Analisi dinamica di un telaio shear-type a 3 piani

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Analisi dinamica di un telaio shear-type a 3 piani"

Transcript

1 ss_new.nb 1 Analisi dinamica di un elaio shear-ype a 3 piani Sezione pilasri 3 x 3 Versione per la sampa ü Comandi di uilià ü Equazioni del moo In[7]:= = Ou[7]= H + H + + H + @D In[8]:= = Ou[8]= H + H @D In[9]:= Ou[9]= = H @D In[1]:= MM := 8i, 1, 3<, 8j, 1, 3<D In[11]:= KK := 8i, 1, 3<, 8j, 1, 3<D In[12]:= CC := 8i, 1, 3<, 8j, 1, 3<D In[13]:= FF1 := 8i, 1, 3<D In[14]:= FF2 := 8i, 1, 3<D In[15]:= Ou[15]//MarixForm= i y j z k { In[16]:= Ou[16]//MarixForm= i + y + j z k { In[17]:= Ou[17]//MarixForm= i + y + j z k {

2 ss_new.nb 2 In[18]:= In[19]:= AA := Ou[19]//MarixForm= i j k In[2]:= = M, 8i, 1, 3<D Ou[2]= 8M, M, M< In[21]:= = K, 8i, 1, 3<D Ou[21]= 8K, K, K< In[22]:= = Ci, 8i, 1, 3<D y z { Ou[22]= In[23]:= Ou[23]= In[24]:= 8Ci, Ci, Ci< AA 99 2 K M, K M =, 9 K M, 2 K M, K M =, 9, K M, K M == Ou[24]//MarixForm= 2 K i K M K 2 K M M j k K M M K M K M y z { ü Assegnazione valori numerici In[25]:= l = 3; In[26]:= b =.3; In[27]:= h =.3; In[28]:= Ine = b h3 12 Ou[28]=.675 In[29]:= El = Ou[29]= 3 In[3]:= 24 El Ine K = Ou[3]= l 3 In[31]:= M = 25 Ou[31]= 25

3 ss_new.nb 3 In[32]:= Ci =.2 Ou[32]= ü Analisi modale In[33]:= AA Ou[33]= , 72.,.<, 8 72., 144., 72.<, 8., 72., 72.<< In[34]:= Ou[34]= In[35]:= eigens = , , <, , , <, , ,.5919<, ,.5919, <<< eigv1 = 3DD Ou[35]= ,.5919, < In[36]:= Ou[36]= In[37]:= Ou[37]= In[38]:= eigv2 = 2DD , ,.5919< eigv3 = 1DD , , < = <<, i<, 8i, 1, 3<DD Ou[38]= 88, <, , 1<, , 2<, , 3<< In[39]:= Ou[39]= In[4]:= In[41]:= = PloJoined True, PloRange 88, 1.5<, 8, 3.1<<, DisplayFuncion IdeniyD = PloSyle PloRange 88, 1.5<, 8, 3.1<<, DisplayFuncion IdeniyD; DisplayFuncion $DisplayFuncionD Ou[41]= In[42]:= = <<, i<, 8i, 1, 3<DD Ou[42]= 88, <, , 1<, , 2<, , 3<<

4 ss_new.nb 4 In[43]:= Ou[43]= In[44]:= Ou[44]= In[45]:= = PloJoined True, PloRange , 1.5<, 8, 3.1<<, DisplayFuncion IdeniyD = PloSyle PloRange 88, 1.5<, 8, 3.1<<, DisplayFuncion IdeniyD DisplayFuncion $DisplayFuncionD Ou[45]= In[46]:= = <<, i<, 8i, 1, 3<DD Ou[46]= 88, <, , 1<, , 2<, , 3<< In[47]:= Ou[47]= In[48]:= Ou[48]= In[49]:= = PloJoined True, PloRange , 1.5<, 8, 3.1<<, DisplayFuncion IdeniyD = PloSyle PloRange 88, 1.5<, 8, 3.1<<, DisplayFuncion IdeniyD DisplayFuncion $DisplayFuncionD Ou[49]=

5 ss_new.nb 5 In[5]:= Ou[5]= In[51]:= Φ = eigv2, eigv3<d , ,.5919<, , , <, ,.5919, << Ou[51]//MarixForm= i y j z k { In[52]:= Ou[52]//MarixForm= i y j k z { In[53]:= kmodal = 1 6 D Ou[53]= ,, <, 8, , <, 8,, << In[54]:= Ou[54]//MarixForm= i j k y z { In[55]:= mmodal = 1 6 D Ou[55]= 8825.,, <, 8, 25., <, 8,, 25.<< In[56]:= Ou[56]//MarixForm= i 25. y 25. j z k 25. { In[57]:= Ou[57]= In[58]:= = CC Ou[58]= 88,, <, 8,, <, 8,, << In[59]:= cmodal = 1 6 D Ou[59]= ,, <, 8,.31992, <, 8,, << In[6]:= fmodal1 = 1 6 D Ou[6]= , , < In[61]:= fmodal2 = 1 6 D Ou[61]= , ,.11822<

6 ss_new.nb 6 Equazioni modali In[62]:= eqdisacc = 8, 2<D + + 8, 1<D + fmodal1 + fmodal2 Ou[62]= ü Assegnazione erremoo In[63]:= err = << afdis2; In[64]:= err1 = =.1, =.1<, = +, 8i, 1, In[65]:= Ou[65]= xg = <<, <>D Sposameno al erreno In[66]:= 8,, 17.99<D Ou[66]= Velocià al erreno

7 ss_new.nb 7 In[67]:= 8,, 17.99<D Ou[67]= Accelerazione al erreno In[68]:= 8,, 17.99<D Ou[68]= ü Risoluzione equazioni modali Soluzione prima equazione modale In[69]:= = <, 8, 17<, MaxSeps maxpassid Ou[69]= 17.<<, <>D<<

8 ss_new.nb 8 In[7]:= ê. 8,, 17<, AxesLabel 8"", "yh1lhl"<d yh1lhl Ou[7]= Soluzione seconda equazione modale In[71]:= = <, 8,, 17<, MaxSeps maxpassid Ou[71]= In[72]:= 17.<<, <>D<< ê. 8,, 17<, AxesLabel 8"", "yh2lhl"<d yh2lhl Ou[72]= Soluzione erza equazione modale In[73]:= = <, 8,, 17<, MaxSeps maxpassid Ou[73]= 17.<<, <>D<<

9 ss_new.nb 9 In[74]:= ê. 8,, 17<, AxesLabel 8"", "yh3lhl"<d yh3lhl Ou[74]= Ricosruzione dello sao In[75]:= Ou[75]= ü Sao con il solo primo modo In[76]:= pl1x1 = 1DD ê. 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x1hl"<, Frame True, FrameLabel 8"", "x1hl", "sposameno 1 liv. I modo", " "<D sposameno 1 liv. I modo x 1 HL Ou[76]=

10 ss_new.nb 1 In[77]:= pl1x2 = 1DD ê. 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x2hl"<, Frame True, FrameLabel 8"", "x2hl", "sposameno 2 liv. I modo", " "<D sposameno 2 liv. I modo x 2 HL Ou[77]= In[78]:= pl1x3 = 1DD ê. 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x3hl"<, Frame True, FrameLabel 8"", "x3hl", "sposameno 3 liv. I modo", " "<D sposameno 3 liv. I modo x 3 HL Ou[78]=

11 ss_new.nb 11 ü Sao con i primi due modi In[79]:= pl2x1 = 1DD ê. + 2DD ê. 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x1hl"<, Frame True, FrameLabel 8"", "x1hl", "sposameno 1 liv. I e II modo", " "<D sposameno 1 liv. I e II modo x 1 HL Ou[79]= In[8]:= pl2x2 = 1DD ê. + 2DD ê. 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x2hl"<, Frame True, FrameLabel 8"", "x2hl", "sposameno 2 liv. I e II modo", " "<D sposameno 2 liv. I e II modo x 2 HL Ou[8]=

12 ss_new.nb 12 In[81]:= pl2x3 = 1DD ê. + 1DD ê. 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x3hl"<, Frame True, FrameLabel 8"", "x3hl", "sposameno 3 liv. I e II modo", " "<D sposameno 3 liv. I e II modo x 3 HL Ou[81]= ü Sao con ui e re i modi In[82]:= pl3x1 = 1DD ê. + 2DD ê. + 3DD ê. 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x1hl"<, Frame True, FrameLabel 8"", "x1hl", "sposameno 1 liv. I, II e III modo", " "<D.6 sposameno 1 liv. I, II e III modo x 1 HL Ou[82]=

13 ss_new.nb 13 In[83]:= pl3x2 = 1DD ê. + 2DD ê. + 3DD ê. 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x2hl"<, Frame True, FrameLabel 8"", "x2hl", "sposameno 2 liv. I, II e III modo", " "<D.6 sposameno 2 liv. I, II e III modo x 2 HL Ou[83]= In[84]:= pl3x3 = 1DD ê. + 2DD ê. + 3DD ê. 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x3hl"<, Frame True, FrameLabel 8"", "x3hl", "sposameno 3 liv. I, II e III modo", " "<D.6 sposameno 3 liv. I, II e III modo x 3 HL Ou[84]= ü Soluzione dell'equazione di parenza In[85]:= solo = <, 8,, 17<, MaxSeps maxpassid Ou[85]= 17.<<, <>D, 17.<<, <>D, 17.<<, <>D<<

14 ss_new.nb 14 In[86]:= plox1 = ê. solod, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x1hl"<, Frame True, FrameLabel 8"", "x1hl", "sposameno 1 liv. inegrazione direa", " "<D sposameno 1 liv. inegrazione direa.6 x 1 HL Ou[86]= In[87]:= plox2 = ê. solod, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x2hl"<, Frame True, FrameLabel 8"", "x2hl", "sposameno 2 liv. inegrazione direa", " "<D sposameno 2 liv. inegrazione direa.6 x 2 HL Ou[87]= In[88]:= plox3 = ê. solod, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x3hl"<, Frame True, FrameLabel 8"", "x3hl", "sposameno 3 liv. inegrazione direa", " "<D sposameno 3 liv. inegrazione direa.6 x 3 HL Ou[88]=

15 ss_new.nb 15 ü Sovrapposizione In[89]:= plox1r = ê. solod, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, Frame True, FrameLabel 8"", "x1hl", "sovrapposizione spos 1 liv.", " "<, PloSyle DisplayFuncion IdeniyD; In[9]:= plox2r = ê. solod, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, Frame True, FrameLabel 8"", "x2hl", "sovrapposizione spos 2 liv.", " "<, PloSyle DisplayFuncion IdeniyD; In[91]:= plox3r = ê. solod, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, Frame True, FrameLabel 8"", "x3hl", "sovrapposizione spos 3 liv.", " "<, PloSyle DisplayFuncion IdeniyD; Soluzione dell'equazione di parenza e soluzione con il primo modo (a linea coninua)

16 ss_new.nb 16 In[92]:= pl1x1d<, pl1x2d<, pl1x3d<<, DisplayFuncion $DisplayFuncionDD sovrapposizione spos 1 liv..6 x 1 HL sovrapposizione spos 2 liv..6 x 2 HL sovrapposizione spos 3 liv..6 x 3 HL Ou[92]= GraphicsArray

17 ss_new.nb 17 Soluzione dell'equazione di parenza e soluzione con il primo e secondo modo (a linea coninua) In[93]:= pl2x1d<, pl2x2d<, pl2x3d<<, DisplayFuncion $DisplayFuncionDD

18 ss_new.nb 18.6 sovrapposizione spos 1 liv. x 1 HL sovrapposizione spos 2 liv..6 x 2 HL sovrapposizione spos 3 liv..6 x 3 HL Ou[93]= GraphicsArray

19 ss_new.nb 19 Soluzione dell'equazione di parenza e soluzione con il primo, secondo e erzo modo (a linea coninua)

20 ss_new.nb 2 In[94]:= pl3x1d<, pl3x2d<, pl3x3d<<, DisplayFuncion $DisplayFuncionDD sovrapposizione spos 1 liv..6 x 1 HL sovrapposizione spos 2 liv..6 x 2 HL sovrapposizione spos 3 liv..6 x 3 HL Ou[94]= GraphicsArray

Moto armonico: T : periodo, ω = pulsazione A: ampiezza, φ : fase

Moto armonico: T : periodo, ω = pulsazione A: ampiezza, φ : fase Moo armonico: equazione del moo: d x ( ) = x ( ) soluzione: x ( ) = A s in ( + φ ) =π/ Τ T : periodo, = pulsazione A: ampiezza, φ : fase sposameno: x ( ) = X s in ( ) velocià: dx() v () = = X cos( ) accelerazione:

Διαβάστε περισσότερα

!Stato di tensione triassiale!stato di tensione piano!cerchio di Mohr

!Stato di tensione triassiale!stato di tensione piano!cerchio di Mohr !Stato di tensione triassiale!stato di tensione piano!cerchio di Mohr Stato di tensione F A = F / A F Traione pura stato di tensione monoassiale F M A M Traione e torsione stato di tensione piano = F /

Διαβάστε περισσότερα

ECONOMIA MONETARIA (parte generale) Prof. Guido Ascari LEZIONE 3 LA DOMANDA DI MONETA

ECONOMIA MONETARIA (parte generale) Prof. Guido Ascari LEZIONE 3 LA DOMANDA DI MONETA ECONOMIA MONETARIA (parte generale) Prof. Guido Ascari Anno 2006-2007 2007 LEZIONE 3 LA DOMANDA DI MONETA LA DOMANDA DI MONETA Teoria Macro Micro Th.Quantitativa Th.. Keynesiana => Keynes, Tobin Th. Friedman

Διαβάστε περισσότερα

Capitolo 4 Funzione di trasferimento

Capitolo 4 Funzione di trasferimento Capiolo 4 Funzione di rasferimeno Fondameni di conrolli auomaici 3/ed P. Bolzern, R. Scaolini, N. Schiavoni Fondameni di conrolli auomaici 3/ed P. Bolzern, R. Scaolini, N. Schiavoni Fondameni di conrolli

Διαβάστε περισσότερα

ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ 2005 1

ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ 2005 1 (1922- ) 2005 1 2 .1.2 1.1.2-3 1.2.3-4 1.3.4-5 1.4.5-6 1.5.6-10.11 2.1 2.2 2.3 2.4.11-12.12-13.13.14 2.5 (CD).15-20.21.22 3 4 20.,,.,,.,.,,.,.. 1922., (= )., (25/10/2004), (16/5/2005), (26/1/2005) (7/2/2005),,,,.,..

Διαβάστε περισσότερα

ΕΥΣΤΑΘΕΙΑ ΙΑΤΟΙΧΙΣΜΟΥ ΠΛΟΙΟΥ ΚΑΙ ΥΠΟΒΑΘΡΟ ΚΑΝΟΝΙΣΜΩΝ. Σηµειώσεις για το πρόγραµµα Mathematica

ΕΥΣΤΑΘΕΙΑ ΙΑΤΟΙΧΙΣΜΟΥ ΠΛΟΙΟΥ ΚΑΙ ΥΠΟΒΑΘΡΟ ΚΑΝΟΝΙΣΜΩΝ. Σηµειώσεις για το πρόγραµµα Mathematica ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΥΣΤΑΘΕΙΑ ΙΑΤΟΙΧΙΣΜΟΥ ΠΛΟΙΟΥ ΚΑΙ ΥΠΟΒΑΘΡΟ ΚΑΝΟΝΙΣΜΩΝ Σηµειώσεις για το πρόγραµµα Mathematica ρ. Νίκος Θεµελής Νοέµβριος 009 Σκοπός των σηµειώσεων

Διαβάστε περισσότερα

TRIGONOMETRIA: ANGOLI ASSOCIATI

TRIGONOMETRIA: ANGOLI ASSOCIATI FACOLTÀ DI INGEGNERIA CORSO DI AZZERAMENTO - MATEMATICA ANNO ACCADEMICO 010-011 ESERCIZI DI TRIGONOMETRIA: ANGOLI ASSOCIATI Esercizio 1: Fissata in un piano cartesiano ortogonale xoy una circonferenza

Διαβάστε περισσότερα

:= x 2 + c 1 H1 - xl x 2 + c 2 H1- xl 2 x 3 17 c 1 c c 2 c c c 2 : 1 Ø 2 Ø 111 >>

:= x 2 + c 1 H1 - xl x 2 + c 2 H1- xl 2 x 3 17 c 1 c c 2 c c c 2 : 1 Ø 2 Ø 111 >> 3η Γραπτή Εργασία Νικόλαος Μανάρας (Α.Μ. 5229) Άσκηση. (2 µονάδες) ü a Θεωρούµε το συναρτησοειδές, J(y)=Ÿ AyH+xL 2 +xhy 'L 2 E x όπου η συνάρτηση είναι δύο φορές συνεχώς διαφορίσιµη, µε y()= και y()=.

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Un calcolo deduttivo per la teoria ingenua degli insiemi. Giuseppe Rosolini da un università ligure

Un calcolo deduttivo per la teoria ingenua degli insiemi. Giuseppe Rosolini da un università ligure Un calcolo deduttivo per la teoria ingenua degli insiemi Giuseppe Rosolini da un università ligure Non è quella in La teoria ingenua degli insiemi Ma è questa: La teoria ingenua degli insiemi { < 3} è

Διαβάστε περισσότερα

Σηµειώσεις για το πρόγραµµα Mathematica

Σηµειώσεις για το πρόγραµµα Mathematica ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Σηµειώσεις για το πρόγραµµα Mathematica Νίκος Θεµελής Νοέµβριος 008 Σκοπός του φυλλαδίου είναι να παρέχει βασικές γνώσεις για την χρήση

Διαβάστε περισσότερα

Integrali doppi: esercizi svolti

Integrali doppi: esercizi svolti Integrali doppi: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio. Calcolare i seguenti integrali doppi sugli insiemi specificati: a) +

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΑ Χ Ρ ΗΜ ΑΤ ΙΣ Τ ΗΡ ΙΑ CISCO EXPO 2009 G. V a s s i l i o u - E. K o n t a k i s g.vassiliou@helex.gr - e.k on t ak is@helex.gr 29 Α π ρ ι λ ί ο υ 20 0 9 Financial Services H E L E X N O C A g e

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

Σηµειώσεις για το πρόγραµµα Mathematica

Σηµειώσεις για το πρόγραµµα Mathematica ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Σηµειώσεις για το πρόγραµµα Mathematica Νίκος Θεµελής Νοέµβριος 008 Σκοπός του φυλλαδίου είναι να παρέχει βασικές γνώσεις για την χρήση

Διαβάστε περισσότερα

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση. (, ) =,, = : = = ( ) = = = ( ) = = = ( ) ( ) = = ( ) = = = = (, ) =, = = =,,...,, N, (... ) ( + ) =,, ( + ) (... ) =,. ( ) = ( ) = (, ) = = { } = { } = ( ) = \ = { = } = { = }. \ = \ \ \ \ \ = = = = R

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #3: ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #3: ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 6-7, 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #3: ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης. Επιλέξτε αυθαίρετα µία συνάρτηση ( x και τέσσερα ζευγάρια σημείων ( x, ( x, έτσι ώστε τα σημεία x να μην

Διαβάστε περισσότερα

Εγχειρίδιο οδηγιών. Χρονοθερμοστάτης WiFi 02911 Εγχειρίδιο τεχνικού εγκατάστασης

Εγχειρίδιο οδηγιών. Χρονοθερμοστάτης WiFi 02911 Εγχειρίδιο τεχνικού εγκατάστασης Εγχειρίδιο οδηγιών Χρονοθερμοστάτης WiFi 02911 Εγχειρίδιο τεχνικού εγκατάστασης Πίνακας περιεχομένων 1. Χρονοθερμοστάτης 02911 3 2. Πεδίο εφαρμογής 3 3. Εγκατάσταση 3 4. Συνδέσεις 4 4.1 Σύνδεση ρελέ 4

Διαβάστε περισσότερα

F1. Goniometria - Esercizi

F1. Goniometria - Esercizi F1. Goniometria - Esercizi TRASFORMARE GRADI IN RADIANTI. 1) [ π 1, 11 π, 1 π, π ) 1 0 1 [ π 1, π, π, 1 1 π ) 0 0 0 [ π, π, 1 π, π ) 1 0 [ π, 11 1 π, 1 1 π, π ) 00 [ π 1, π, π, π ) 1 00 [ π 0, π, 1 π,

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Έγκριση ελευθέρων βοηθημάτων της Ιταλικής Γλώσσας για το Γενικό Λύκειο σχολικού έτους

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Έγκριση ελευθέρων βοηθημάτων της Ιταλικής Γλώσσας για το Γενικό Λύκειο σχολικού έτους ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ.

Διαβάστε περισσότερα

Πίνακας ρυθμίσεων στο χώρο εγκατάστασης

Πίνακας ρυθμίσεων στο χώρο εγκατάστασης 1/8 Κατάλληλες εσωτερικές μονάδες *HVZ4S18CB3V *HVZ8S18CB3V *HVZ16S18CB3V Σημειώσεις (*5) *4/8* 4P41673-1 - 215.4 2/8 Ρυθμίσεις χρήστη Προκαθορισμένες τιμές Θερμοκρασία χώρου 7.4.1.1 Άνεση (θέρμανση) R/W

Διαβάστε περισσότερα

Ιταλική Γλώσσα Β1 Θεωρία: Γραμματική

Ιταλική Γλώσσα Β1 Θεωρία: Γραμματική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ιταλική Γλώσσα Β1 Θεωρία: Γραμματική 6 η ενότητα: Riflessione lessicale allenamento e sport Μήλιος Βασίλειος Τμήμα Ιταλικής Γλώσσας και

Διαβάστε περισσότερα

Ακαδημαϊκός Λόγος Εισαγωγή

Ακαδημαϊκός Λόγος Εισαγωγή - Nel presente studio/saggio/lavoro si andranno ad esaminare/investigare/analizzare/individuare... Γενική εισαγωγή για μια εργασία/διατριβή Per poter rispondere a questa domanda, mi concentrerò in primo

Διαβάστε περισσότερα

IMPARA LE LINGUE CON I FILM AL CLA

IMPARA LE LINGUE CON I FILM AL CLA UNIVERSITÀ DEGLI STUDI DI PADOVA - CENTRO LINGUISTICO DI ATENEO IMPARA LE LINGUE CON I FILM AL CLA Vedere film in lingua straniera è un modo utile e divertente per imparare o perfezionare una lingua straniera.

Διαβάστε περισσότερα

GUIDA FISCALE PER GLI STRANIERI

GUIDA FISCALE PER GLI STRANIERI GUIDA FISCALE PER GLI STRANIERI A cura della Direzione Centrale Servizi ai Contribuenti in collaborazione con la Direzione Provinciale di Trento Si ringrazia il CINFORMI - Centro Informativo per l Immigrazione

Διαβάστε περισσότερα

LVFABPB νέο. Λειτουργίες. Εκδόσεις. 50's style retro

LVFABPB νέο. Λειτουργίες. Εκδόσεις. 50's style retro LVFABPB νέο Ελεύθερο Πλυντήριο Πιάτων 60 εκ, 50's, Γαλάζιο Ενεργειακή κλάση A+++ Περισσότερες πληροφορίες στο www.petco.gr EAN13: 8017709232092 4ετής εγγύηση μόνο από το επίσημο δίκτυο της PETCO AE Σύστημα

Διαβάστε περισσότερα

Ιταλική Γλώσσα Β1. 11 η ενότητα: Appuntamenti nel tempo libero. Ελένη Κασάπη Τμήμα Ιταλικής Γλώσσας και Φιλολογίας ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Ιταλική Γλώσσα Β1. 11 η ενότητα: Appuntamenti nel tempo libero. Ελένη Κασάπη Τμήμα Ιταλικής Γλώσσας και Φιλολογίας ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ 11 η ενότητα: Appuntamenti nel tempo libero. Ελένη Κασάπη Τμήμα Ιταλικής Γλώσσας και Φιλολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

DEFINIZIONE DELLE FUNZIONI TRIGONOMETRICHE IN UN TRIANGOLO RETTANGOLO

DEFINIZIONE DELLE FUNZIONI TRIGONOMETRICHE IN UN TRIANGOLO RETTANGOLO DEFINIZIONE DELLE FUNZIONI TRIGONOMETRICHE IN UN TRIANGOLO RETTANGOLO Il triangolo ABC ha n angolo retto in C e lati di lnghezza a, b, c (vedi fig. ()). Le fnzioni trigonometriche dell angolo α sono definite

Διαβάστε περισσότερα

Ιταλική Γλώσσα Β1. 12 η ενότητα: Giorno e notte estate. Ελένη Κασάπη Τμήμα Ιταλικής Γλώσσας και Φιλολογίας ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Ιταλική Γλώσσα Β1. 12 η ενότητα: Giorno e notte estate. Ελένη Κασάπη Τμήμα Ιταλικής Γλώσσας και Φιλολογίας ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ 12 η ενότητα: Giorno e notte estate. Ελένη Κασάπη Τμήμα Ιταλικής Γλώσσας και Φιλολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

OILGEAR TAIFENG. (ml/rev) (bar) (bar) (L/min) (rpm) (kw)

OILGEAR TAIFENG. (ml/rev) (bar) (bar) (L/min) (rpm) (kw) PVWW!"#$ PVWW!"#$%&'()*+!"#$% 12!"#$%&'()*!!"#$%&'(!"#$!"#$%&'()*+!"#$%!!"#!$%&'()*+!"#$%!"!"#$%&'!"#$%&'!"#!"#$%!" SE!"!"#$%&'!"#!"#$%&'!"#$%&'!"#$!"#$!"#$%&'!"#$%&'!"#$%&!"#$%&'!"!"#$%&!"#$%&!"!"#$%!"#$%!"#$%&'(!"#$%&'!!"#!"#!"#$%&!"#$%&'(

Διαβάστε περισσότερα

άπο πρώτη ς Οκτωβρίου 18 3"] μέ/ρι τοΰ Πάσ/α 1838 τυροωμιάσατ ο Π 1 Ν Α S Τ Ω Ν Ε Ν Τ Ω Ι Β. Ο Θ Ω Ν Ε Ι Ω Ι Π Α Ν Ε Π Ι Σ Ί Ή Μ Ε Ι Ω Ι

άπο πρώτη ς Οκτωβρίου 18 3] μέ/ρι τοΰ Πάσ/α 1838 τυροωμιάσατ ο Π 1 Ν Α S Τ Ω Ν Ε Ν Τ Ω Ι Β. Ο Θ Ω Ν Ε Ι Ω Ι Π Α Ν Ε Π Ι Σ Ί Ή Μ Ε Ι Ω Ι Π 1 Ν Α S Τ Ω Ν Ε Ν Τ Ω Ι Β. Ο Θ Ω Ν Ε Ι Ω Ι Π Α Ν Ε Π Ι Σ Ί Ή Μ Ε Ι Ω Ι ΚΑΤΑ ΤΗΝ ΧΕΙ Μ Ε Ρ IN Η Ν Ε Ξ AM ΗΝ IΑΝ άπο πρώτη ς Οκτωβρίου 18 3"] μέ/ρι τοΰ Πάσ/α 1838 Π Α Ρ Α Δ Ο Θ Η Σ Ο Μ Ε Ν Ω Ν ΜΑΘΗΜΑΤΩΝ.

Διαβάστε περισσότερα

!"# '1,2-0- +,$%& &-

!# '1,2-0- +,$%& &- "#.)/-0- '1,2-0- "# $%& &'()* +,$%& &- 3 4 $%&'()*+$,&%$ -. /..-. " 44 3$*)-),-0-5 4 /&30&2&" 4 4 -&" 4 /-&" 4 6 710& 4 5 *& 4 # 1*&.. #"0 4 80*-9 44 0&-)* %&9 4 %&0-:10* &1 0)%&0-4 4.)-0)%&0-44 )-0)%&0-4#

Διαβάστε περισσότερα

LA CONDUZIONE ELETTRICA NEI METALLI

LA CONDUZIONE ELETTRICA NEI METALLI ELETTRODINAMICA ELETTRODINAMICA ELETTRODINAMICA ELETTRODINAMICA LA CONDUZIONE ELETTRICA NEI METALLI CONDUZIONE ELETTRICA CONDUZIONE ELETTRICA!"!##$"%"#&"!'#"($ $ )"$ *$ %""!"&"!##)!"'$'"#&"+!%!%"(!#"(

Διαβάστε περισσότερα

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

! # $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 $ 6, ::: ;<$& = = 7 + > + 5 $?# 46(A *( / A 6 ( 1,*1 B',CD77E *+ *),*,*) F? $G'& 0/ (,. ! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$

Διαβάστε περισσότερα

Stucco Natural / Stucco Mítiko. Στόκος με βάση τον ασβέστη.

Stucco Natural / Stucco Mítiko. Στόκος με βάση τον ασβέστη. Stucco Natural / Stucco Mítiko Στόκος με βάση τον ασβέστη. 5Kg Stucco Mítiko + 480ml Esencia 05 Stuco Natural / Stucco Mítiko Στόκος, για εσωτερική χρήση που χαρίζει ένα πολυτελές παλαιωμένο αποτέλεσμα,

Διαβάστε περισσότερα

!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', & - #% '##' #( &2(!%#(345#" 6##7

!!!!# $ # % # & # '##' #!( #)*(+&#!', & - #% '##' #( &2(!%#(345# 6##7 !"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', '##' '# '## & - #% '##'.//0 #( 111111111111111111111111111111111111111111111111111 &2(!%#(345#" 6##7 11111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111

Διαβάστε περισσότερα

MATRICES DE TRANSFORMACION DE COORDENADAS. 3D. ü INCLUDES. ü Cálculo de las componentes de la Matriz de rotación de tensiones (3-3)

MATRICES DE TRANSFORMACION DE COORDENADAS. 3D. ü INCLUDES. ü Cálculo de las componentes de la Matriz de rotación de tensiones (3-3) MATRICES DE TRANSFORMACION DE COORDENADAS. 3D ü INCLUDES In[298]:= In[301]:= In[302]:= In[303]:= Off@General::"spell"D; Off@General::"spell1"D; Off@Set::"wrsm"D; Needs@"LnearAlgebra`MatrxManpulaton`"D

Διαβάστε περισσότερα

ΚλασικΩ ΣΥ Λ Λ Ο)1ΓJf-I

ΚλασικΩ ΣΥ Λ Λ Ο)1ΓJf-I ΚλασικΩ ΣΥ Λ Λ Ο)1ΓJfI Η ΜΟΥΣΚΗ 33: ΡΟΣΝδιάσημες εισαγωγές Ο Κουρέας της Σεβίλης. Η Κλέφτρα Κίσσα Γουλιέλμος Τέλος. Η ταλίδα στο Αλγέρι. Σεμίραμις Αρια: Nacqui all' affano e al piano, από τη "Σταχτοπούτα"

Διαβάστε περισσότερα

ΚΥΚΛΟΙ ΚΑΤΕΡΓΑΣΙΑΣ. κατά τον άξονα Ζ.

ΚΥΚΛΟΙ ΚΑΤΕΡΓΑΣΙΑΣ. κατά τον άξονα Ζ. ΚΥΚΛΟΙ ΚΑΤΕΡΓΑΣΙΑΣ Οι κύκλοι κατεργασίας χρησιµοποιούνται για ξεχόνδρισµα - φινίρισµα ενός προφίλ χωρίς να απαιτείται να προγραµµατίζουµε εµείς τα διαδοχικά πάσα της κατεργασίας. Έτσι, στο πρόγραµµα περικλείουµε

Διαβάστε περισσότερα

Karta Katalogowa CATALOGUE CARD

Karta Katalogowa CATALOGUE CARD 2001-11-12 KK-01/02 Edycja 6 Strona 1 z 8 Karta Katalogowa CATALOGUE CARD 7UÑMID]RZHVLOQLNLLQGXNF\MQH ZLHORELHJRZH ]ZLUQLNLHPNODWNRZ\P 7KUHHSKDVHLQGXFWLRQ PXOWLSOHVSHHGPRWRUV ZLWKVTXLUUHOFDJHURWRU )$%5

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ]

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ] Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π. Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ 1992-1-1

Διαβάστε περισσότερα

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < < K+P K+P PK+ K+P - _+ l Š N K - - a\ Q4 Q + hz - I 4 - _+.P k - G H... /.4 h i j j - 4 _Q &\\ \\ ` J K aa\ `- c -+ _Q K J K -. P.. F H H - H - _+ 4 K4 \\ F &&. P H.4 Q+ 4 G H J + I K/4 &&& && F : ( -+..

Διαβάστε περισσότερα

Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΚΥΡΟΔΕΜΑ ΙΙ. http://www.luckyweek.eu/civil.teipir

Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΚΥΡΟΔΕΜΑ ΙΙ. http://www.luckyweek.eu/civil.teipir Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΚΥΡΟΔΕΜΑ ΙΙ http://www.luckyweek.eu/civil.teipir Άσκηση Σελίδα Υποστύλωμα Δοκός Πλακοδοκός Άλλο Κάμψη Διάτμηση Λυγισμός Στρέψη Ροπή Σχεδιασμού 01 03 02 07

Διαβάστε περισσότερα

Problemas resueltos del teorema de Bolzano

Problemas resueltos del teorema de Bolzano Problemas resueltos del teorema de Bolzano 1 S e a la fun ción: S e puede af irm a r que f (x) está acotada en el interva lo [1, 4 ]? P or no se r c ont i nua f (x ) e n x = 1, la f unció n no e s c ont

Διαβάστε περισσότερα

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

,, #,#, %&'(($#(#)&*& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) !! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΛΟΓΟΙ ΠΟΥ ΟΔΗΓΗΣΑΝ ΣΤΗΝ ΕΠΙΛΟΓΗ ΤΟΥ ΘΕΜΑΤΟΣ

ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΛΟΓΟΙ ΠΟΥ ΟΔΗΓΗΣΑΝ ΣΤΗΝ ΕΠΙΛΟΓΗ ΤΟΥ ΘΕΜΑΤΟΣ ΣΔΕ ΑΓΡΙΝΙΟΥ ΣΧΟΛ. ΕΤΟΣ 2003-2004 ΑΓΓΛΙΚΟΣ ΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΙΤΛΟΣ ΕΝΟΤΗΤΑΣ: «Το αγγλικό αλφάβητο» ΛΟΓΟΙ ΠΟΥ ΟΔΗΓΗΣΑΝ ΣΤΗΝ ΕΠΙΛΟΓΗ ΤΟΥ ΘΕΜΑΤΟΣ Σε ένα μαθητικό δυναμικό όπως αυτό του ΣΔΕ Αγρινίου

Διαβάστε περισσότερα

!!" # "!! $$ %$ ' : () *"++,- ; 4 $ < % % / $ $ % /

!! # !! $$ %$ ' : () *++,- ; 4 $ < % % / $ $ % / !!" # "!! $$ %$ & ' () *"++,- $ %. $ $ % $/ $ $ / # $ 2 3 / / & / / / 45 ( % $ / $ 6 / / 3 / / 3 / 7 /7 7 ' 8"7 87 9" ' : () *"++,- ; 4 $ < % % / $ $ % / & = $ = $ $ 4 #$ 5/ > = $ 5 5 // $!!".. 5 5 $ =

Διαβάστε περισσότερα

Ε.Ο.Αθηνών Λαµίας 97, Τ.Κ. 143 42,Ν.Φιλαδέλφεια Τηλ. 210-2510500, Fax 210 2510338 e-mail: dimos@patronas.co. Θερµοστάτης PJEZSNH000.

Ε.Ο.Αθηνών Λαµίας 97, Τ.Κ. 143 42,Ν.Φιλαδέλφεια Τηλ. 210-2510500, Fax 210 2510338 e-mail: dimos@patronas.co. Θερµοστάτης PJEZSNH000. Ε.Ο.Αθηνών Λαµίας 97, Τ.Κ. 143 42,Ν.Φιλαδέλφεια Τηλ. 210-2510500, Fax 210 2510338 e-mail: dimos@patronas.co Θερµοστάτης PJEZSNH000 Οδηγίες χρήσης Ηλεκτρολογικό σχέδιο 4-5 : ρελέ µηχανής 6 (L) : Φάση (230V)

Διαβάστε περισσότερα

ROVER (MG ROVER GROUP LTD)

ROVER (MG ROVER GROUP LTD) 100 114 D 38 52 01/92 + 0822-8962 237,40 0811-8962 134,20 115 D TUD 5 42 57 12/94 + 0822-8963 237,40 0811-8963 134,20 1500 (Triumph) 1.5 42 62 10/70-12/74 0800-0175 11,00 1.5 49 66 01/72-12/74 0800-0175

Διαβάστε περισσότερα

m 1, m 2 F 12, F 21 F12 = F 21

m 1, m 2 F 12, F 21 F12 = F 21 m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m

Διαβάστε περισσότερα

ΕΝΘΥΜΗΣΕΙΣ ΛΕΙΤΟΥΡΓΙΚΩΝ ΒΙΒΛΙΩΝ ΙΕΡΟΥ ΝΑΟΥ ΚΟΙΜΗΣΕΩΣ ΘΕΟΤΟΚΟΥ ΑΝΩ ΣΚΟΤΙΝΑΣ

ΕΝΘΥΜΗΣΕΙΣ ΛΕΙΤΟΥΡΓΙΚΩΝ ΒΙΒΛΙΩΝ ΙΕΡΟΥ ΝΑΟΥ ΚΟΙΜΗΣΕΩΣ ΘΕΟΤΟΚΟΥ ΑΝΩ ΣΚΟΤΙΝΑΣ ΕΝΘΥΜΗΣΕΙΣ ΛΕΙΤΟΥΡΓΙΚΩΝ ΒΙΒΛΙΩΝ ΙΕΡΟΥ ΝΑΟΥ ΚΟΙΜΗΣΕΩΣ ΘΕΟΤΟΚΟΥ ΑΝΩ ΣΚΟΤΙΝΑΣ Η Ανω Σκοτίνα βρίσκεται στο βορειοανατολικό τμήμα του Ολυμπου. Σήμερα είναι ένα εγκαταλειμμένο χωριό, το οποίο κατοικείται τους

Διαβάστε περισσότερα

Οριακή Κατάσταση. με ή χωρίς ορθή δύναμη

Οριακή Κατάσταση. με ή χωρίς ορθή δύναμη ΤΕΕ Θράκης Κομοτηνή 10.10.2009 Σχεδιασμός φορέων από σκυρόδεμα με βάση τον Ευρωκώδικα 2 Μέρος 1-1 (EN 1992-1-1) Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη Γιαννόπουλος Πλούταρχος Δρ.

Διαβάστε περισσότερα

Παράδειγμα 1. Διαστασιολόγηση δοκού Ο/Σ

Παράδειγμα 1. Διαστασιολόγηση δοκού Ο/Σ Τ.Ε.Ι. K.M. Τμήμα ΠΓ&ΜΤΓ Κατασκευές Οπλισμένου Σκυροδέματος Ι Διδάσκων: Παναγόπουλος Γιώργος Παράδειγμα 1. Διαστασιολόγηση δοκού Ο/Σ Δίνεται η κάτοψη του σχήματος που ακολουθεί και ζητείται να εξεταστεί

Διαβάστε περισσότερα

cognome -nome data di nascita Città C.S.B. cellulare e-mail ctg- specialità

cognome -nome data di nascita Città C.S.B. cellulare e-mail ctg- specialità Migliore Media Match Serie max Migliore Media Generale 23 Novembre 1966 Modica(RG) La Biglia - Modica(RG) autoricambieuropa@tiscali.it 0644 Cagliari Tempio del biliardo- Cagliari Seconda - Carambola "tre

Διαβάστε περισσότερα

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

! #  $ %& ' %$(%& % &'(!!)!*!&+ ,! %$( - .$'! ! "#" "" $ "%& ' %$(%&!"#$ % &'(!!")!*!&+,! %$( -.$'!" /01&$23& &4+ $$ /$ & & / ( #(&4&4!"#$ %40 &'(!"!!&+ 5,! %$( - &$ $$$".$'!" 4(02&$ 4 067 4 $$*&(089 - (0:;

Διαβάστε περισσότερα

ΤΟΙΧΟΥ BIGFOW Am ΤΙΜΗ RAS-10KH3 314,00 9.900-10.300 280 X 780 X 215 / 570 X 700 X 215 1/4, 3/8 4,1 220 5X1,5 IN A 38 35 28 48 RAC-10KH3 346,00 660,00 RAS-14KH3 322,00 12.000-13.200 280 X 780 X 215 / 570

Διαβάστε περισσότερα

Προτεινόμενη Ειδική Τιμή Set τοις μετρητοίς προς Τελικό Καταναλωτή. και εφόσον υπάρχουν αποθέματα

Προτεινόμενη Ειδική Τιμή Set τοις μετρητοίς προς Τελικό Καταναλωτή. και εφόσον υπάρχουν αποθέματα σε πολύ Ειδικές Τιμές για τον IANOYAΡΙΟ 2016 Set : Φούρνος + Κεραμικό Πλατώ Εστιών Teka + EBON ΗS-724 Inox Φούρνος άνω πάγκου με νέο μοντέρνο design. Βυθιζόμενοι διακόπτες. Ανοξείδωτα στοιχεία πρόσοψης,

Διαβάστε περισσότερα

Αποτελέσματα έρευνας σε συνδικαλιστές

Αποτελέσματα έρευνας σε συνδικαλιστές From law to practice-praxis Αποτελέσματα έρευνας σε συνδικαλιστές Το πρόγραμμα συγχρηματοδοτείται από την ΕΕ Συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση Γνωρίζετε τι προβλέπει η Οδηγία 2002/14; Sa che cosa

Διαβάστε περισσότερα

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Parts Manual. Wide Transport Stretcher Model 738

Parts Manual. Wide Transport Stretcher Model 738 Wide Transport Stretcher Model 738 Modèle 738 De Civière Large Pour Le Transport Breites Transport-Bahre-Modell 738 Breed Model 738 van de Brancard van het Vervoer Modello Largo 738 Della Barella Di Trasporto

Διαβάστε περισσότερα

Ιταλική Γλώσσα Β1. 5 η ενότητα: L abbigliamento e la casa. Ελένη Κασάπη Τμήμα Ιταλικής Γλώσσας και Φιλολογίας ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Ιταλική Γλώσσα Β1. 5 η ενότητα: L abbigliamento e la casa. Ελένη Κασάπη Τμήμα Ιταλικής Γλώσσας και Φιλολογίας ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ 5 η ενότητα: L abbigliamento e la casa Ελένη Κασάπη Τμήμα Ιταλικής Γλώσσας και Φιλολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

Black and White, an innovation in wooden flooring.

Black and White, an innovation in wooden flooring. a m s t e r d a m v i e n n a l o n d o n p a r i s m o s c o w d u b l i n m i l a n c o p e n h a g e n g e n e v a a t h e n s b a r c e l o n a r e y k j a v i c k i e v GB PT ES IT GR Black and White,

Διαβάστε περισσότερα

S.Barbarino - Esercizi svolti di Campi Elettromagnetici. Esercizi svolti di Antenne - Anno 2004 I V ...

S.Barbarino - Esercizi svolti di Campi Elettromagnetici. Esercizi svolti di Antenne - Anno 2004 I V ... SBarbarino - Esercizi svolti di Campi Elettromagnetici Esercizi svolti di Antenne - Anno 004 04-1) Esercizio n 1 del 9/1/004 Si abbia un sistema di quattro dipoli hertziani inclinati, disposti uniformemente

Διαβάστε περισσότερα

Ψηφιακή Τεχνολογία σε Ακαδημαϊκό Περιβάλλον

Ψηφιακή Τεχνολογία σε Ακαδημαϊκό Περιβάλλον ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Τεχνολογία σε Ακαδημαϊκό Περιβάλλον 11 η Ενότητα: Power Point, εισαγωγή κινήσεων και εφέ Θεόδωρος Βαβούρας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΠΩΣ ΜΠΟΡΕΙΣ ΝΑ ΞΕΧΩΡΙΣΕΙΣ

ΠΩΣ ΜΠΟΡΕΙΣ ΝΑ ΞΕΧΩΡΙΣΕΙΣ ΣΕ ΜΙΑ ΕΞΑΙΡΕΤΙΚΑ ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΑΓΟΡΑ ΠΟΥ ΒΡΙΣΚΕΤΑΙ ΣΕ ΠΛΗΡΗ ΕΞΕΛΙΞΗ ΠΩΣ ΜΠΟΡΕΙΣ ΝΑ ΞΕΧΩΡΙΣΕΙΣ? ΩΣΤΕ ΝΑ ΕΡΧΟΝΤΑΙ ΟΙ ΠΕΛΑΤΕΣ ΣΤΟ ΚΟΜΜΩΤΗΡΙΟ ΣΟΥ ΠΙΟ ΣΥΧΝΑ? ΩΣΤΕ ΝΑ ΔΩΣΕΙΣ ΕΝΑ ΤΟΣΟ ΚΑΛΛΥΝΤΙΚΟ ΑΠΟΤΕΛΕΣΜΑ ΠΟΥ

Διαβάστε περισσότερα

Efecto Perlado. Colores. Efectos. by Osaka

Efecto Perlado. Colores. Efectos. by Osaka Efecto Perlado Colores & Efectos by Osaka 2 EFECTO PERLADO Τεχνοτροπία με βάση την άμμο με χρυσή και ασημή πέρλα. Πολύ γρήγορη εφαρμογή, με μια στρώση χρώματος. Έτοιμο να χρησιμοποιηθεί η χρωματίζεται

Διαβάστε περισσότερα

GAUGE BLOCKS. Grade 0 Tolerance for the variation in length. Limit deviation of length. ± 0.25μm. 0.14μm ±0.80μm. ± 1.90μm. ± 0.40μm. ± 1.

GAUGE BLOCKS. Grade 0 Tolerance for the variation in length. Limit deviation of length. ± 0.25μm. 0.14μm ±0.80μm. ± 1.90μm. ± 0.40μm. ± 1. GAUGE BLOCKS Accuracy according to ISO650 Nominal length (mm) Limit deviation of length Grade 0 Tolerance for the variation in length Grade Grade Grade Grade 2 Limit deviations of Tolerance for the Limit

Διαβάστε περισσότερα

Θύµος Αδένας. Ιστοπαθολογία και Ανοσοαρχιτεκτονική. Κ. Στεφανάκη Εργαστήριο Παθολογικής Ανατοµίας Νοσ. Παίδων «Η Αγία Σοφία»

Θύµος Αδένας. Ιστοπαθολογία και Ανοσοαρχιτεκτονική. Κ. Στεφανάκη Εργαστήριο Παθολογικής Ανατοµίας Νοσ. Παίδων «Η Αγία Σοφία» Θύµος Αδένας Ιστοπαθολογία και Ανοσοαρχιτεκτονική Κ. Στεφανάκη Εργαστήριο Παθολογικής Ανατοµίας Νοσ. Παίδων «Η Αγία Σοφία» Θύµος αδένας Κεντρικό όργανο του λεµφοαιµοποιητικού συστήµατος Κύριος εκπρόσωπος

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 2: Ψηφιακή Λογική Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Ge m i n i. il nuovo operatore compatto e leggero. η καινούργια και ελαφριά αυτόματη πόρτα

Ge m i n i. il nuovo operatore compatto e leggero. η καινούργια και ελαφριά αυτόματη πόρτα Ge m i n i 6 il nuovo operatore compatto e leggero η καινούργια και ελαφριά αυτόματη πόρτα Porte Gemini 6 Operatore a movimento lineare per porte automatiche a scorrimento orizzontale. Leggero, robusto

Διαβάστε περισσότερα

Gresintex Dalmine Sirci PVC-U - PEAD. Accessories.

Gresintex Dalmine Sirci PVC-U - PEAD. Accessories. PVC-U - PEAD Raccordi in PVC-U e in PEAD corrigato per fognatura ed edilizia PVC-U and HDPE fittings for sewage and building industry Accessories Gresintex www.sirci.it Gresintex Raccordi in PVC-U per

Διαβάστε περισσότερα

A/A Επώνυμο Όνομα 1 ΑΒΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ 2 ΑΓΓΕΛΕΡΟΥ ΑΙΚΑΤΕΡΙΝΗ 3 ΑΓΡΙΤΕΛΛΗΣ ΕΜΜΑΝΟΥΗΛ 4 ΑΘΑΝΑΣΙΑΔΟΥ ΕΥΤΕΡΠΗ - ΑΙΚΑΤΕΡΙΝΗ 5 ΑΘΑΝΑΣΙΑΔΟΥ ΜΑΡΙΑ 6 ΑΘΑΝΑΣΙΟΥ ΙΩΑΝΝΗΣ 7 ΑΘΑΝΑΣΙΟΥ ΜΙΧΑΗΛ 8 ΑΘΑΝΑΣΙΟΥ ΧΡΗΣΤΟΣ 9

Διαβάστε περισσότερα

Δυναμική Μηχανών Ι. Διδάσκων: Αντωνιάδης Ιωάννης. Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε.

Δυναμική Μηχανών Ι. Διδάσκων: Αντωνιάδης Ιωάννης. Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε. Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε. 1 ης τάξης Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Απόκριση Συστημάτων

Διαβάστε περισσότερα

Domande di lavoro CV / Curriculum

Domande di lavoro CV / Curriculum - Dati personali Όνομα Nome del candidato Επίθετο Cognome del candidato Ημερομηνία γέννησης Data di nascita del candidato Τόπος Γέννησης Luogo di nascita del candidato Εθνικότητα / Ιθαγένεια Nazionalità

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

P l+1 (cosa) P l 1 (cosa) 2δ l,0 1

P l+1 (cosa) P l 1 (cosa) 2δ l,0 1 Λεοντσ ίνης Στέφανος Ηλεκτομαγνητισ μός η Σειά Ασ κήσ εων 3 Το ηλεκτικό πεδίο έχει τη μοφή φ σ ε ˆr άα φ σ ε rr Tο δυναμικό σ ε σ φαιικές σ υντεταγμένες φ r, θ Al + B l r l+] l cosθ Για να είναι πεπεασ

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου Ι

Συστήματα Αυτομάτου Ελέγχου Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #7: Άλγεβρα Βαθμίδων (μπλόκ) Ολική Συνάρτηση Μεταφοράς Δημήτριος Δημογιαννόπουλος Τμήματος

Διαβάστε περισσότερα

Φύλλο εργασίας για τους µαθητές

Φύλλο εργασίας για τους µαθητές Φύλλο εργασίας για τους µαθητές Μετάφραση από Δρ. Σφλώµος Γεώργιος Ένα σετ που απαρτίζεται από 14 λωρίδες αναπαριστά τα χρωµοσώµατα από τη µητέρα (θηλυκό) δράκο. Το άλλο, διαφορετικά χρωµατισµένο σετ,

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Επίλυση εξισώσεων και συστηµάτων

Κεφάλαιο 5ο: Επίλυση εξισώσεων και συστηµάτων Equations-Systems.nb Κεφάλαιο 5ο: Επίλυση εξισώσεων και συστηµάτων 5. Επίλυση εξισώσεων Το Mathematica διαθέτει αρκετές συναρτήσεις για την επίλυση εξισώσεων. Αυτές είναι: Solve[eqn, x] επιλύνει την εξίσωση

Διαβάστε περισσότερα

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών Θεωρία Συνόλων Ενότητα: Διατακτικοί αριθμοί Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι

Διαβάστε περισσότερα

OIKONOMIKO ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

OIKONOMIKO ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΜΗΤΡΩΟ ΕΣΩΤΕΡΙΚΩΝ ΜΕΛΩΝ ΕΠΙΤΡΟΠΩΝ ΓΙΑ ΚΡΙΣΕΙΣ ΕΚΛΟΓΗΣ Η ΕΞΕΛΙΞΗΣ ΣΕ ΘΕΣΕΙΣ ΚΑΘΗΓΗΤΩΝ ΟΠΟΙΑΣΔΗΠΟΤΕ ΒΑΘΜΙΔΑΣ ΜΕ ΓΝΩΣΤΙΚΟ ΠΟΥ ΑΝΗΚΕΙ ΣΤΗΝ ΕΥΡΥΤΕΡΗ ΓΝΩΣΤΙΚΗ ΠΕΡΙΟΧΗ ΤΗΣ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ A/A

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ 1 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Προβλήματα Αδιαστατοποίησης - Δυναμικής Πληθυσμών Άσκηση 3.3, σελίδα 32 από

Διαβάστε περισσότερα

! " #! $ %&! '( #)!' * +#, " -! %&! "!! ! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**.

!  #! $ %&! '( #)!' * +#,  -! %&! !! !  #$ % #  &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**. ! " #! $ %&! '( #)!' * +#, " -! %&! "!!! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / 0123 4 # ' -. + &' (, % #. -5 0126, 2**., 2, + &' %., 0, $!, 3,. 7 8 ', $$, 9, # / 3:*,*2;

Διαβάστε περισσότερα

Τα τελευταία χρόνια της Βενετοκρατίας στην Κύπρο: Αρχειακά τεκµήρια για την παρουσία, τη δράση και το θάνατο του Ιάκωβου Διασορηνού

Τα τελευταία χρόνια της Βενετοκρατίας στην Κύπρο: Αρχειακά τεκµήρια για την παρουσία, τη δράση και το θάνατο του Ιάκωβου Διασορηνού Τα τελευταία χρόνια της Βενετοκρατίας στην Κύπρο: Αρχειακά τεκµήρια για την παρουσία, τη δράση και το θάνατο του Ιάκωβου Διασορηνού Χρήστος Αποστολόπουλος Η προσωπικότητα του Ιακώβου Διασορηνού παραµένει

Διαβάστε περισσότερα

Formulario di Trigonometria

Formulario di Trigonometria Formulario di Trigonometria Indice degli argomenti Formule fondamentali Valori noti delle funzioni trigonometriche Simmetrie delle funzioni trigonometriche Relazioni tra funzioni goniometriche elementari

Διαβάστε περισσότερα

Φυσική IΙ. Ενότητα 4: Ηλεκτρική δυναμική ενέργεια. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική IΙ. Ενότητα 4: Ηλεκτρική δυναμική ενέργεια. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική IΙ Ενότητα 4: Ηλεκτρική δυναμική ενέργεια Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Ορισμός της ηλεκτρική δυναμικής ενέργειας. Σύγκριση με τη βαρυτική ενέργεια

Διαβάστε περισσότερα

Η ΠΑΡΟΥΣΙΑ ΤΟΥ ΦΡΑΓΚΙΣΚΟΥ ΤΗΣ ΑΣΙΖΗΣ ΣΤΗ ΝΕΟΕΛΛΗΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ. Ἑρμηνευτικές κατευθύνσεις καί κριτικές ἐπισημάνσεις

Η ΠΑΡΟΥΣΙΑ ΤΟΥ ΦΡΑΓΚΙΣΚΟΥ ΤΗΣ ΑΣΙΖΗΣ ΣΤΗ ΝΕΟΕΛΛΗΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ. Ἑρμηνευτικές κατευθύνσεις καί κριτικές ἐπισημάνσεις 1 Παναγιώτης Ἀρ. Ὑφαντῆς Η ΠΑΡΟΥΣΙΑ ΤΟΥ ΦΡΑΓΚΙΣΚΟΥ ΤΗΣ ΑΣΙΖΗΣ ΣΤΗ ΝΕΟΕΛΛΗΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ Ἑρμηνευτικές κατευθύνσεις καί κριτικές ἐπισημάνσεις Σκοπός τῆς παρούσας μελέτης 1 εἶναι ὁ ἐντοπισμός καί ὁ κριτικός

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ ΟΙΚΟΝΟΜΙΑ & ΔΙΟΙΚΗΣΗ ΤΕΧΝΙΚΑ ΚΑΤΑΛΟΓΟΣ ΒΙΒΛΙΩΝ 2015-2016 ΠΙΑΔΑΓΩΓΙΚΑ

ΠΛΗΡΟΦΟΡΙΚΗ ΟΙΚΟΝΟΜΙΑ & ΔΙΟΙΚΗΣΗ ΤΕΧΝΙΚΑ ΚΑΤΑΛΟΓΟΣ ΒΙΒΛΙΩΝ 2015-2016 ΠΙΑΔΑΓΩΓΙΚΑ ΟΙΚΟΝΟΜΙΑ & ΔΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΤΑΛΟΓΟΣ ΒΙΒΛΙΩΝ 2015-2016 ΠΙΑΔΑΓΩΓΙΚΑ ΤΕΧΝΙΚΑ Οι Εκδόσεις Δίσιγμα ξεκίνησαν την πορεία τους στο χώρο των ελληνικών εκδόσεων τον Σεπτέμβριο του 2009 με κυρίαρχο οδηγό

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

ERGO techr ΞΥΛΙΝΑ ΔΙΑΚΟΣΜΗΤΙΚΑ ΠΡΟΦΙΛ & ΚΟΡΝΙΖΕΣ ΑΠΟ ΜΑΣΙΦ ΞΥΛΟ ΒΟΓΙΑΤΖΟΓΛΟΥ SYSTEMS A.E.

ERGO techr ΞΥΛΙΝΑ ΔΙΑΚΟΣΜΗΤΙΚΑ ΠΡΟΦΙΛ & ΚΟΡΝΙΖΕΣ ΑΠΟ ΜΑΣΙΦ ΞΥΛΟ ΒΟΓΙΑΤΖΟΓΛΟΥ SYSTEMS A.E. ΞΥΛΙΝΑ ΔΙΑΚΟΣΜΗΤΙΚΑ ΠΡΟΦΙΛ & ΚΟΡΝΙΖΕΣ ΑΠΟ ΜΑΣΙΦ ΞΥΛΟ 361 Προφίλ ξύλινο διακοσμητικό ημικυκλικό 244cm Ø 8 mm 10/8Μ 175101.0000 30 x 7 mm 2/30x7 175101.0003 Προφίλ ξύλινο διακοσμητικό 240cm Προφίλ ξύλινο

Διαβάστε περισσότερα

Προσομoίωση Απόκρισης Συστήματος στο MATLAB

Προσομoίωση Απόκρισης Συστήματος στο MATLAB Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Προσομoίωση Απόκρισης Συστήματος στο MATLAB Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Προσομoίωση Απόκρισης Συστήματος στο MATLAB του καθ. Ιωάννη

Διαβάστε περισσότερα

Εισαγωγή στη Δυναμική Μηχανών

Εισαγωγή στη Δυναμική Μηχανών Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Εισαγωγή στη Δυναμική Μηχανών Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Εισαγωγή στη Δυναμική Μηχανών του καθ. Ιωάννη Αντωνιάδη και υπόκειται

Διαβάστε περισσότερα