Κεφάλαιο 6 Μοντέλα Φωτισμού

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 6 Μοντέλα Φωτισμού"

Transcript

1 Κεφάλαιο 6 Μοντέλα Φωτισμού Σύνοψη Το κεφάλαιο αυτό πραγματεύεται ένα πολύ σημαντικό θέμα για τα συστήματα γραφικών. Ο φωτισμός είναι η σημαντικότερη ίσως παράμετρος, η οποία αποδίδει αίσθηση ρεαλισμού και αληθοφάνειας στην εμφάνιση των εικονικών αντικειμένων. Το ίδιο ακριβώς αντικείμενο με την ίδια ακριβώς πολυπλοκότητα αναπαράστασης (π.χ. αριθμός πολυγώνων) έχει τελείως διαφορετική εμφάνιση ανάλογα με τη μέθοδο και τον αλγόριθμο που θα χρησιμοποιηθεί για να υπολογιστεί η αλληλεπίδρασή του με το φως. Το κεφάλαιο αυτό παρουσιάζει αρχικά τα μοντέλα των κύριων πηγών φωτός που χρησιμοποιούνται στα γραφικά και συνεχίζει με την ανάλυση του μοντέλου Phong που χρησιμοποιείται, ευρέως, στα γραφικά πραγματικού χρόνου. Τέλος περιγράφονται και οι αλγόριθμοι σταθερής φωτοσκίασης, φωτοσκίασης Gouraud και φωτοσκίασης Phong μαζί με αντίστοιχα παραδείγματα. Προαπαιτούμενη γνώση Γνώσεις Γραμμικής Άλγεβρας, Διανυσματικής Ανάλυσης και Γεωμετρίας-Τριγωνομετρίας ως γνώσεις υποβάθρου. Γεωμετρικοί μετασχηματισμοί και προβολές από το Κεφ. 3. Αναπαράσταση 3Δ αντικειμένων από το Κεφ. 4. Χρώματος και υφής από το Κεφ Εισαγωγή Ο ρεαλισμός μιας φωτιζόμενης σκηνής σε συστήματα γραφικών εξαρτάται εν γένει από δύο βασικές παραμέτρους: α) Την ακρίβεια των ιδιοτήτων υλικού των αντικειμένων της σκηνής, β) Την ακρίβεια του συστήματος φωτισμού που χρησιμοποιείται για την απόδοση της σκηνής. Ο φωτισμός αναφορικά με τα συστήματα γραφικών είναι μία θεμελιώδης διεργασία και έχει ως στόχο τον υπολογισμό με ακρίβεια της παρατηρούμενης φωτεινότητας ενός σημείου της σκηνής, το οποίο φωτίζεται από ένα σύνολο φωτεινών πηγών. Ένα μοντέλο φωτισμού αποτελείται από ένα σύνολο κανόνων που έχουν ως στόχο την πρακτική υλοποίηση των τμημάτων της θεωρίας της οπτικής. Τα τμήματα αυτά έχουν τη μεγαλύτερη σημασία και δεν εμπλέκουν υπολογιστικά χρονοβόρες διεργασίες. Είναι σημαντικό να γίνει σαφής διαχωρισμός ανάμεσα σε ένα μοντέλο φωτισμού (illumination model) και έναν αλγόριθμο φωτοσκίασης (shading). Ενώ ένα μοντέλο φωτισμού αποτελείται πρακτικά από απλουστεύσεις των νόμων της οπτικής, ένας αλγόριθμος φωτοσκίασης περιγράφει μία αποδοτική διαδικασίααλγόριθμο υλοποίησης ενός συγκεκριμένου μοντέλου φωτισμού. Πρακτικά, η διαδικασία της φωτοσκίασης έχει ως στόχο να μεταβάλλει τη φωτεινότητα ενός παρατηρούμενου σημείου υπό την επίδραση συγκεκριμένων πηγών φωτός. Οπότε, όσον αφορά την αλληλουχία των διεργασιών σε ένα σύστημα γραφικών (σωλήνωση γραφικών), η διαδικασία της φωτοσκίασης έπεται των διεργασιών απόδοσης υφής και χρώματος γενικότερα. 6.. Ιδιότητες Μοντέλων Φωτισμού Οι βασικότερες και πιο απαραίτητες φυσικές ιδιότητες της αλληλεπίδρασης φωτός-αντικειμένων για ένα σύστημα γραφικών είναι η διάχυση, η κατοπτρική ανάκλαση, η διάθλαση και η απορρόφηση φωτεινής ενέργειας. Παρατηρώντας την Εικόνα 6-, έστω πηγή φωτός L που φωτίζει ένα παρατηρούμενο σημείο S υπό γωνία θ L. Έστω τώρα το σημείο V από το οποίο παρατηρούμε το S υπό γωνία θ V. Η κατοπτρική ανάκλαση, λαμβάνει χώρα και είναι παρατηρήσιμη μόνο για την κατεύθυνση παρατήρησης για την οποία η γωνία πρόσπτωσης του φωτός στην επιφάνεια στο σημείο S, είναι ίση με τη γωνία παρατήρησης θl=θv. Με άλλα λόγια, όταν η γωνία παρατήρησης συμπίπτει με τη γωνία ανάκλασης, η κατοπτρική ανάκλαση προσομοιώνει απόλυτα λείες επιφάνειες με τέλεια ανακλαστικότητα. Κατά τη διάχυτη ανάκλαση, το φως μεταδίδεται ομοιόμορφα προς όλες της κατευθύνσεις ανάκλασης. Η διάχυτη ανάκλαση προσομοιώνει τραχείες επιφάνειες με μηδαμινή κατοπτρική ανακλαστικότητα. 6-

2 Κατά την αλληλεπίδραση του φωτός με ένα αντικείμενο, ένα τμήμα της φωτεινής ενέργειας μπορεί να απορροφηθεί από το αντικείμενο. Το φως αυτό είτε μετατρέπεται σε θερμότητα αυξάνοντας τη θερμοκρασία του αντικειμένου είτε διαθλάται μέσω του αντικειμένου. Ο εκπεμπόμενος φωτισμός αφορά τα αυτόφωτα αντικείμενα, τα οποία θα ονομάζουμε εφεξής και πηγές φωτός. Τα αυτόφωτα αντικείμενα έχουν την ιδιότητα να εκπέμπουν τα ίδια φωτεινή ενέργεια χωρίς αυτή να προέρχεται από κάποιας μορφής ανάκλαση. Εικόνα 6.. Αντικείμενο φωτίζεται από φωτεινή πηγή L. Ο παρατηρητής V δέχεται φωτισμό από κατοπτρική ανάκλαση Ι S (κόκκινη ακτίνα) και από διάχυτη ανάκλαση Ι D (πράσινη ακτίνα). Τμήμα του προσπίπτοντος φωτισμού Ι R διαθλάται (μπλε ακτίνα) μέσω του αντικειμένου. Στα συστήματα γραφικών, άμεσος φωτισμός καλείται ο φωτισμός που οφείλεται στην άμεση έκθεση ενός σημείου στην πηγή φωτός. Για να προκύψει άμεσος φωτισμός ενός σημείου από μία πηγή φωτός θα πρέπει να βρίσκονται σε οπτική επαφή. Έμμεσος φωτισμός ονομάζεται ο φωτισμός που δέχεται ένα σημείο μίας επιφάνειας, χωρίς να βρίσκεται σε άμεση έκθεση στην πηγή φωτός, αλλά σε έμμεση μέσω ενός ανακλαστικού αντικειμένου. Με άλλα λόγια κάθε αντικείμενο που αντανακλά είτε διάχυτα είτε κατοπτρικά το φως, μπορεί να γίνει δυνητικά πηγή έμμεσου φωτισμού για τα υπόλοιπα αντικείμενα της σκηνής. Τα μοντέλα φωτισμού μπορούν χωριστούν σε δύο κύριες και πολύ σημαντικές κατηγορίες ανάλογα με το εάν υποστηρίζουν ή όχι τον έμμεσο φωτισμό. Τα μοντέλα που μοντελοποιούν μόνο τον άμεσο φωτισμό ονομάζονται μοντέλα τοπικού φωτισμού (local illumination), ενώ αυτά που μοντελοποιούν και τον έμμεσο φωτισμό ονομάζονται μοντέλα ολικού φωτισμού (global illumination). Τα μοντέλα τοπικού φωτισμού είναι δημοφιλή σε συστήματα γραφικών πραγματικού χρόνου λόγω της περιορισμένης υπολογιστικής πολυπλοκότητάς τους, διότι μπορούν να οδηγήσουν σε σύνθεση σχετικά ρεαλιστικών σκηνών σε πραγματικό χρόνο. Τα μοντέλα ολικού φωτισμού, τα οποία μπορούν να οδηγήσουν σε φωτορεαλιστικές σκηνές, χρησιμοποιούνται ευρέως στον κινηματογράφο και γενικότερα σε εφαρμογές όπου δεν υπάρχει απαίτηση εκτέλεσης σε πραγματικό χρόνο Πηγές Φωτός Κάθε αντικείμενο που εκπέμπει φως ονομάζεται πηγή φωτός και επηρεάζει τα εφέ φωτισμού των αντικειμένων της σκηνής. Μία πηγή φωτός μπορεί να έχει οποιοδήποτε σχήμα και να εκπέμπει φως οποιουδήποτε χρώματος. Ως πηγή φωτός μπορεί να οριστεί ένα αντικείμενο, το οποίο πέρα από το φως που εκπέμπει μπορεί και να δεχτεί/ανακλάσει φως, όπως και συμβαίνει στα φυσικά περιβάλλοντα. Για λόγους απλοποίησης των υπολογισμών, στα συστήματα γραφικών πραγματικού χρόνου όσον αφορά τις πηγές φωτός γίνονται οι παρακάτω υποθέσεις: Απλοποιημένη γεωμετρία: Για τη γεωμετρική αναπαράσταση των πηγών φωτός χρησιμοποιούνται πολύ απλά γεωμετρικά αντικείμενα έτσι ώστε να μειώνεται η υπολογιστική πολυπλοκότητα της διαδικασίας υπολογισμού του εκπεμπόμενου φωτός. Μάλιστα, είναι πολύ 6-

3 σύνηθες να μη χρησιμοποιούνται καθόλου γεωμετρικά αντικείμενα για την αναπαράσταση των πηγών φωτός. Μη αντανάκλαση φωτός: Ακόμα και όταν χρησιμοποιείται κάποια γεωμετρία για την αναπαράσταση της πηγής αυτή, συνήθως, θεωρείται ότι δεν αντανακλά το φως που προσπίπτει πάνω της. Τριχρωματική εκπομπή φωτός: Οι πηγές εκπέμπουν φως σε τριχρωματική μορφή ακολουθώντας το χρωματικό μοντέλο RGB. Πρακτικά θεωρείται ότι η πηγή αποτελείται από τρεις ανεξάρτητες πηγές φωτός, μία για κάθε συνιστώσα του μοντέλου RGB, και καθεμία από τις οποίες έχει τα δικά της χαρακτηριστικά Σημειακή Πηγή Φωτός Η απλούστερη μορφή πηγής φωτός είναι η σημειακή πηγή φωτός (point light), η οποία βρίσκεται σε συγκεκριμένο σημείο του χώρου και εκπέμπει φως ενός χρώματος RGB προς όλες τις κατευθύνσεις. Η Εικόνα 6- απεικονίζει μία σημειακή πηγή φωτός, η οποία μπορεί να οριστεί με τη θέση της στο χώρο και με το χρώμα φωτός που εκπέμπει. Εικόνα 6.. Σημειακή πηγή, φωτίζει αντικείμενο σε απόσταση d Εάν το σχετικό μέγεθος της πηγής φωτός είναι αμελητέο σε σχέση με το μέγεθος των αντικειμένων της σκηνής μπορούμε να υποθέσουμε ότι η πηγή είναι αδιάστατη. Οι νοητές ακτίνες φωτός μίας σημειακής πηγής φωτός είναι αποκλίνουσες ευθείες, όπως απεικονίζεται στην Εικόνα 6.. Έστω τώρα ότι η σημειακή πηγή φωτός τοποθετείται στο σημείο L. Η ένταση με την οποία το φως φτάνει στο σημείο P δίνεται από την παρακάτω σχέση: = k + kd+ kd 0 0 {Εξ. 6.} όπου 0 είναι η ένταση φωτισμού της πηγής, d η απόσταση μεταξύ της πηγής L και του σημείου P και οι k 0, k, k σταθερές τιμές. Είναι προφανές ότι ανάλογα με την επιλογή των σταθερών k μπορούν να μοντελοποιηθούν πηγές φωτός των οποίων η ένταση να αποσβένει με σταθερό, γραμμικό ή τετραγωνικό τρόπο Κατευθυντική Πηγή Φωτός Σε μια κατευθυντική πηγή φωτός (directional light) οι νοητές ακτίνες φωτός κινούνται πάνω σε παράλληλες ευθείες (Εικόνα 6-3). Αν και είναι δύσκολο να φανταστεί κανείς μια πραγματική πηγή φωτός με τις ιδιότητες της κατευθυντικής πηγής, ωστόσο αυτές χρησιμοποιούνται ευρύτατα στα γραφικά λόγω της απλότητας των υπολογισμών που απαιτούνται, στα πλαίσια χρήσης αλγορίθμων φωτοσκίασης. Εάν υποτεθεί ότι οι διαστάσεις μίας σκηνής είναι αμελητέες σε σχέση με την απόσταση μίας σημειακής πηγής φωτός από τη σκηνή, τότε η τελευταία εκφυλίζεται σε κατευθυντική πηγή φωτός, διότι τοπικά οι ακτίνες φωτός μπορούν να θεωρηθούν παράλληλες. Μια τέτοια πρακτική περίπτωση πηγής φωτός είναι ο ήλιος, του οποίου οι ακτίνες μπορούν να θεωρηθούν παράλληλες σε μία πεπερασμένη περιοχή πάνω 6-3

4 στη γη. Η κατευθυντική πηγή φωτός συνήθως είναι μία και μοναδική μέσα σε μια σκηνή και χρησιμοποιείται ως βάση για προσθήκη επιπλέον πηγών φωτισμού Πηγή Προβολέα Εικόνα 6.3. Κατευθυντική Πηγή Φωτός Μία πολύ ενδιαφέρουσα πηγή φωτισμού, η οποία μπορεί να προσομοιώσει ιδιαίτερα ρεαλιστικά εφέ φωτισμού είναι η πηγή προβολέα (spotlight). Ένας προβολέας φωτίζει μόνο τα αντικείμενα που βρίσκονται εντός του κώνου φωτισμού του (Εικόνα 6-4), ο οποίος ορίζεται από τη θέση τoυ προβολέα (κορυφή), την κατεύθυνση φωτισμού v L και τη γωνία φωτισμού ω L. Εικόνα 6-4. Παράδειγμα Πηγής Προβολέα Έστω ένα αντικείμενο που βρίσκεται στη θέση P και έστω το μοναδιαίο διάνυσμα v P με αρχή τον προβολέα L και κατεύθυνση προς το P που σχηματίζει γωνία ω P με την κατεύθυνση φωτισμού v L. Τότε ο έλεγχος, εάν το σημείο αυτό φωτίζεται από τον προβολέα, εκφυλίζεται στον έλεγχο ενός εσωτερικού γινομένου. Έτσι ο φωτισμός του σημείου από την πηγή προκύπτει από την παρακάτω σχέση: P L, εν ά ωp = arccos( vp vl) < ωl = 0, αλλιώς {Εξ. 6.} Σε περίπτωση που είναι επιθυμητό η ένταση του φωτισμού να αποσβένει με την απόσταση, τότε κατά αντιστοιχία με τη σημειακή πηγή φωτός προκύπτει: = k + kd+ kd 0 0 {Εξ. 6.3} όπου d είναι η απόσταση πηγής-σημείου. 6-4

5 Ειδικά για την περίπτωση της πηγής προβολέα, είναι συνήθως επιθυμητό το φως να αποσβένει όσο η γωνία ω P μεγαλώνει. Με αυτόν τον τρόπο η δέσμη φωτός είναι πιο έντονη στο κέντρο της και πιο αχνή στην περιφέρεια του κώνου φωτισμού. Η γωνιακή απόσβεση δίνεται από την παρακάτω σχέση: { v p vl } max,0 m = k + kd+ kd 0 P {Εξ.6.4} όπου ο εκθέτης m επηρεάζει το πόσο συγκεντρωμένος είναι ο προβολέας. Όπως φαίνεται και στην παρακάτω εικόνα (Εικόνα 6.5) μικρές τιμές του εκθέτη δίνουν δέσμη φωτισμού χωρίς σαφή όρια, ενώ για μεγάλες τιμές προκύπτουν δέσμες με απότομη μετάβαση από τις φωτεινές προς στις σκοτεινές περιοχές. Εικόνα 6.5. Παράδειγμα πηγής προβολέα με διαδοχικά μεγαλύτερο εκθέτη m 6.4. Το μοντέλο τοπικού φωτισμού Phong Τα ρεαλιστικά φυσικά μοντέλα που περιγράφουν τον τρόπο που μία επιφάνεια αντανακλά το φως είναι ιδιαίτερα πολύπλοκα για να χρησιμοποιηθούν σε συστήματα γραφικών πραγματικού χρόνου. Αυτό έχει οδηγήσει στην ευρύτατη χρήση του προσεγγιστικού μοντέλου τοπικού φωτισμού Phong, το οποίο μπορεί να αποδώσει ικανοποιητικές αντανακλάσεις έχοντας πολύ μικρό υπολογιστικό κόστος. Στο μοντέλο Phong ένα υλικό περιγράφεται καθορίζοντας τρεις διακριτές παραμέτρους ανάκλασης: Περιβάλλουσα ανάκλαση: Ανακλά μία σταθερή ποσότητα φωτός και χρησιμοποιείται για να εξισορροπήσει την έλλειψη φωτισμού λόγω του γεγονότος ότι ο τοπικός φωτισμός δεν υλοποιεί έμμεσο φωτισμό. Διάχυτη ανάκλαση: Αντιστοιχεί σε ανάκλαση φωτός ανεξάρτητη της γωνίας θέασης. Το φως ανακλάται με την ίδια ένταση σε όλες τις κατευθύνσεις. Κατοπτρική ανάκλαση: Αντιστοιχεί σε ανάκλαση φωτός λείων επιφανειών, η οποία μεγιστοποιείται όταν η γωνία ανάκλασης είναι ίδια με τη γωνία θέασης, όπως θα δούμε και στη συνέχεια. Οι τιμές φωτισμού που υπολογίζονται από τις παραπάνω συνιστώσες αθροίζονται ώστε να πάρουμε το τελικό αποτέλεσμα Περιβάλλων Φωτισμός Ο περιβάλλων φωτισμός έχει σταθερή ένταση L a σε όλη τη σκηνή και κατά συνέπεια και σε κάθε σημείο της υπό φωτισμό επιφάνειας. Ένα τμήμα του φωτισμού αυτού απορροφάται και το υπόλοιπο αντανακλάται. Το ποσοστό του φωτισμού που αντανακλάται, δίνεται από το συντελεστή περιβάλλουσας ανάκλασης k a. Οπότε ο φωτισμός δίνεται από τη σχέση:, {Εξ. 6.5} 6-5

6 φωτισμού Στην περίπτωση τριχρωματικού φωτισμού κάθε χρωματική συνιστώσα έχει τη δική της ένταση περιβάλλουσας ανάκλασης Διάχυτη Ανάκλαση. Ομοίως το υλικό του αντικειμένου περιγράφεται με τους αντίστοιχους συντελεστές Στην περίπτωση της διάχυτης ανάκλασης, το φως που προσπίπτει σε μία επιφάνεια διαχέεται ομοίως σε όλες τις κατευθύνσεις, οπότε έχει και όμοια εμφάνιση ανεξαρτήτως της γωνίας θέασης. Ο διάχυτος φωτισμός χαρακτηρίζει τις τραχείες επιφάνειες. Το ποσό του φωτισμού που ανακλάται εξαρτάται τόσο από τις ιδιότητες του υλικού (ένα τμήμα του απορροφάται), αλλά και από τη σχετική θέση της πηγής φωτισμού ως προς τη φωτιζόμενη επιφάνεια. Στην πράξη είναι εξαιρετικά απίθανο μία επιφάνεια να αντανακλά το φως εξίσου σε όλες τις κατευθύνσεις. Μία τέτοια θεωρητική επιφάνεια ονομάζεται επιφάνεια Lambert. Το μοντέλο τοπικού φωτισμού Phong υποθέτει επιφάνεια Lambert κατά τον υπολογισμό της διάχυτης ανάκλασης, λόγω του χαμηλού υπολογιστικού κόστους που αυτό συνεπάγεται. Εικόνα 6.6. Φωτισμός επιφάνειας που διαχέει το φως όταν η κατεύθυνση φωτισμού είναι κάθετη στην επιφάνεια (αριστερά) και υπό γωνία (δεξιά). Έστω τώρα μία επιφάνεια που διαχέει το φωτισμό που δέχεται, όπως απεικονίζεται στην Εικόνα 6.6. Η επιφάνεια είναι πιο φωτεινή το μεσημέρι σε σχέση με το βράδυ, διότι σύμφωνα με το νόμο του Lambert, μόνο η κάθετη συνιστώσα του φωτός συνεισφέρει στο φωτισμό της επιφάνειας. Έστω θ η γωνία μεταξύ του κανονικοποιημένου διανύσματος φωτισμού l και του κανονικού διανύσματος n της επιφάνειας. Ο διάχυτος φωτισμός της επιφάνειας υπολογίζεται από την παρακάτω σχέση: cos( θ ) ( ln) = kl = k L d d d d d {Εξ. 6.6} όπου k d ο συντελεστής διάχυτης ανάκλασης και L d ο προσπίπτων φωτισμός που συμμετέχει στη διάχυτη ανάκλαση. Προσθέτοντας απόσβεση φωτισμού σε σχέση με την απόσταση από την πηγή φωτός προκύπτει η παρακάτω σχέση διάχυτης ανάκλασης: d ( ln ) kd = k + kd+ kd 0 L d {Εξ. 6.7} Κατοπτρική Ανάκλαση Εάν χρησιμοποιήσουμε μόνο περιβάλλουσα και διάχυτη ανάκλαση για το φωτισμό ενός αντικειμένου τότε τα αντικείμενα θα φαίνονται θαμπά («ματ» επιφάνειες). Αυτό που λείπει από το μοντέλο είναι τα γυαλιστερά τμήματα της επιφάνειας που αντανακλούν κατοπτρικά το φωτισμό, όπως φαίνεται στην Εικόνα

7 Η τέλεια κατοπτρική ανάκλαση αντιστοιχεί σε λείες και στιλπνές επιφάνειες για τις οποίες ισχύει ότι η γωνία πρόσπτωσης του φωτός ισούται με τη γωνία ανάκλασης. Στην πράξη, όμως, δεν είναι όλες οι ανακλαστικές επιφάνειες τέλειοι καθρέπτες και δεν ισχύει αυτός ο κανόνας στην αυστηρή αυτή μορφή του. Αυτό που συμβαίνει είναι ότι η ένταση του ανακλώμενου φωτισμού είναι μεγαλύτερη για τη γωνία αυτή σε σχέση με τις υπόλοιπες. Εικόνα 6.7. Απεικόνιση του ίδιου αντικειμένου με διαφορετικές παραμέτρους υλικού. Προς τα δεξιά αυξάνει ο εκθέτης κατοπτρικής ανάκλασης. Προς τα κάτω μειώνεται ο συντελεστής κατοπτρικής ανακλαστικότητας k s. Ο Phong πρότεινε ένα απλοποιημένο προσεγγιστικό μοντέλο κατοπτρικής ανάκλασης, το οποίο περιγράφεται από την παρακάτω σχέση: {Εξ. 6.8} όπου φ είναι η γωνία μεταξύ του διανύσματος θέασης v και τέλειας ανάκλασης r, k s είναι ο συντελεστής κατοπτρικής ανάκλασης που εκφράζει το ποσοστό του φωτός που αντανακλάται κατοπτρικά, ενώ το υπόλοιπο απορροφάται. Όπου L s είναι ο προσπίπτων φωτισμός που συμμετέχει στην κατοπτρική ανάκλαση. Ο εκθέτης α είναι ο συντελεστής γυαλάδας (shininess) και εκφράζει το βαθμό που ο ανακλώμενος φωτισμός είναι συγκεντρωμένος στην κατεύθυνση τέλειας ανάκλασης. Εικόνα 6.8. Διανύσματα Κατοπτρικής Ανάκλασης 6-7

8 Ένα πλεονέκτημα του μοντέλου κατοπτρικής ανάκλασης Phong είναι ότι το συνημίτονο της γωνίας φ μπορεί να υπολογιστεί απλά ως το εσωτερικό γινόμενο των κανονικοποιημένων διανυσμάτων θέασης v και τέλειας ανάκλασης r, όπως αυτά απεικονίζονται στην Εικόνα 6.8. s s s ( r v) a = kl {Εξ. 6.9} Προσθέτοντας απόσβεση φωτισμού σε σχέση με την απόσταση από την πηγή φωτός προκύπτει η παρακάτω σχέση διάχυτης ανάκλασης: s ( r v) ks = k + kd+ kd a 0 L s {Εξ. 6.0} Εκπεμπόμενος φωτισμός Πολλά συστήματα γραφικών επιτρέπουν στις επιφάνειες να ανακλούν φως που δεν προσπίπτει από κάποια εξωτερική πηγή. Τέτοιες επιφάνειες, μπορούν να θεωρηθούν ως αυτόφωτες. Ο εκπεμπόμενος φωτισμός είναι ανεξάρτητος της γεωμετρίας και δεν υπόκειται σε εξασθένηση. Ορίζεται ως μία τιμή έντασης φωτισμού e, που προστίθεται στις υπόλοιπες ώστε να υπολογιστεί η τελική τιμή φωτισμού της επιφάνειας Μοντέλο Phong Το μοντέλο φωτισμού Phong προσθέτει όλες τις επιμέρους συνιστώσες του ώστε να υπολογιστεί η τελική τιμή ανάκλασης: ( ( ln) ( rv) ) a e a a d d s s k0 + kd + kd = L+ kl k L + k L {Εξ. 6.} Στην περίπτωση που στο φωτισμό μίας επιφάνειας συμμετέχουν πολλές πηγές φωτισμού, τότε η συνεισφορά τους αθροίζεται σύμφωνα με την παρακάτω σχέση: ( ( ) ( ) ) a e a a d ln d s rv j s k0 + kd + kd = L+ kl k L + k L {Εξ. 6.} Πρέπει να σημειωθεί ότι οι πηγές συνεισφέρουν μόνο στο διάχυτο και στον κατοπτρικό φωτισμό. Στη συνήθη περίπτωση τριχρωματικού φωτός οι παραπάνω εξισώσεις εφαρμόζονται ξεχωριστά και ανεξάρτητα σε κάθε χρωματική συνιστώσα: ( ( ln) ( rv) ) a er ar ar dr dr s sr k0 + kd + kd = L + k L k L + k L ( ( ln) ( rv) ) a eg ag ag dg dg s sg k0 + kd + kd = L + k L k L + k L ( ( ln) ( rv) ) a eb ab ab db db s sb k0 + kd + kd = L + k L k L + k L {Εξ. 6.3} {Εξ. 6.4} {Εξ. 6.5} Αυτό που πρέπει να παρατηρήσουμε στις παραπάνω εξισώσεις είναι ότι ο συντελεστής κατοπτρικής ανάκλασης k s είναι ο ίδιος για κάθε χρωματική συνιστώσα. Αυτό συμβαίνει διότι κατά την κατοπτρική 6-8

9 ανάκλαση το χρώμα του φωτισμού που ανακλάται είναι αυτό της πηγής και δεν εξαρτάται από την επιφάνεια πάνω στην οποία λαμβάνει χώρα η ανάκλαση Υπολογισμός Διανυσμάτων Τα μοντέλα φωτισμού και φωτοσκίασης που παρουσιάστηκαν στις παραπάνω ενότητες είναι αρκετά γενικά, ώστε να μπορούν να χρησιμοποιηθούν σε επιφάνειες οποιουδήποτε τύπου (καμπύλες, επίπεδες), σε μοντέλα προοπτικής ή ορθογραφικής προβολής καθώς και σε κοντινές ή απομακρυσμένες επιφάνειες. Όπως αποτυπώνεται και στις παραπάνω εξισώσεις, απαραίτητη για τους υπολογισμούς είναι η εκτίμηση κάποιων συγκεκριμένων διανυσμάτων και εσωτερικών γινομένων, όπως το κανονικό διάνυσμα επιφάνειας και η κατεύθυνση φωτισμού. Μπορούν, βέβαια, να γίνουν και συγκεκριμένες απλοποιήσεις ανάλογα με την υλοποίηση, όπως η χρήση σταθερού- κανονικού διανύσματος για επίπεδες επιφάνειες ή σταθερού διανύσματος φωτισμού για απομακρυσμένες πηγές. Στη συνέχεια θα εξετάσουμε πώς μπορούν να υπολογιστούν όλα τα απαραίτητα διανύσματα Κανονικό Διάνυσμα Στην περίπτωση λείων επιφανειών, το κανονικό διάνυσμα ορίζεται σε κάθε σημείο και εκφράζει τον προσανατολισμό της τοπικής επιφάνειας. Ο τρόπος υπολογισμού του εξαρτάται από τον τρόπο με τον οποίο ορίζεται μαθηματικά η επιφάνεια. Έστω η απλή περίπτωση ενός επιπέδου, το οποίο περιγράφεται από την παρακάτω εξίσωση: ax + by + cz + d = 0 {Εξ. 6.6} Μία άλλη περιγραφή της εξίσωσης του επιπέδου, η οποία εμπλέκει και το κανονικό διάνυσμα είναι η παρακάτω: ( p ) np = 0 0 {Εξ. 6.7} όπου n είναι το κανονικό διάνυσμα και p 0 είναι σημείο της επιφάνειας. Συνδυάζοντας τις παραπάνω εξισώσεις παρατηρούμε ότι το κάθετο διάνυσμα στην επιφάνεια είναι το παρακάτω: n = [ abc,, ] T {Εξ. 6.8} Στην πράξη είναι σύνηθες τα στοιχειώδη επίπεδα να μη δίνονται σε πεπλεγμένη μορφή, αλλά απλά μέσω τριών συνεπίπεδων σημείων τους, όπως στην περίπτωση τριγωνοποιημένων πλεγμάτων. Εδώ το κανονικό διάνυσμα προκύπτει από το εξωτερικό γινόμενο δύο συνεπίπεδων διανυσμάτων. Έστω, λοιπόν, τα τρία μη συνευθειακά σημεία p 0, p, p, τα οποία ορίζουν μονοσήμαντα ένα επίπεδο. Τα τρία αυτά σημεία θα μπορούσαν στην πράξη να είναι οι κορυφές ενός τριγώνου. Το κανονικό διάνυσμα του επιπέδου μπορεί να προκύψει από το παρακάτω εσωτερικό γινόμενο: ( ) ( ) n= p p p p 0 0 {Εξ. 6.9} Λόγω του ότι στο εξωτερικό γινόμενο δεν ισχύει η αντιμεταθετική ιδιότητα, πρέπει να είναι κανείς ιδιαίτερα προσεκτικός στη σειρά με την οποία παραθέτει τα διανύσματα. Εάν αλλάξει η σειρά τότε το διάνυσμα θα έχει αντίθετη φορά κάτι που μπορεί να επηρεάσει τον υπολογισμό του φωτισμού. Έστω τώρα ότι μας δίνεται η συνάρτηση της επιφάνειας σε πεπλεγμένη μορφή: f( xyz,, ) = 0 {Εξ. 6.0} και πιο συγκεκριμένα, έστω η πεπλεγμένη συνάρτηση ενός ελλειψοειδούς: 6-9

10 f x y z,, = + + = 0 a b c ( xyz) {Εξ. 6.} Το κανονικό διάνυσμα προκύπτει από την κλίση της συνάρτησης και μπορεί να περιγραφεί από το παρακάτω διάνυσμα: f x x a f y n = {Εξ. 6.} = y b f z z c Εκτός, όμως, από την πεπλεγμένη τους μορφή, οι επιφάνειες μπορούν να εκφραστούν και σε παραμετρική μορφή, όπου οι τιμές των καρτεσιανών συντεταγμένων των σημείων της επιφάνειας εκφράζονται συναρτήσει των ανεξάρτητων μεταβλητών u,v. (, ) (, ) (, ) x= xuv y= y uv z= z uv {Εξ. 6.3} Για την περίπτωση του ελλειψοειδούς έχουμε: x= acosusin v [ π) [ π] y = bsin usin v u 0,, v 0, z = ccos v {Εξ. 6.4} Στην περίπτωση αυτή μπορούμε να πάρουμε το κανονικό διάνυσμα από το εξωτερικό γινόμενο των παραγώγων της θέσης του σημείου ως προς u και v. p p n = u v {Εξ. 6.5} Όπου τα εφαπτόμενα στην επιφάνεια διανύσματα είναι: Διανύσματα φωτισμού και θέασης x x u v p y p y =, = u u v v z z u v Το διάνυσμα φωτισμού που έχουμε χρησιμοποιήσει και στις προηγούμενες παραγράφους μπορεί εύκολα να υπολογιστεί εάν είναι γνωστή η θέση P L της πηγής φωτός και η θέση P x του φωτιζόμενου σημείου: 6-0

11 l = P P X L {Εξ. 6.6} Σε περιπτώσεις όπου θεωρείται ότι οι διαστάσεις του αντικειμένου είναι αμελητέες σε σχέση με την απόσταση της πηγής φωτός από το αντικείμενο, τότε το διάνυσμα φωτισμού μπορεί να θεωρηθεί σταθερό και είναι απαραίτητο να δοθεί η κατεύθυνσή του (κατευθυντική πηγή φωτός). Το διάνυσμα θέασης v προκύπτει με όμοιο τρόπο αντικαθιστώντας τη θέση της πηγής φωτός με τη θέση του παρατηρητή P v. v= P P X V {Εξ. 6.7} Διάνυσμα Ανάκλασης Για τον υπολογισμό της κατοπτρικής συνιστώσας του μοντέλου Phong είναι απαραίτητος ο υπολογισμός του διανύσματος κατοπτρικής ανάκλασης r. Έστω, λοιπόν, σημείο σε επιφάνεια με κανονικό διάνυσμα n που φωτίζεται από μία πηγή με κατεύθυνση φωτισμού l (Εικόνα 6-9). Θέλουμε να υπολογίσουμε το διάνυσμα κατοπτρικής ανάκλασης r. Εικόνα 6.9. Διανύσματα κατοπτρικής ανάκλασης Ο γενικός κανόνας που πρέπει να χρησιμοποιήσουμε είναι ότι η γωνία πρόσπτωσης ισούται με τη γωνία ανάκλασης. Στις δύο διαστάσεις ο περιορισμός αυτός θα ήταν αρκετός για τον υπολογισμό του διανύσματος r. Στις τρεις, όμως, διαστάσεις υπάρχουν άπειρα διανύσματα που ικανοποιούν τον περιορισμό αυτόν. Ο επιπλέον περιορισμός που πρέπει να θέσουμε είναι ότι τα διανύσματα l, n και r είναι συνεπίπεδα. Με αναφορά, λοιπόν, στα διανύσματα που παρουσιάζονται στην Εικόνα 6-9, έχουμε: ( ) w= lcosθ = l nl = nl {Εξ. 6.8} Ακόμα είναι: w= nw= n( n l) {Εξ. 6.9} Επίσης, ισχύουν οι εξής διανυσματικές σχέσεις: r = w+ s s= w l {Εξ. 6.30} Οπότε συνδυάζοντας τα παραπάνω προκύπτει ότι: ( ) r= w l= nnl l {Εξ. 6.3} 6-

12 6.6. Φωτοσκίαση Το μοντέλο φωτισμού του Phong μας δίνει τη δυνατότητα να υπολογίσουμε την ένταση του φωτισμού σε ένα συγκεκριμένο σημείο μίας επιφάνειας δοσμένης πηγής φωτός με συγκεκριμένα χαρακτηριστικά. Πώς θα μπορούσαμε, όμως, να εφαρμόσουμε το μοντέλο αυτό στην πρακτική και δημοφιλή περίπτωση όπου ένα αντικείμενο αναπαρίσταται με ένα τριγωνοποιημένο πλέγμα; Είναι πρακτικά υπολογιστικά αδύνατο να υπολογίσουμε τις εξισώσεις του μοντέλου σε κάθε σημείο στο εσωτερικό κάθε τριγώνου. Αυτό που μπορούμε, όμως, να κάνουμε είναι να υπολογίσουμε το φωτισμό σε κάθε κορυφή του μοντέλου και να χρησιμοποιήσουμε μία εξειδικευμένη μέθοδο για να «φωτίσουμε» και το εσωτερικό των τριγώνων που το απαρτίζουν. Οι εξειδικευμένες αυτές μέθοδοι ονομάζονται αλγόριθμοι φωτοσκίασης και στη συνέχεια θα αναλύσουμε τις τρεις δημοφιλέστερες από αυτές Σταθερή Φωτοσκίαση Τα κύρια διανύσματα που εμπλέκονται στον υπολογισμό της εξίσωσης φωτισμού, δηλαδή, τα διανύσματα θέασης v, φωτισμού l, και κανονικό διάνυσμα n, μεταβάλλονται καθώς κινούμαστε πάνω στην επιφάνεια. Εάν υποθέσουμε ότι βρισκόμαστε πάνω σε ένα πολύγωνο της επιφάνειας, τότε το κανονικό διάνυσμα είναι σταθερό σε όλη την επιφάνειά του. Εάν υποθέσουμε ότι ο παρατηρητής αλλά και η πηγή φωτισμού βρίσκονται στο άπειρο, τότε και τα αντίστοιχα διανύσματα v και l είναι σταθερά σε όλη την επιφάνεια του πολυγώνου. Έτσι έχοντας και τα τρία διανύσματα σταθερά, αρκεί να υπολογίσουμε την εξίσωση φωτισμού μία φορά και να εφαρμόσουμε τον φωτισμό που προκύπτει, σε όλη την επιφάνεια του πολυγώνου. Αυτή η τεχνική ονομάζεται σταθερή ή επίπεδη φωτοσκίαση και είναι μία από τις απλούστερες μεθόδους φωτοσκίασης. Η τεχνική αυτή παρουσιάζει ξεκάθαρα τα όρια των πολυγώνων (τις ακμές του πολυγωνικού μοντέλου) διότι το κανονικό διάνυσμα μεταβάλλεται ασυνεχώς πάνω στα όρια των ακμών, οδηγώντας έτσι σε διαφορετική τιμή φωτισμού στις εκατέρωθεν έδρες μίας ακμής. Στην περίπτωση που το πολυγωνικό πλέγμα μοντελοποιεί μία συνεχή επιφάνεια, όπως φαίνεται στην Εικόνα 6-0 τότε το αποτέλεσμα της μεθόδου αυτής είναι απογοητευτικό. (α) Σταθερή φωτοσκίαση όπου αποδίδεται η ίδια τιμή φωτισμού σε όλα τα σημεία του πολυγώνου (β) Φωτοσκίαση Gouraud κατά την οποία η τιμή του φωτισμού σε κάθε πολύγωνο μεταβάλλεται Εικόνα 6.0. Διαφορές μοντέλων σκίασης Φωτοσκίαση Gouraud Η φωτοσκίαση Gouraud (97) επιχειρεί να λύσει το πρόβλημα της σταθερής φωτοσκίασης κατά μήκος μίας επιφάνειας υπολογίζοντας αρχικά την τιμή του φωτισμού στις κορυφές ενός τριγώνου και στη συνέχεια εφαρμόζοντας παρεμβολή για τον υπολογισμό του φωτισμού σε κάθε εσωτερικό σημείο του τριγώνου. Πώς μπορούμε, όμως, να υπολογίσουμε την τιμή φωτισμού σε ένα σημείο του τριγωνοποιημένου πλέγματος. Ενώ τα διανύσματα φωτισμού v και θέασης l μπορούν να υπολογιστούν, το κανονικό διάνυσμα δεν μπορεί να οριστεί διότι στις κορυφές δεν μπορεί να οριστεί η κλίση της επιφάνειας, οπότε θεωρητικά δεν ορίζεται κανονικό διάνυσμα. Αυτό που μπορούμε να κάνουμε είναι να υπολογίσουμε μία προσέγγιση του κανονικού διανύσματος. 6-

13 Το κανονικό διάνυσμα κορυφής στην Εικόνα 6. μπορεί να υπολογιστεί απλά ως ο μέσος όρος των κανονικών διανυσμάτων των τριγώνων που προσπίπτουν στην κορυφή: N ni N i = n= {Εξ. 6.3} Εικόνα 6.. Υπολογισμός κανονικού διανύσματος κορυφής από τα κανονικά διανύσματα εδρών Εναλλακτικά μπορεί να υπολογιστεί ως σταθμισμένο άθροισμα των κανονικών διανυσμάτων των εδρών, όπου οι συντελεστές βάρους είναι είτε ανάλογοι της επιφάνειας της έδρας (area i ) στην οποία αντιστοιχεί κάθε διάνυσμα: i= N n = area N i ni area = i i {Εξ. 6.33} είτε ανάλογοι της γωνίας θi του κάθε τριγώνου (Εικόνα 6-): N n= θi ni π i = {Εξ. 6.34} Από τη στιγμή που μπορεί να υπολογιστεί το κανονικό διάνυσμα κορυφής, μπορεί να υπολογιστεί και ο φωτισμός που της αντιστοιχεί. Εικόνα 6.. Διγραμμική παρεμβολή στη φωτοσκίαση Gouraud. 6-3

14 Έστω τώρα το τρίγωνο στην Εικόνα 6.. Υπολογίζοντας τα κανονικά διανύσματα κορυφής n A, n B, n C μπορεί να υπολογιστεί όπως είδαμε και ο φωτισμός των αντίστοιχων κορυφών A, B, C. H φωτοσκίαση Gouraud υπολογίζει αρχικά με γραμμική παρεμβολή το φωτισμό D, E στα σημεία D και E: {Εξ. 6.35} Στη συνέχεια υπολογίζεται η τιμή φωτισμού για το σημείο P πάλι με γραμμική παρεμβολή των τιμών Ι D και Ι C : {Εξ. 6.36} Φωτοσκίαση Phong Παρά τη σημαντικά βελτιωμένη απόδοση φωτισμού της φωτοσκίασης Gouraud, αυτή παρουσιάζει ικανοποιητικά αποτελέσματα μόνον όταν η πυκνότητα δειγματοληψίας είναι υψηλή. Ο Phong εναλλακτικά πρότεινε ότι αντί να παρεμβάλλουμε την τιμή φωτισμού, μπορούμε να παρεμβάλλουμε τα ίδια τα κανονικά διανύσματα χρησιμοποιώντας διγραμμική παρεμβολή όμοια με αυτή που εκτελείται κατά τη φωτοσκίαση Gouraud. Εικόνα 6.3. Διγραμμική παρεμβολή στη φωτοσκίαση Phong Πιο συγκεκριμένα μπορούν να υπολογιστούν τα κανονικά διανύσματα στα σημεία D, E και P ως εξής (Εικόνα 6.3): ( ) ( ) n = λn + λ n, λ = B D D n = λn + λ n, λ = C E E Α Α Β C {Εξ. 6.37} και αντίστοιχα: ( ) n = vn + v n, v= E P P D E {Εξ. 6.38} Η σημαντικότερη και ευκολότερα αντιληπτή διαφορά της φωτοσκίασης Phong και της Gouraud είναι ότι η πρώτη μπορεί να αποδώσει καλύτερα τη λάμψη της κατοπτρικής ανάκλασης. Με αναφορά στην Εικόνα 6.4, παρατηρούμε ότι η φωτοσκίαση Gouraud δεν οδηγεί στη σωστή απόδοση των λάμψεων της κατοπτρικής ανάκλασης. Αυτό συμβαίνει όταν η λάμψη βρίσκεται στο εσωτερικό της επιφάνειας ενός τριγώνου. Ο φωτισμός στις κορυφές είναι χαμηλός διότι η γωνία είναι μεγάλη. 6-4

15 Οπότε και η παρεμβολή των τιμών φωτεινότητας θα δώσει χαμηλές τιμές φωτισμού και στο εσωτερικό του τριγώνου. Αντίθετα, όταν εκτελεστεί παρεμβολή των κανονικών διανυσμάτων, τότε για κάποιο σημείο τα διανύσματα κατοπτρικής ανάκλασης και θέασης θα συμπέσουν οπότε και η τιμή φωτισμού λόγω κατοπτρικής ανάκλασης θα μεγιστοποιηθεί και θα παρατηρήσουμε τη χαρακτηριστική λάμψη. Εικόνα 6.4. Φωτοσκίαση Gouraud (αριστερά) και φωτοσκίαση Phong (δεξιά) 6.7. Προτεινόμενες Ασκήσεις και Προβλήματα Άσκηση ) Έστω μία σημειακή πηγή φωτισμού η οποία φωτίζει το τρισδιάστατο αντικείμενο της τσαγιέρας (teapot) από την κατεύθυνση παρατήρησης. Υλοποιήστε πρόγραμμα που να φωτίζει το αντικείμενο σύμφωνα με το μοντέλο και τον αλγόριθμο Phong. Δώστε στο χρήστη τη δυνατότητα να μεταβάλλει τις τιμές του μοντέλου και να βλέπει το αποτέλεσμα. Άσκηση ) Επαναλάβετε την Άσκηση με τη διαφορά ότι έχουμε μία πηγή φωτός ραβδόμορφη, η οποία προσεγγίζεται από πεπερασμένο αριθμό Ν σημειακών συνευθειακών πηγών. Άσκηση 3) Επαναλάβετε την Άσκηση με τη διαφορά ότι πρέπει να χρησιμοποιήσετε φωτοσκίαση Gouraud. Άσκηση 4) Πολλές φορές όταν φωτίζεται ένα μεγάλο πολύγωνο, για το οποίο αναμένουμε να προκύψει ομοιόμορφος φωτισμός, παρατηρούμε ότι η μία πλευρά του φωτίζεται έντονα ενώ οι άλλες πιο αμυδρά. Περιγράψτε γιατί συμβαίνει αυτό και πως μπορούμε να το αποφύγουμε. Βιβλιογραφία/Αναφορές Avro J. (995). Analytic Methods for Simulated Light Transport. PhD Thesis, Yale University. Dorsey J., Rushmeier H., Sillion F. (008). Digital Modeling of Material Appearance. Morgan Kaufman. Gouraud H. (97). Continuous Shading of Curved Surfaces, EEE transactions on Computers, 0(6), pp Phong BT. (975). llumination for Computer Generated Pictures, Communications of the ACM, 8(6), pp

Γραφικά Υπολογιστών: Φωτισμός

Γραφικά Υπολογιστών: Φωτισμός 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Φωτισμός (llumination) Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα Μοντέλα φωτισμού στα γραφικά υπολογιστών

Διαβάστε περισσότερα

ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ (ΘΕΩΡΙΑ)

ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ (ΘΕΩΡΙΑ) ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ ΔΙΔΑΣΚΩΝ : ΝΤΙΝΤΑΚΗΣ ΙΩΑΝΝΗΣ (MSC) Καθηγητής Εφαρμογών ΚΑΡΔΙΤΣΑ 2013 ΤΙ ΕΙΝΑΙ ΦΩΤΟΑΠΟΔΟΣΗ: ΕΝΝΟΟΥΜΕ ΤΗ ΔΙΑΔΙΚΑΣΙΑ ΚΑΘΟΡΙΣΜΟΥ ΟΛΩΝ ΕΚΕΙΝΩΝ ΤΩΝ ΣΤΟΙΧΕΙΩΝ ΚΑΙ ΠΑΡΑΜΕΤΡΩΝ ΩΣΤΕ ΝΑ ΕΧΟΥΜΕ

Διαβάστε περισσότερα

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Πουλιάσης Αντώνης Φυσικός M.Sc. 2 Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Γεωμετρική

Διαβάστε περισσότερα

Οπτική και κύματα Δημήτρης Παπάζογλου dpapa@materials.uoc.gr Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Γεωμετρική Οπτική

Οπτική και κύματα Δημήτρης Παπάζογλου dpapa@materials.uoc.gr Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Γεωμετρική Οπτική Οπτική και κύματα Δημήτρης Παπάζογλου dpapa@maerals.uoc.gr Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Γεωμετρική Οπτική Η ιδέα την απεικόνισης Σημειακή πηγή Στιγματική απεικόνιση Η ανακατεύθυνση

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ: ΓΕΩΜΕΤΡΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΟΤΗΤΑ: ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ [Κ. ΠΑΠΑΜΙΧΑΛΗΣ ρ ΦΥΣΙΚΗΣ] Τίτλος του Σεναρίου ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ Μελέτη των µετασχηµατισµών

Διαβάστε περισσότερα

ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ (ΘΕΩΡΙΑ)

ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ (ΘΕΩΡΙΑ) ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ ΔΙΔΑΣΚΩΝ : ΝΤΙΝΤΑΚΗΣ ΙΩΑΝΝΗΣ (MSC) Καθηγητής Εφαρμογών ΚΑΡΔΙΤΣΑ 2010 ΤΙ ΕΙΝΑΙ ΦΩΤΟΑΠΟΔΟΣΗ: ΕΝΝΟΟΥΜΕ ΤΗ ΔΙΑΔΙΚΑΣΙΑ ΚΑΘΟΡΙΣΜΟΥ ΟΛΩΝ ΕΚΕΙΝΩΝ ΤΩΝ ΣΤΟΙΧΕΙΩΝ ΚΑΙ ΠΑΡΑΜΕΤΡΩΝ ΩΣΤΕ ΝΑ ΕΧΟΥΜΕ

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ 10 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ 10 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ ΑΣΚΗΣΗ 0 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ . Γεωμετρική οπτική ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ Η Γεωμετρική οπτική είναι ένας τρόπος μελέτης των κυμάτων και χρησιμοποιείται για την εξέταση μερικών

Διαβάστε περισσότερα

Σημειώσεις για το μάθημα "Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM)"

Σημειώσεις για το μάθημα Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM) ΑΤΕΙ ΧΑΛΚΙ ΑΣ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για το μάθημα "Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM" Εαρινό εξάμηνο 5 Χ. Οικονομάκος . Γενικά Χρήση γεωμετρικών μετασχηματισμών στα προγράμματα

Διαβάστε περισσότερα

Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα. Παπαπαύλου Χρήστος ΑΜ: 6609

Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα. Παπαπαύλου Χρήστος ΑΜ: 6609 Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα Παπαπαύλου Χρήστος ΑΜ: 6609 Αναπαράσταση μοντέλου Το 3D μοντέλο το αποθηκεύουμε στην μνήμη με τις εξής δομές δεδομένων: Λίστα κορυφών Λίστα τριγώνων

Διαβάστε περισσότερα

Σύντομη παρουσίαση των Γραφικών με Η/Υ

Σύντομη παρουσίαση των Γραφικών με Η/Υ ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ Οι ηλεκτρονικοί υπολογιστές και συνολικότερα τα προϊόντα της πληροφορικής έχουν μεταμορφώσει (με τρόπο ο οποίος γίνεται άμεσα ή έμμεσα αντιληπτός) τη ζωή δισεκατομμυρίων ανθρώπων στον

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΟΠΤΙΚΗΣ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΟΠΤΙΚΗΣ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΟΠΤΙΚΗΣ Μάθημα προς τους ειδικευόμενους γιατρούς στην Οφθαλμολογία, Στο Κ.Οφ.Κ.Α. την 18/11/2003. Υπό: Δρος Κων. Ρούγγα, Οφθαλμιάτρου. 1. ΑΝΑΚΛΑΣΗ ΤΟΥ ΦΩΤΟΣ Όταν μια φωτεινή ακτίνα ή

Διαβάστε περισσότερα

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες ΣΚΙΑΓΡΑΦΙΑ Γενικές αρχές και έννοιες Στο σύστημα προβολής κατά Monge δεν μας δίνεται η δυνατότητα ν αντιληφθούμε άμεσα τα αντικείμενα του χώρου, παρά μόνο αφού συνδυάσουμε τις δύο προβολές του αντικειμένου

Διαβάστε περισσότερα

Κεφάλαιο 2: Αλγόριθμοι απόδοσης Εισαγωγή

Κεφάλαιο 2: Αλγόριθμοι απόδοσης Εισαγωγή Κεφάλαιο 2: Αλγόριθμοι απόδοσης Εισαγωγή Για τους περισσότερους χρήστες, η γραφική με υπολογιστές είναι συνώνυμη με την απόδοση στιγμιοτύπων του κόσμου που μας περιβάλλει με τρόπο τέτοιο που, κατά το δυνατό,

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα Κεφάλαιο 7. 7.1 ομές εδομένων για Γραφικά Υπολογιστών. Οι δομές δεδομένων αποτελούν αντικείμενο της επιστήμης υπολογιστών. Κατά συνέπεια πρέπει να γνωρίζουμε πώς οργανώνονται τα γεωμετρικά δεδομένα, προκειμένου

Διαβάστε περισσότερα

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση Γεωµετρική θεώρηση του Φωτός Ανάκλαση ηµιουργίαειδώλουαπόκάτοπτρα. είκτης ιάθλασης Νόµος του Snell Ορατό Φάσµα και ιασπορά Εσωτερική ανάκλαση Οπτικές ίνες ιάθλαση σε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

Ειδικά Θέματα Υπολογιστικής Όρασης και Γραφικής 2012-2013 ΦΩΤΙΣΜΟΣ/ΣΚΙΑΣΕΙΣ. Ευάγγελος Θεοδωρίδης

Ειδικά Θέματα Υπολογιστικής Όρασης και Γραφικής 2012-2013 ΦΩΤΙΣΜΟΣ/ΣΚΙΑΣΕΙΣ. Ευάγγελος Θεοδωρίδης Ειδικά Θέματα Υπολογιστικής Όρασης και Γραφικής 2012-2013 ΦΩΤΙΣΜΟΣ/ΣΚΙΑΣΕΙΣ Ευάγγελος Θεοδωρίδης Normal Vectors Η ένταση του φωτισμού μίας επιφάνειας εξαρτάται από την κατεύθυνση της σε σχέση με το φώς

Διαβάστε περισσότερα

ENOTHTA 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ

ENOTHTA 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 5 Ο : ΚΡΟΥΣΕΙΣ ΦΑΙΝΟΜΕΝΟ DOPPLER ENOTHT 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ Κρούση: Κρούση ονομάζουμε το φαινόμενο κατά το οποίο δύο ή περισσότερα σώματα έρχονται σε επαφή για πολύ μικρό χρονικό διάστημα κατά

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

Εισαγωγή Στοιχεία Θεωρίας

Εισαγωγή Στοιχεία Θεωρίας Εισαγωγή Σκοπός της άσκησης αυτής είναι η εισαγωγή στην τεχνογνωσία των οπτικών ινών και η μελέτη τους κατά τη διάδοση μιας δέσμης laser. Συγκεκριμένα μελετάται η εξασθένιση που υφίσταται το σήμα στην

Διαβάστε περισσότερα

Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0

Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0 Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0 1 c 0 0 Όταν το φως αλληλεπιδρά με την ύλη, το ηλεκτρομαγνητικό πεδίο του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

Περίθλαση από ακµή και από εµπόδιο.

Περίθλαση από ακµή και από εµπόδιο. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 63 6. Άσκηση 6 Περίθλαση από ακµή και από εµπόδιο. 6.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης αυτής, καθώς και των δύο εποµένων, είναι η γνωριµία των σπουδαστών

Διαβάστε περισσότερα

ΤΟ ΦΩΣ. Ο φωτισμός μπορεί να υπογραμμίσει σημαντικές λεπτομέρειες ή να τις κρύψει

ΤΟ ΦΩΣ. Ο φωτισμός μπορεί να υπογραμμίσει σημαντικές λεπτομέρειες ή να τις κρύψει ΤΟ ΦΩΣ Ο φωτισμός μπορεί να υπογραμμίσει σημαντικές λεπτομέρειες ή να τις κρύψει Μπορεί να κολακέψει ένα αντικείμενο, τονίζοντας κάποια θετικά χαρακτηριστικά ή να υποβαθμίσει τα λιγότερο ελκυστικά Η τηλεόραση

Διαβάστε περισσότερα

ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου

ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου 2. ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ Με τον όρο ακτινοβολία

Διαβάστε περισσότερα

Το Φως Είναι Εγκάρσιο Κύμα!

Το Φως Είναι Εγκάρσιο Κύμα! ΓΙΩΡΓΟΣ ΑΣΗΜΕΛΛΗΣ Μαθήματα Οπτικής 3. Πόλωση Το Φως Είναι Εγκάρσιο Κύμα! Αυτό που βλέπουμε με τα μάτια μας ή ανιχνεύουμε με αισθητήρες είναι το αποτέλεσμα που προκύπτει όταν φως με συγκεκριμένο χρώμα -είδος,

Διαβάστε περισσότερα

ΑΝΑΚΛΑΣΗ. β' νόμος της ανάκλασης: Η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες.

ΑΝΑΚΛΑΣΗ. β' νόμος της ανάκλασης: Η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες. ΑΝΑΚΛΑΣΗ Η ακτίνα (ή η δέσμη) πριν ανακλασθεί ονομάζεται προσπίπτουσα ή αρχική, ενώ μετά την ανάκλαση ονομάζεται ανακλώμενη. Η γωνία που σχηματίζει η προσπίπτουσα με την κάθετη στην επιφάνεια στο σημείο

Διαβάστε περισσότερα

Αναπαράσταση & Απλοποίηση Μοντέλων

Αναπαράσταση & Απλοποίηση Μοντέλων Γραφικά & Οπτικοποίηση Κεφάλαιο 6 Αναπαράσταση & Απλοποίηση Μοντέλων Εισαγωγή Οι 3Δ εικόνες στα Γραφικά αποτελούνται από διάφορα σχήματα & δομές: Γεωμετρικά σχήματα (π.χ. σφαίρες) Μαθηματικές επιφάνειες

Διαβάστε περισσότερα

Μάθημα 4.10: Οπτικά Αποθηκευτικά Μέσα

Μάθημα 4.10: Οπτικά Αποθηκευτικά Μέσα Κεφάλαιο 4 ο Ο Προσωπικός Υπολογιστής Μάθημα 4.10: Οπτικά Αποθηκευτικά Μέσα Όταν ολοκληρώσεις το κεφάλαιο θα μπορείς: Να εξηγείς τις αρχές λειτουργίας των οπτικών αποθηκευτικών μέσων. Να περιγράφεις τον

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

Εργαστήριο Οπτικής ΣΥΜΒΟΛΗ ΤΟΥ ΦΩΤΟΣ

Εργαστήριο Οπτικής ΣΥΜΒΟΛΗ ΤΟΥ ΦΩΤΟΣ ΣΥΜΒΟΛΗ ΤΟΥ ΦΩΤΟΣ Μάκης Αγγελακέρης 010 Σκοπός της άσκησης Να μπορείτε να εξηγήσετε το φαινόμενο της Συμβολής και κάτω από ποιες προϋποθέσεις δύο δέσμες φωτός, μπορεί να συμβάλουν. Να μπορείτε να περιγράψετε

Διαβάστε περισσότερα

Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο

Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο Κ Ε Φ Α Λ Α Ι Ο Α Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο Σκοπός Σκοπός του κεφαλαίου αυτού είναι να γνωρίσουν οι μαθητές τα υλικά που χρειάζονται για το ελεύθερο σχέδιο και τον τρόπο που θα τα

Διαβάστε περισσότερα

2. Ο οφθαλμός ως οπτικό σύστημα

2. Ο οφθαλμός ως οπτικό σύστημα 2. Ο οφθαλμός ως οπτικό σύστημα 2 Απριλίου 20 Η δομή του οφθαλμού Ιδωμένος ως ένα οπτικό όργανο, ο ανθρώπινος οφθαλμός επιτελεί την ακόλουθη λειτουργία. Δέχεται εισερχόμενες ακτίνες φωτός από απομακρυσμένα

Διαβάστε περισσότερα

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( )

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( ) ΚΕΦΑΛΑΙ 6 ΕΥΘΕΙΑ-ΕΠΙΠΕ 6 Γεωµετρικοί τόποι και εξισώσεις στο χώρο Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών ρισµός 6 Θεωρούµε τη συνάρτηση F:Α,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j Κεφάλαιο Πίνακες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο Είδος Α 56 Είδος

Διαβάστε περισσότερα

Αθ.Κεχαγιας. Σηµειωσεις Αναλυτικης Γεωµετριας. Θ. Κεχαγιας. Σεπτεµβρης 2009, υ.0.95

Αθ.Κεχαγιας. Σηµειωσεις Αναλυτικης Γεωµετριας. Θ. Κεχαγιας. Σεπτεµβρης 2009, υ.0.95 Σηµειωσεις Αναλυτικης Γεωµετριας Θ. Κεχαγιας Σεπτεµβρης 2009, υ.0.95 Περιεχόµενα Εισαγωγη 1 Επιπεδα στον Τρισδιαστατο Χωρο 1 1.1 Θεωρια.................................... 1 1.2 Λυµενες Ασκησεις..............................

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΠΑΡΑΣΚΕΥΗ 0 ΜΑÏΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

Δυσδιάστατη κινηματική ανάλυση. Τσιόκανος Αθανάσιος, Επ. Καθηγητής Βιοκινητικής

Δυσδιάστατη κινηματική ανάλυση. Τσιόκανος Αθανάσιος, Επ. Καθηγητής Βιοκινητικής Δυσδιάστατη κινηματική ανάλυση Τσιόκανος Αθανάσιος, Επ. Καθηγητής Βιοκινητικής Θέματα προς ανάλυση Αντικείμενο της κινηματικής ανάλυσης Καταγραφή της κίνησης Ψηφιοποίηση Υπολογισμός δεδομένων Η δυνατότητα

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

Περίθλαση από µία σχισµή.

Περίθλαση από µία σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 71 7. Άσκηση 7 Περίθλαση από µία σχισµή. 7.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την συµπεριφορά των µικροκυµάτων

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα

Η ανακλαστικότητα των φωτοβολταϊκών πλαισίων

Η ανακλαστικότητα των φωτοβολταϊκών πλαισίων Η ανακλαστικότητα των φωτοβολταϊκών πλαισίων Γ Έκδοση Ιανουάριος 2009 Το παρόν κείμενο αποτελεί αναδημοσίευση των βασικών σημείων από τη Μελέτη για την Αντανακλαστικότητα Φωτοβολταϊκών Πλαισίων Τεχνολογίας

Διαβάστε περισσότερα

Είδη κυµάτων. Ηλεκτροµαγνητικά κύµατα. Σε κάποιο φυσικό µέσο προκαλείται µια διαταραχή. Το κύµα είναι η διάδοση της διαταραχής µέσα στο µέσο.

Είδη κυµάτων. Ηλεκτροµαγνητικά κύµατα. Σε κάποιο φυσικό µέσο προκαλείται µια διαταραχή. Το κύµα είναι η διάδοση της διαταραχής µέσα στο µέσο. Κεφάλαιο T2 Κύµατα Είδη κυµάτων Παραδείγµατα Ένα βότσαλο πέφτει στην επιφάνεια του νερού. Κυκλικά κύµατα ξεκινούν από το σηµείο που έπεσε το βότσαλο και αποµακρύνονται από αυτό. Ένα σώµα που επιπλέει στην

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΙ ΣΤΙΓΜΙΑΙΩΝ ΔΥΝΑΜΕΩΝ ΚΑΙ ΡΟΠΩΝ ΣΕ ΕΜΒΟΛΟΦΟΡΟ ΚΙΝΗΤΗΡΑ 1 ΚΙΝΗΜΑΤΙΚΗ ΤΟΥ ΕΜΒΟΛΟΦΟΡΟΥ ΚΙΝΗΤΗΡΑ

ΥΠΟΛΟΓΙΣΜΟΙ ΣΤΙΓΜΙΑΙΩΝ ΔΥΝΑΜΕΩΝ ΚΑΙ ΡΟΠΩΝ ΣΕ ΕΜΒΟΛΟΦΟΡΟ ΚΙΝΗΤΗΡΑ 1 ΚΙΝΗΜΑΤΙΚΗ ΤΟΥ ΕΜΒΟΛΟΦΟΡΟΥ ΚΙΝΗΤΗΡΑ ΥΠΟΛΟΓΙΣΜΟΙ ΣΤΙΓΜΙΑΙΩΝ ΔΥΝΑΜΕΩΝ ΚΑΙ ΡΟΠΩΝ ΣΕ ΕΜΒΟΛΟΦΟΡΟ ΚΙΝΗΤΗΡΑ Aπό τo βιβλίο Heinz Grohe: Otto und Dieselmotoren. 9 Auflage, Vogel Buchverlag 1990. Kεφάλαιο 2: Mechanische Grundlagen Επιμέλεια μετάφρασης:

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ

Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ ΜΑΘΗΜΑ 1: Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ Τίποτε δεν θεωρώ μεγαλύτερο αίνιγμα από το χρόνο και το χώρο Εντούτοις, τίποτε δεν με απασχολεί λιγότερο από αυτά επειδή ποτέ δεν τα σκέφτομαι Charles

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Φωτοτεχνία

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Φωτοτεχνία ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Φωτοτεχνία Ενότητα 3: Μελέτες Φωτισμού Εσωτερικών Χώρων Mέθοδος Favie-Οικονομόπουλος Γεώργιος Χ. Ιωαννίδης Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

7 σειρά ασκήσεων. Για την επίλυση των προβλημάτων να θεωρηθούν γνωστά: σταθερά του Planck 6,63 10-34 J s, ταχύτητα του φωτός στον αέρα 3 10 8 m/s

7 σειρά ασκήσεων. Για την επίλυση των προβλημάτων να θεωρηθούν γνωστά: σταθερά του Planck 6,63 10-34 J s, ταχύτητα του φωτός στον αέρα 3 10 8 m/s η 7 σειρά ασκήσεων Για την επίλυση των προβλημάτων να θεωρηθούν γνωστά: σταθερά του Planck 6,63 10-34 J s, ταχύτητα του φωτός στον αέρα 3 10 8 m/s 1. Εξηγήστε γιατί, όταν φως διαπερνά μία διαχωριστική

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Εργαστήριο Φυσικής IΙ. Μελέτη της απόδοσης φωτοβολταϊκού στοιχείου με χρήση υπολογιστή. 1. Σκοπός. 2. Σύντομο θεωρητικό μέρος

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Εργαστήριο Φυσικής IΙ. Μελέτη της απόδοσης φωτοβολταϊκού στοιχείου με χρήση υπολογιστή. 1. Σκοπός. 2. Σύντομο θεωρητικό μέρος ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ 1. Σκοπός Το φωτοβολταϊκό στοιχείο είναι μία διάταξη ημιαγωγών η οποία μετατρέπει την φωτεινή ενέργεια που προσπίπτει σε αυτήν σε ηλεκτρική.. Όταν αυτή φωτιστεί με φωτόνια κατάλληλης συχνότητας

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ»

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 217 ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» Λουκία Μαρνέλη Εκπαιδευτικός Δευτεροβάθμιας Εκπαίδευσης Διεύθυνση: Μονής Κύκκου 1, 15669 Παπάγου

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ.

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. Ν. Ε. Ηλιού Επίκουρος Καθηγητής Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Θεσσαλίας Γ.. Καλιαµπέτσος Επιστηµονικός

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 48 49 5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 5 ΕΙΣΑΓΩΓΗ ΟΡΙΣΜΟΣ: Κάθε συνάρτηση : A B με Α R n και Β R ονομάζεται πραγματική συνάρτηση n μεταβλητών ΠΑΡΑΤΗΡΗΣΕΙΣ: Ι Αν Α R n και Β R n τότε έχουμε διανυσματική συνάρτηση

Διαβάστε περισσότερα

Άριστες κατά Pareto Κατανομές

Άριστες κατά Pareto Κατανομές Άριστες κατά Pareto Κατανομές - Ορισμός. Μια κατανομή x = (x, x ) = (( 1, )( 1, )) ονομάζεται άριστη κατά Pareto αν δεν υπάρχει άλλη κατανομή x = ( x, x ) τέτοια ώστε: U j( x j) U j( xj) για κάθε καταναλωτή

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Εικόνα. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 05-1

Εικόνα. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 05-1 Εικόνα Εισαγωγή Ψηφιακή αναπαράσταση Κωδικοποίηση των χρωμάτων Συσκευές εισόδου και εξόδου Βάθος χρώματος και ανάλυση Συμβολική αναπαράσταση Μετάδοση εικόνας Σύνθεση εικόνας Ανάλυση εικόνας Τεχνολογία

Διαβάστε περισσότερα

ΦΩΣ ΑΝΑΣΤΑΣΙΑ ΚΟΥΤΑΛΙΑΝΟΥ ΙΩΑΝΝΑ ΚΑΡΝΕΣΗ ΛΕYΤΕΡΗΣ ΠΑΠΑΙΩΑΝΝΟΥ ΓΙΩΡΓΟΣ ΖΩΓΡΑΦΑΚΗΣ ΤΑΣΟΣ ΠΑΠΑΘΕΟΥ

ΦΩΣ ΑΝΑΣΤΑΣΙΑ ΚΟΥΤΑΛΙΑΝΟΥ ΙΩΑΝΝΑ ΚΑΡΝΕΣΗ ΛΕYΤΕΡΗΣ ΠΑΠΑΙΩΑΝΝΟΥ ΓΙΩΡΓΟΣ ΖΩΓΡΑΦΑΚΗΣ ΤΑΣΟΣ ΠΑΠΑΘΕΟΥ ΦΩΣ ΑΝΑΣΤΑΣΙΑ ΚΟΥΤΑΛΙΑΝΟΥ ΙΩΑΝΝΑ ΚΑΡΝΕΣΗ ΛΕYΤΕΡΗΣ ΠΑΠΑΙΩΑΝΝΟΥ ΓΙΩΡΓΟΣ ΖΩΓΡΑΦΑΚΗΣ ΤΑΣΟΣ ΠΑΠΑΘΕΟΥ ΤΡΑΓΟΥΔΙΑ-ΦΩΣ ΝΙΚΟΣ ΠΟΡΤΟΚΑΛΟΓΛΟΥ ΠΟΥ ΗΣΟΥΝΑ ΦΩΣ ΜΟΥ ΠΥΛΗΤΟΥΗΧΟΥ ΤΟΦΩΣΤΟΥΗΛΙΟΥ SOUNDTRACK ΑΠΌ ΜΑΛΛΙΑ ΚΟΥΒΑΡΙΑ

Διαβάστε περισσότερα

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος παίρνει καθορισμένη τιμή. Ηλεκτρικό πεδίο Ηλεκτρικό πεδίο ονομάζεται ο χώρος, που σε κάθε σημείο

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη

Διαβάστε περισσότερα

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης ΗλιακήΓεωµετρία Γιάννης Κατσίγιαννης ΗηλιακήενέργειαστηΓη Φασµατικήκατανοµήτηςηλιακής ακτινοβολίας ΗκίνησητηςΓηςγύρωαπότονήλιο ΗκίνησητηςΓηςγύρωαπότονήλιοµπορεί να αναλυθεί σε δύο κύριες συνιστώσες: Περιφορά

Διαβάστε περισσότερα

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ENOTHTA. ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΜΕΡΟΣ ο. Πώς προσδιορίζουμε τη θέση των αντικειμένων; A O M B ' y P Ì(,y) Ð Για τον προσδιορισμό της θέσης πάνω σε μία ευθεία πρέπει να έχουμε ένα σημείο της

Διαβάστε περισσότερα

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Σύστημα μετάδοσης με οπτικές ίνες Tο οπτικό φέρον κύμα μπορεί να διαμορφωθεί είτε από αναλογικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις ΚΕΦΑΛΑΙΟ Τρισδιάστατες κινήσεις Οι µονοδιάστατες κινήσεις είναι εύκολες αλλά ζούµε σε τρισδιάστατο χώρο Θα δούµε λοιπόν τώρα πως θα αντιµετωπίζοµε την κίνηση υλικού σηµείου στις τρεις διαστάσεις Ας θεωρήσοµε

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΓΙΑ ΤΗΝ ΜΕΛΕΤΗ ΕΝΟΣ ΣΥΣΤΗΜΑΤΟΣ ΟΠΙΣΘΙΑΣ ΠΡΟΒΟΛΗΣ ΣΕ ΜΙΑ ΑΙΘΟΥΣΑ ΠΑΡΟΥΣΙΑΣΕΩΝ. Βασίλης Δριμούρας

ΥΠΟΛΟΓΙΣΜΟΣ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΓΙΑ ΤΗΝ ΜΕΛΕΤΗ ΕΝΟΣ ΣΥΣΤΗΜΑΤΟΣ ΟΠΙΣΘΙΑΣ ΠΡΟΒΟΛΗΣ ΣΕ ΜΙΑ ΑΙΘΟΥΣΑ ΠΑΡΟΥΣΙΑΣΕΩΝ. Βασίλης Δριμούρας ΥΠΟΛΟΓΙΣΜΟΣ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΓΙΑ ΤΗΝ ΜΕΛΕΤΗ ΕΝΟΣ ΣΥΣΤΗΜΑΤΟΣ ΟΠΙΣΘΙΑΣ ΠΡΟΒΟΛΗΣ ΣΕ ΜΙΑ ΑΙΘΟΥΣΑ ΠΑΡΟΥΣΙΑΣΕΩΝ. Βασίλης Δριμούρας Βήμα 1 ο -Υπολογισμός διάστασης οθόνης, γωνίας και απόστασης θέασης. Κάντε ένα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΑΣΜΑΤΟΜΕΤΡΙΚΕΣ ΤΕΧΝΙΚΕΣ (SPECTROMETRIC TECHNIQUES)

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΑΣΜΑΤΟΜΕΤΡΙΚΕΣ ΤΕΧΝΙΚΕΣ (SPECTROMETRIC TECHNIQUES) ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΑΣΜΑΤΟΜΕΤΡΙΚΕΣ ΤΕΧΝΙΚΕΣ (SPECTROMETRIC TECHNIQUES) ΑΘΗΝΑ, ΟΚΤΩΒΡΙΟΣ 2014 ΦΑΣΜΑΤΟΜΕΤΡΙΚΕΣ ΤΕΧΝΙΚΕΣ Στηρίζονται στις αλληλεπιδράσεις της ηλεκτρομαγνητικής ακτινοβολίας με την ύλη. Φασματομετρία=

Διαβάστε περισσότερα

ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT

ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT Βασιλίσιν Μιχάλης, Δέφτο Χριστίνα, Ιλινιούκ Ίον, Κάσα Μαρία, Κουζμίδου Ελένη, Λαμπαδάς Αλέξης, Μάνε Χρισόστομος, Μάρκο Χριστίνα, Μπάμπη Χριστίνα, Σακατελιάν Λίλιτ, Σαχμπαζίδου

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 Κίνηση Κυµάτων Περιεχόµενα Κεφαλαίου 15 Χαρακτηριστικά των Κυµάτων Είδη κυµάτων: Διαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της Διάδοσης κυµάτων Η Εξίσωση του Κύµατος

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

Ακτίνες Χ (Roentgen) Κ.-Α. Θ. Θωμά

Ακτίνες Χ (Roentgen) Κ.-Α. Θ. Θωμά Ακτίνες Χ (Roentgen) Είναι ηλεκτρομαγνητικά κύματα με μήκος κύματος μεταξύ 10 nm και 0.01 nm, δηλαδή περίπου 10 4 φορές μικρότερο από το μήκος κύματος της ορατής ακτινοβολίας. ( Φάσμα ηλεκτρομαγνητικής

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

συνίστανται από πολωτή που επιτρέπει να περνούν µόνο τα κατακόρυφα πολωµένα κύµατα.

συνίστανται από πολωτή που επιτρέπει να περνούν µόνο τα κατακόρυφα πολωµένα κύµατα. Γραµµικά πολωµένο ηλεκτροµαγνητικό κύµα. Νόµος του Malus Η κλασσική κυµατική θεωρία του φωτός µοντελοποιεί το φως (ή ένα τυχόν ηλεκτροµαγνητικό κύµα κατ επέκταση), στον ελεύθερο χώρο, ως ένα εγκάρσιο ηλεκτροµαγνητικό

Διαβάστε περισσότερα

Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά?

Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά? Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά? (Μη-μαγνητικά, μη-αγώγιμα, διαφανή στερεά ή υγρά με πυκνή, σχετικά κανονική διάταξη δομικών λίθων). Γραμμικά πολωμένο κύμα προσπίπτει σε ηλεκτρόνιο

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΤΕΙ - ΧΑΛΚΙ ΑΣ 4. ΕΙ ΙΚΕΣ ΙΟ ΟΙ. ίοδος zener. Χαρακτηριστική καµπύλη διόδου zener. Χαρακτηριστική καµπύλη διόδου Zener

ΤΕΙ - ΧΑΛΚΙ ΑΣ 4. ΕΙ ΙΚΕΣ ΙΟ ΟΙ. ίοδος zener. Χαρακτηριστική καµπύλη διόδου zener. Χαρακτηριστική καµπύλη διόδου Zener 4. Ειδικές ίοδοι - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 4. ΕΙ ΙΚΕΣ ΙΟ ΟΙ ίοδος zener Χαρακτηριστική καµπύλη διόδου zener Τάση Zener ( 100-400 V για µια απλή δίοδο) -V Άνοδος Ι -Ι Κάθοδος V Τάση zener V Z I Ζ 0,7V

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη

ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την κυκλική κίνηση µίας σηµειακής µάζας και ιδιαίτερα την εξάρτηση της κεντροµόλου δύναµης από τη µάζα,

Διαβάστε περισσότερα

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια 8 Κρούσεις Στην µηχανική µε τον όρο κρούση εννοούµε τη σύγκρουση δύο σωµάτων που κινούνται το ένα σχετικά µε το άλλο.το ϕαινόµενο της κρούσης έχει δύο χαρακτηριστικά : ˆ Εχει πολύ µικρή χρονική διάρκεια.

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

Εργαστήριο 3: Διαλείψεις

Εργαστήριο 3: Διαλείψεις Εργαστήριο 3: Διαλείψεις Διάλειψη (fading) είναι η παραμόρφωση ενός διαμορφωμένου σήματος λόγω της μετάδοσης του σε ασύρματο περιβάλλον. Η προσομοίωση μίας τέτοιας μετάδοσης γίνεται με την μοντελοποίηση

Διαβάστε περισσότερα

ΕΞΗΓΗΣΗ ΤΗΣ ΣΥΜΒΟΛΗΣ ΚΑΙ ΤΗΣ ΠΕΡΙΘΛΑΣΗΣ ΜΕ ΤΗΝ ΣΩΜΑΤΙΔΙΑΚΗ ΘΕΩΡΙΑ ΤΟΥ ΦΩΤΟΣ

ΕΞΗΓΗΣΗ ΤΗΣ ΣΥΜΒΟΛΗΣ ΚΑΙ ΤΗΣ ΠΕΡΙΘΛΑΣΗΣ ΜΕ ΤΗΝ ΣΩΜΑΤΙΔΙΑΚΗ ΘΕΩΡΙΑ ΤΟΥ ΦΩΤΟΣ ΕΞΗΓΗΣΗ ΤΗΣ ΣΥΜΒΟΛΗΣ ΚΑΙ ΤΗΣ ΠΕΡΙΘΛΑΣΗΣ ΜΕ ΤΗΝ ΣΩΜΑΤΙΔΙΑΚΗ ΘΕΩΡΙΑ ΤΟΥ ΦΩΤΟΣ ΑΝΑΤΡΟΠΗ ΤΗΣ ΚΥΜΑΤΙΚΗΣ ΘΕΩΡΙΑΣ Του Αλέκου Χαραλαμπόπουλου Η συμβολή και η περίθλαση του φωτός, όταν περνά λεπτή σχισμή ή μικρή

Διαβάστε περισσότερα

Φωτισμός χώρου Μιλτιάδη Μ. Κάπου Μηχ. Ηλεκτρολόγου, Καθηγητή, Εργολ. Δημοσίων Εργων

Φωτισμός χώρου Μιλτιάδη Μ. Κάπου Μηχ. Ηλεκτρολόγου, Καθηγητή, Εργολ. Δημοσίων Εργων Φωτισμός χώρου Μιλτιάδη Μ. Κάπου Μηχ. Ηλεκτρολόγου, Καθηγητή, Εργολ. Δημοσίων Εργων Γενικά Μια καλή μελέτη ηλεκτρικής εγκατάστασης φωτισμού, πρέπει να βασίζεται στις πραγματικές ανάγκες φωτισμού του χώρου.

Διαβάστε περισσότερα