слика 1. Слика 2. Основа тих зграда је често правоугаоник или сложенија фигура (слика 3). Слика 3.

Διαβάστε περισσότερα

40. Савезно такмичење из физике Петровац Експериментални задаци Општа група

40. Савезно такмичење из физике Петровац Експериментални задаци Општа група Друштво физичара Србије и Црне Горе Министарство просвете и спорта Републике Србије Министарство просвјете и науке Републике Црне Горе Министарство за просвјету, науку и културу Републике Српске 4 Савезно

Διαβάστε περισσότερα

ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА, са додатком теорије

ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА, са додатком теорије ГРАЂЕВИНСКА ШКОЛА Светог Николе 9 Београд ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА са додатком теорије - за II разред IV степен - Драгана Радовановић проф математике Београд СТЕПЕНОВАЊЕ И КОРЕНОВАЊЕ

Διαβάστε περισσότερα

Флукс, електрична енергија, електрични потенцијал

Флукс, електрична енергија, електрични потенцијал Флукс, електрична енергија, електрични потенцијал 1 Електрични флукс Ако линије поља пролазе кроз површину A која је нормална на њих Производ EA је флукс, Φ Генерално: Φ E = E A cos θ 2 Електрични флукс,

Διαβάστε περισσότερα

Антене и простирање. Показна лабораторијска вежба - мерење карактеристика антена. 1. Антене - намена и својства

Антене и простирање. Показна лабораторијска вежба - мерење карактеристика антена. 1. Антене - намена и својства Антене и простирање Показна лабораторијска вежба - мерење карактеристика антена 1. Антене - намена и својства Антена је склоп који претвара вођени електромагнетски талас у електромагнетски талас у слободном

Διαβάστε περισσότερα

Решавање рачунских задатака из наставних јединица: Равномерно и pавномерно променљиво праволинијско кретање

Решавање рачунских задатака из наставних јединица: Равномерно и pавномерно променљиво праволинијско кретање УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ Решавање рачунских задатака из наставних јединица: Равномерно и pавномерно променљиво праволинијско кретање Mентор: Др Маја Стојановић Кандидат: Невена

Διαβάστε περισσότερα

Испитвање тока функције

Испитвање тока функције Милош Станић Техничка школа Ужицe 7/8 Испитвање тока функције Испитивање тока функције y f подразумева да се аналитичким путем дође до сазнања о понашању функције, као и њеним значајним тачкама у координантном

Διαβάστε περισσότερα

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23 6.3. Паралелограми 27. 1) Нацртај паралелограм чији је један угао 120. 2) Израчунај остале углове тог четвороугла. 28. Дат је паралелограм (сл. 23), при чему је 0 < < 90 ; c и. c 4 2 β Сл. 23 1 3 Упознајмо

Διαβάστε περισσότερα

ОБРАЗАЦ ЗА ПРИЈАВУ ТЕХНИЧКОГ РЕШЕЊА

ОБРАЗАЦ ЗА ПРИЈАВУ ТЕХНИЧКОГ РЕШЕЊА ЕЛЕКТРОНСКОМ ФАКУЛТЕТУ У НИШУ ОБРАЗАЦ ЗА ПРИЈАВУ ТЕХНИЧКОГ РЕШЕЊА У складу са одредбама Правилника о поступку и начину вредновања, и квантитавном исказивању научноистраживачких резултата истраживача, који

Διαβάστε περισσότερα

Предизвици во моделирање

Предизвици во моделирање Предизвици во моделирање МОРА да постои компатибилност на јазлите од мрежата на КЕ на спојот на две површини Предизвици во моделирање Предизвици во моделирање Предизвици во моделирање Предизвици во моделирање

Διαβάστε περισσότερα