Η ΜΕΤΡΙΚΗ ΤΟΥ ΧΩΡΟΥ. (στην περίπτωση, που γνωρίζουμε το πεδίον ορισμού του δείκτου, θα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Η ΜΕΤΡΙΚΗ ΤΟΥ ΧΩΡΟΥ. (στην περίπτωση, που γνωρίζουμε το πεδίον ορισμού του δείκτου, θα"

Transcript

1 Η ΜΕΤΡΙΚΗ ΤΟΥ ΧΩΡΟΥ Η μετρική του χώρου Στην ορίσαμε το εσωτερικό γινόμενο δύο διανυσμάτων μέσω των συντεταγμένων τους, όταν οι συντεταγμένες αυτές λαβαίνονται σε ένα Καρτεσιανό σύστημα αναφοράς του Ερχόμαστε, τώρα, στην περίπτωση ενός συστήματος αναφοράς, που αποτελείται από ένα σημείο Ο μία τυχούσα βάση { e, K,e} του χώρου Αν e e (στην περίπτωση, που γνωρίζουμε το πεδίον ορισμού του δείκτου, θα γράφουμε απλά e, θα νοούμε ότι ο δείκτης που επαναλαμβάνεται αθροίζεται) y y e e τότε μπορούμε να γράφουμε ότι, y ( e )(y e ) y (ee ) (), για να πάρει νόημα το προηγούμενο τυπικό άθροισμα των όρων, θέτουμε e e e e Φανερά, Έτσι όπως ορίσαμε την (), την μετατρέψαμε σε μία απεικόνιση B(, y) B(y, ) Η B(, y) y, () είναι μία συμμετρική διγραμμική μορφή την οποία, μπορούμε να γράψουμε ως εξής, X GY, όπου X ο ανάστροφος πίνακας του πίνακα κολώνα των συντεταγμένων του ανύσματος,, Υ ο πίνακας κολώνα των συντεταγμένων του ανύσματος y Για παράδειγμα, η B (, y) y ( y y ) y, γράφεται y (, ) y Την () την γράφουμε ως B(, y) y ( y y () ) < Αν στην διγραμμική μορφή () θέσουμε y, λαβαίνουμε την τετραγωνική μορφή Q (, ) (4) Για παράδειγμα, η B(, y ) του προηγούμενου παραδείγματος, δίδει την Q (, ) Φανερά, για, Q (, ) > Ξεκινώντας συνεπώς, από ένα Ευκλείδειο χώρο με εσωτερικό γινόμενο, όπως αυτό ορίστηκε στην, φθάσαμε στην τετραγωνική μορφή (4) Ισχύει το αντίστροφο: Θεώρημα Έστω ο, { e, K,e} μία θετική συμμετρική γραμμική μορφή B(, y) y τυχούσα βάση του Υποθέτουμε ότι έχει ορισθεί Ο τύπος, τότε, y y ορίζει ένα εσωτερικό γινόμενο επί του Πράγματι, η απεικόνιση B(, y) έχει τις ιδιότητες που ορίζουν μία απόσταση d(, y) εν : Είναι συμμετρική, B(, y) B(y, ) ιγραμμική B( λ λ, y) λb(, y) λb(, y) B(, μ y μy) μb(, y) μb(, μy) Q () B(, ) > Για τον λόγο αυτόν, η Β καλείται μετρική του χώρου ως προς την βάση e, K,e } οι συντελεστές Η απόσταση ορίζεται ως εξής: καλούνται μετρικοί συντελεστές ως προς την βάση αυτή d(a, B) των σημείων A OA (, K ) d (A,B) Q(A B) ( ) ( B { OB (, K ), ) Ισχύουν βέβαια οι σχέσεις

2 d (A, B) >, με d (A, B) A B, d (A, B) d(b, A) (τριγωνική ανισότητα) d(a, Γ) d( Γ, B) d(a, B) (Βλέπε ενότητα Γεωμετρικές εφαρμογές, ) Θεώρημα (Κριτήριο του Sylee) Μία τετραγωνική μορφή είναι θετικά ορισμένη, ανν όλες οι κύριες ορίζουσές της είναι θετικές α β Απόδειξη Για είναι, Q(, ) (, ) α( ) β γ( ), β γ με κύριες ορίζουσες α, αγ β Το α ( ) β γ( ) λαβαίνει το σημείο του α, ανν η διακρίνουσά του < Η γενική περίπτωση του θεωρήματος, προκύπτει ως πόρισμα του θεωρήματος αναγωγής μιάς τετραγωνικής μορφής στην κανονική της έκφραση (Βλέπε παρακάτω) Συμμετρικές διγραμμικές μορφές Τετραγωνικές μορφές Θα εξετάσουμε το γενικό πρόβλημα της ευρέσεως μιάς βάσεως {e, K, e } στην οποία η τετραγωνική μορφή λαβαίνει την κανονική της έκφραση Q(, ) λ ( ) (βλέπε, αλγόριθμος των Gm Schmd) Αν C ο πίνακας του μετασχηματισμού της βάσεως { e, K,e} στην βάση { e, K,e }, Χ ο πίνακας κολώνα των συντεταγμένων του στην βάση { e, K,e} Χ ο πίνακας κολώνα του στην βάση { e, K,e }, τότε, X CX, X GX, οπότε Q(, ) X GX (CX ) G(CX ) X (C GC)X Απ όπου, G C GC, ή γ γ Ορισμός ύο πίνακες Α Β, για τους οποίους ισχύει ότι P : A P BP, όπου ο P έχει de P, καλούνται όμοιοι Η σχέση της ομοιότητος δύο πινάκων, είναι μία σχέση ισοδυναμίας πάνω στο σύνολο των πίνάκων S Πράγματι, ισχύουν οι A I AI (αυτοπαθής, I ο μοναδιαίος πίνακας) A P BP B ( P ) AP ( P ) AP (συμμετρική) A P BP B C τότε A P ( C)P (P) C(P) όπου είναι de P (μεταβατική) Εξ άλλου, αν ο πίνακας Α είναι συμμετρικός, ο Β είναι όμοιος του Α, τότε ο Β θα είναι συμμετρικός πίνακας, μια για τους συμμετρικούς πίνακες ισχύει ότι A A Συνεπώς η A P BP A P B P A P B P οπότε B B, δηλαδή, ο Β είναι συμμετρικός πίνακας Θεωρούμε, τώρα, το σύνολο πηλίκο S / {E(B ), I}, E(B ) η κλάσης του B, δηλαδή, το σύνολο των όμοιων προς τον B πινάκων Ισχύει τότε ότι (βλέπε ενότητα Σύνολα 5: E(B ) S, E(B ) E(B ), E(B ) E(B ) U / Θα δείξουμε ότι κάθε κλάση E(B ) περιέχει έναν διαγώνιο πίνακα, ο οποίος θα είναι ο αντιπρόσωπος της κλάσης Επαγωγικά Για, δεν έχουμε να δείξουμε τίποτα, μια ο οιοσδήποτε πίνακας [ ] είναι διαγώνιος Υποθέτουμε, τώρα, ότι κάθε υποσύνολο E(B ) E(B) των ( ) ( ) συμμετρικών πινάκων, περιέχει έναν διαγώνιο πίνακα Έστω, τώρα, ο πίνακας A [ ] E(A), έστω Q (, ) η τετραγωνική μορφή που προκύπτει από την διγραμμική μορφή B(, y) y (AX) Y, τα διανύσματα e, y y e εκφρασμένα στην κανονική βάση e Για την διγραμμική μορφή Β μπορούμε να υποθέσουμε ότι υπάρχει διάνυσμα τέτοιο ώστε B(, ), μια αν

3 , B(, ), τότε B(, y) { B( y, y) B(, ) B(y, y) }, για κάθε, y, οπότε A [ ], ο Α διαγώνιος Εκλέγουμε αυτό το σαν το πρώτο διάνυσμα της νέας βάσης του που θα κατασκευάσουμε, ως προς την οποία η διγραμμική μας μορφή θα έχει λάβει την διαγώνιο έκφραση Για να βρούμε τα υπόλοιπα στοιχεία της νέας βάσης, θεωρούμε το σύνολο Ζ των διανυσμάτων z, που είναι ορθογώνια προς το, δηλαδή, που για τα οποία ισχύει ότι B(,z) Το σύνολο Ζ αποτελεί γραμμικό υπόχωρο του με dm Z Εκλέγουμε, τώρα, εκείνη την βάση {, K, } του Ζ, ως προς την οποία,από την υπόθεση της επαγωγής, ο Α είναι όμοιος προς διαγώνιο πίνακα Θεωρούμε το {,, K, }, που θα είναι η νέα βάση του Ως προς αυτήν την βάση έχουμε ότι, Q () B(, ), όπου Όμως για,, δ (από την υπόθεση της επαγωγής) ενώ για λόγω καθετότητας του ως προς τα υπόλοιπα στοιχεία της βάσης, δ ( λόγω συμμετρίας δ ) Άρα ο Α όμοιος προς διαγώνιο πίνακα A [ ] ΠΑΡΑΕΙΓΜΑ ίδεται η συμμετρική διγραμμική μορφή 4 y B(, y) (,, ) 4 y y Από την οποία λαμβάνουμε την τετραγωνική μορφή Q () 8 6 Ένα διάνυσμα για το οποίο Q( ), είναι το (,, ), για το οποίο Q( ) Βρίσκουμε όλα τα κάθετα στο διανύσματα του, τα οποία αποτελούν τον γραμμικό υπόχωρο Ζ Αν z 4 z Z είναι ( ) B( z,z),, 4, απ όπου z έχουμε 4z z z Ο Ζ είναι, λοιπόν, ο χώρος που παράγουν τα (,, 4) (,,) Τα διανύσματα {,, } αποτελούν βάση του,, επιπλέον, Z Αντικαθιστούμε τα, από τα, λ, όπου ως προς Β Προσδιορίζουμε το λ, έτσι ώστε B(, λ ) B(, ) λb(, ), ή 4 λ ή λ ή (νέο) (,, 4) (,,) (,4, 4) Ως προς την βάση {,, } του, έχουμε ότι, B(, ), οπότε το τυχόν, κ κ κ θα έχει Q() B(, ) κ B(, ) κ B(, ) κ B(, ) κ 4κ κ 8 4 Ο πίνακας B 4 της διγραμμικής μορφής B(, y ), είναι, λοιπόν, όμοιος προς τον διαγώνιο πίνακα 4 Πράγματι, για P

4 4 P BP ΠΑΡΑΕΙΓΜΑ Στον δίδεται η τετραγωνική μορφή ( χ ) ( χψ) ( ψ) Να βρεθεί μία βάση, στην οποία η μορφή αυτή λαβαίνει την κανονική της έκφραση Λύση Στο αρχικό σύστημα αναφοράς Ο, { e,e} του χώρου μου, είναι, χ e ψe η Q(, ) X GX έχει πίνακα G Θα βρούμε μία άλλη βάση, έτσι ώστε στο νέο σύστημα αναφοράς Ο, { e,e }, με χ e ψ e, να έχουμε την έκφραση Q(, ) X G X χ ψ, με G Ενεργώντας στοιχειώδεις πράξεις επί των γραμμών του πίνακα G, λαβαίνουμε, σχηματικά, / / / / / / Θέτουμε C οπότε, C GC Είναι, λοιπόν, X G X (CX) G(CX) X (C GC)X ( χ ψ ) Ο γραμμικός μετασχηματισμός X CX γράφεται στην μορφή του συστήματος χ ψ χ ψ ή χ χ ψ ψ ψ (5) Ας δούμε, τώρα, το πως μετασχηματίζεται ένα υπερεπίπεδο του (επίπεδο στον ) όταν αλλάζει η μετρική του χώρου, οπότε το σύστημα αναφοράς από το αρχικό σύστημα Ο, e, K,e }, καταλήγει στο τελικό Ο {e, K, e }, { Η εξίσωση του υπερεπιπέδου που διέρχεται από το σημείο A ( α, K, α ) στην βάση (αρχική) { e, K,e} είναι η OX OA AX, απ όπου η έκφραση A B (6) Ο μετασχηματισμός X CX είναι ισοδύναμος με το σύστημα χ γ χ η (6) γίνεται A γ B, ή A B, όπου A γ A Η καθετότης δύο διανυσμάτων e σε κάποιο σύστημα αναφοράς, εκφράζεται από την σχέση B (, e) ΠΑΡΑΕΙΓΜΑ (συνέχεια του προηγουμένου) Στο αναφερόμενο αρχικό σύστημα αναφοράς έχουμε την ευθεία ε: χ 4ψ Ο μετασχηματισμός (5) μας δίδει την έκφραση της ε: στο νέο σύστημα αναφοράς ε : ( χ ψ ) 4(ψ ) ή ε : χ 5ψ

5 5 Υποθέτουμε, ακόμα, ότι μου δίδεται το σημείο A (, ), το οποίο στο νέο σύστημα αναφοράς είναι το A, Στο νέο σύστημα η κάθετος στην ευθεία ε που διέρχεται από το σημείο Α έχει εξίσωση 5 χ ψ, ή κ : 5 χ ψ 6 Πράγματι, κατά μήκος των ευθειών ε : κ : κείνται τα διανύσματα e ( 5, ) (, 5) Είναι, B (e, ) (( 5) 5) Στο αρχικό σύστημα αναφοράς, η κ : λαβαίνει την μορφή κ: 5 χ ψ 6 Παρατηρούμε ότι, το σημείο Α ευρίσκεται πάνω στην κ: Η τομή της κ: με την ε: είναι το σημείο B (, 4) Στο νέο σύστημα είναι, B (, - ) το σημείο αυτό, βρίσκεται πάνω στην κ Στο αρχικό σύστημα, η καθετότης εκφράζεται από την συνθήκη B (e, ), όπου Β η διγραμμική μορφή B (, y) y y y y Στο παράδειγμά μας είναι,,,, e ( 4, ), (, 5), οπότε B (e, ) ΠΑΡΑΤΗΡΗΣΗ Η εξίσωση ενός υπερεπιπέδου που διέρχεται από το σημείο OX γράφεται στην μορφή X X (7), όπου το εσωτερικό γινόμενο καθορίζεται από την μετρική του χώρου ΠΑΡΑΕΙΓΜΑ ίδεται ο με μετρική την B (, y) y y y y Ζητάμε να βρούμε την απόσταση του σημείου Ο (αρχή των συντεταγμένων) από την ευθεία ε: χ ψ Λύση Γράφουμε την ευθεία στην μορφή (7): Ένα σημείο επί της ευθείας είναι το OX (,), OX (, ) Είναι, λοιπόν X X (, -) Ζητάμε να βρούμε ένα ( ν χ, ν ψ ) τέτοιο ώστε B (, ) Θέτουμε ν χ, οπότε, ν ψ Η κάθετος προς την ε: από το σημείο Ο, είναι, λοιπόν, η OX λ η οποία τέμνει την ε: στο σημείο (, ) Η ζητουμένη απόσταση είναι Q (, ) Αναγωγή τετραγωνικής μορφής στην κανονική της έκφραση Τα δεδομένα μας είναι: Ο χώρος, η συμμετρική διγραμμική μορφή B(, y) y, από την οποία προκύπτει η τετραγωνική μορφή Q () B(, ) (οι επαναλαμβανόμενοι δείκτες, αθροίζονται), όπου B(, ), {, K, } βάση του Ζητάμε να προσδιορίσουμε μια νέα βάση e, K,e } στην οποία για,, { Θέτουμε,, de, de, K,

6 6 K de M O M Αν κάποια από τις προηγούμενες ορίζουσες είναι μηδέν, (πχ η K K K, τότε, μια αλλαγή της βάσης, με πίνακα P, θα εξασφάλιζε το M M O M Η νέα βάση { e,,e } K σχετίζεται με την παλαιά {,, K, } (λόγω συμμετρίας ) από τις ισότητες e e M e M e,, B(e, e ) θα πρέπει να εξασφαλίσουμε ότι () Η () ισχύει, ανν η,, B(e, ) () ισχύει, μια κάθε είναι γραμμική εξάρτηση των e Η απόδειξη δεν αλλάζει, αν επιπλέον ισχει ότι,, B(e, ) Του προηγουμένου συστήματος (), η πρώτη εξίσωση δίδει B (e, ) B(, ), απ όπου Από την δεύτερη εξίσωση του () έχουμε, B(e, ) B(, ) B(, ), (e, ) B(, ) B(, ) B Η λύση του συστήματος αυτού δίδει Με παρόμοιο τρόπο, υπολογίζουμε όλους τους σύντελεστές K (), συνεπώς, τον μετασχηματισμό () Παρατηρούμε ότι, ο πίνακας Ρ του μετασχηματισμού αυτού είναι τριγωνικός,, συνεπώς, de() L L, άρα ο μετασχηματισμός που έχει πίνακα Ρ είναι ένα προς ένα (μετασχηματισμός αλλαγής βάσης) Για την τετραγωνική μορφή Q(), όταν αυτή εκφράζεται στην βάση e έχουμε ότι, Q ( ) ( ) ( ) K ( ) (4) όπου,, οι συντεταγμένες του P στην βάση e

7 7 Σημείωση Πάνω δείκτες: Πρόκειται για συντεταγμένες διανύσματος, που αποτελούν ένα πίνακα κολώνα Κάτω δείκτες: πρόκειται για διανύσματα Όπως θα δούμε σε μιαν άλλη ενότητα, το αν οι δείκτες θα είναι πάνω ή κάτω, έχει να κάνει με τον τρόπο που μετασχηματίζεται η ποσότης που παριστούν Co μετασχηματισμός αν οι δείκτες είναι κάτω, co, αν οι δείκτες είναι άνω Το πλήθος των θετικών όρων της (4) καλείται θετικός δείκτης Ο πλήθος των αρνητικών όρων της (4) καλείται αρνητικός δείκτης ΘΕΩΡΗΜΑ (αδρανείας) Οι θετικοί αρνητικοί δείκτες μιας τετραγωνικής μορφής, αποτελούν αναλλοιώτους της μορφής (ηλαδή, είναι ανεξάρτητοι της βάσεως στην οποία εκφράζεται η τετραγωνική μορφή) Απόδειξη Ας υποθέσουμε ότι η Q() ( ) ( ) K ( ) ( ) K ( ) έχει στην βάση θετικό δείκτη αρνητικό δείκτη q, με > q () Μετάβαση από την βάση στην βάση μέσω του μετασχηματισμού P Έχουμε, Q ( ) ( ) ( ) K ( ) ( ) K ( ) Ισχύει ότι P, Q( ) X I X, όπου X (, K,, K, ) ένας μοναδιαίος πίνακας, που έχει τα πρώτα διαγώνια στοιχεία ' το πλήθος ίσα με, τα υπόλοιπα q' το πλήθος στοιχεία ίσα με - P ο πίνακας αλλαγής βάσης, με de P Έχουμε, ότι X I X Q(P) X I X (PX) I (PX) X (P I P) X, άρα I, I P I P Είναι de( P I P) de(p) de(i ) de(i ) Οι ορίζουσες, συνεπώς των πινάκων I, I έχουν οι δύο είτε την τιμή, είτε την τιμή - Άρα () Μετάβαση από την βάση στην βάση μέσω του μετασχηματισμού P Στο συμπέρασμα καταλλήγουμε αν θέσουμε P Άρα αναγκαστικά, q q 4 Ορθοκανονικά συστήματα συναρτήσεων Ένα σύνολο S {f, K,f, K} ολοκληρώσιμων πραγματικών συναρτήσεων, ορισμένων στο [, ] Το ολοκλήρωμα f ()()d καλείται εσωτερικό γινόμενο των συναρτήσεων f, παρίσταται με το f Η om της f ορίζεται από την σχέση f f f () Ισχύουν οι σχέσεις: Συμμετρική, f f Ομμογενής γ( f ) ( γf ) f ( γ), γ σταθερά, ιγραμμική ( f f) f f f ( ) f f Η ανισότης των Cuchy-Schwz ισχύει λόγω () Πράγματι, θέτουμε f () () Θεωρούμε την f () ( ) Είναι, φανερά, f () Άρα, ( ) ( ) ( ) Η διακρίνουσα συνεπώς του f () είναι Είναι, λοιπόν, ( ) ( )( ), () ή f ()()d f () d () d που είναι η ανισότητα των Cuchy-Schwz Από την () προκύπτει η τριγωνική ανισότητα (βλέπε Γεωμετρικές εφαρμογές, ) ή ανισότητα του Mow, f f Έχουμε επίσης την σχέση f (f ) (f ) f f Συνεπώς, η εξίσωση f f () ισχύει αν μόνον αν [, ], f, οπότε λέμε ότι οι συναρτήσεις f είναι ορθογώνιες Η () είναι βέβαια, το θεώρημα του Πυθαγόρα

8 8 Το σύνολο S καλείται ορθογώνιο σύστημα συναρτήσεων, ανν m f m f ανν m ορθοκανονικό σύστημα ανν fm f ανν m ΠΑΡΑΕΙΓΜΑ Θεωρούμε τον γραμμικό χώρο C των πραγματικών συναρτήσεων που ορίζονται στο κλειστό διάστημα [, π] (βλέπε ενότητα Γραμμικοί χώροι παράδειγμα 4) Ορίζουμε το εσωτερικό γινόμενο των συναρτήσεων f, C μέσω της ισότητας f S {u για o π f ()()d Θεωρούμε, ακόμα, το σύνολο των τριγωνομετρικών συναρτήσεων, co co, u, u, K, u -, u, K } π π π π π,k Ως γνωστόν, κάθε f C αναλύεται κατά Foue παρίσταται ως σειρά o f () ( co ) όπου f ()cod, π π f () d Το S είναι συνεπώς, μία ορθοκανονική βάση του γραμμικού χώρου C, μια u u m u ()u m () d δ,m ΠΑΡΑΕΙΓΜΑ Έστω P ο χώρος των πολυωνυμικών συναρτήσεων (), μέχρι βαθμού (βλέπε ενότητα Γραμμικοί Χώροι ), με om το π ()y()d Εφαρμόζουμε στο σύνολο {,,, K, } των πολυωνύμων, τον αλγόριθμος των Gm Schmd (βλέπε ενότητα Γεωμετρικές εφαρμογές ), έτσι ώστε το σύνολο αυτό να μετατραπεί σε ένα ορθοκανονικό σύστημα Έχουμε, y ()d y (), y (), y y ()y ()d (πολυώνυμα του Leede) (), y (), 5 5 Απειροδιάστατοι γραμμικοί χώροι Η έννοια του γραμμικά εξαρτημένου συνόλου μεταφέρεται αυτούσια στον γραμμικό χώρο F των πραγματικών συναρτήσεων, που ορίζονται πάνω σε ένα κλειστό διάστημα των πραγματικών αριθμών (βλέπε ενότητα «Γραμμικοί Χώροι», Παράδειγμα 4) Λέμε ότι το σύνολο των μη μηδενικών συναρτήσεων f,,f } είναι γραμμικά εξαρτημένο, ανν υπάρχουν σταθερές γ, K γ που να μην είναι { K, όλες μηδέν, σε τρόπο ώστε [, ], f() γ f () γ K Κάθε μη γραμμικά εξαρτημένο σύνολο, καλείται σύνολο γραμμικά ανεξάρτητο Κάθε ορθογώνιο σύστημα S {f, K,f, }, είναι σύνολο γραμμικά ανεξάρτητο Πράγματι, αν ανάμεσα σε οιαδήποτε K από τα στοιχεία του S είχαμε μία σχέση γραμμικής εξαρτήσεως γ f () K γ f (), το εσωτερικό γινόμενο της σχέσεως αυτής διαδοχικά επί f (),, δίδει τις σχέσεις γ f f, επειδή [, ], f (),, έπεται ότι γ

9 9 ΠΡΟΒΛΗΜΑ Είναι δυνατόν το S να χρησιμοποιηθεί για βάση του F; Αν κάτι τέτοιο συμβαίνει, η f θα εκφράζεται ως σειρά, Αυτό συμβαίνει, στην περίπτωση που η σειρά γ f ( συγκλίνει ομοιόμορφα εν [, ] Έστω, λοιπόν, f () το άθροισμα ) αυτής της σειράς Τότε η f είναι ολοκληρώσιμη (κατά em),, συνεπώς οι συντελεστές γ υπολογίζονται από τις σχέσεις γ f f f ()f () d Οι κατ αυτόν τον τρόπο υπολογισμένοι συντελεστές γ f () γ f (), καλούνται συντελεστές Foue ΠΡΟΤΑΣΗ (Ανισότης του Beel) Έστω το ορθοκανονικό σύστημα S {f, K,f, } K f F, με f () γ f () Έστω () γf () ένα μερικό άθροισμα της σειράς β, σταθερές Σχηματίζουμε τα αθροίσματα () βf (), Ισχύει τότε η ισότης f () () d f () d προκύπτει η ανισότητα f () () d f () γ γ β (), απ όπου () της προηγούμενης ισότητας λαβαίνεται όταν β γ, Σημείωση Γράφουμε ισοδύναμα f () () Απόδειξη Είναι Όμως Επίσης f f f () () d () βf () f d f (f ) (f ) f f f () () β f () βlfl() ββlf ()f l() l,l f () f βf () β f () f () d, μια η ελαχίστη τιμή β γ f β () f ( γ f ) γmfm() γf () d γmγfm()f ()d d m m, () Αντικαθιστούμε στην () τα εσωτερικά γινόμενα με τα αθροίσματά τους, προκύπτει η () f () d 6 Ανισότης του Beel Έστω f () γ f () ως προηγουμένως Τότε

10 Η σειρά Η εξίσωση αν μόνον αν, ηλαδή, αν μόνον αν, Σχέση ανάλογη της όπου ( K γ συγκλίνει ισχύει ότι,, ) γ f () d (ανισότης του Beel) γ f () d (τύπος του Pel) lm f f (), γ γ K γ K K Ορισμός Το ορθοκανονικό σύστημα S {f, K,f, K} θα λέγεται πλήρες, αν μόνον αν για κάθε πραγματική συνάρτηση (em ολοκληρώσιμη) που ορίζεται στο [, ], έχουμε την έκφραση f () γ f () 7 Προβολές Προσέγγιση συναρτήσεως Όταν αναφερόμεθα σε έναν ευκλείδειο χώρο, θα εννοούμε έναν γραμμικό χώρο εφοδιασμένο με om Αν S υπόχωρος ευκλείδειου χώρου V, το διάνυσμα V θα λέμε ότι είναι ορθογώνιο (κάθετο) προς τον S, αν μόνον αν είναι ορθογώνιο προς κάθε διάνυσμα του S Φανερά, το S, μια δεν είναι δυνατόν αυτό να είναι ορθογώνιο προς τον εαυτό του Το σύνολο των ορθογωνίων προς τον S διανυσμάτων αποτελεί το ορθογώνιο συμπλήρωμα S του S Η προβολή του διανύσματος στον υπόχωρο S, είναι εξ ορισμού το ( e ), όπου { e, } βάση του S e ΠΡΟΤΑΣΗ Αν S υπόχωρος του V με πεπερασμένη διάσταση, V S, τότε όπου S S Απόδειξη Έστω { e, K,e} ορθοκανονική βάση του S Με κάθε V S, θεωρούμε τα διανύσματα ( e ) e, Φανερά, S Απομένει να δείξουμε, ότι S Είναι,, e ( ) e e e, δηλαδή,, e e e Όμως, από τον ορισμό του το γεγονός ότι η βάση είναι ορθοκανονική, έπεται ότι, e e Το Πυθαγόρειο θεώρημα, ισχύει για το μήκος (om) του, μια Πράγματι, ( ) ( ) Θεώρημα Έστω V απειροδιάστατος Ευκλείδειος χώρος S πεπερασμένης διαστάσεως υπόχωρος του V τυχόν σημείο του V Αν η προβολή του επί του S, ισχύει ότι,, S, S Ισότητα έχουμε αν μόνον αν

11 Απόδειξη Η προηγούμενη πρόταση δίδει την Είναι, ( ) ( ) () Άρα ( ) ή S Εξ άλλου S Η () παριστά λοιπόν, μια διάσπαση του σε δύο ορθογώνια διανύσματα Το θεώρημα του Πυθαγόρα δίδει την, απ όπου

1.2 Συντεταγμένες στο Επίπεδο

1.2 Συντεταγμένες στο Επίπεδο 1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε

Διαβάστε περισσότερα

8.1 Διαγωνοποίηση πίνακα

8.1 Διαγωνοποίηση πίνακα Κεφάλαιο 8 Κανονικές μορφές από 6 Κεφάλαιο 8 Κ Α Ν Ο Ν Ι Κ Ε Σ Μ Ο Ρ Φ Ε Σ 8. Διαγωνοποίηση πίνακα Ορισμός 8.α Ένας πίνακας M n ( ) oνομάζεται διαγωνοποιήσιμος στο αν υπάρχει αντιστρέψιμος πίνακας P M

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ 34 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι ώστε το διάνυσμα OI να έχει μέτρο και να βρίσκεται στην ημιευθεία O Λέμε τότε ότι έχουμε έναν άξονα με αρχή

Διαβάστε περισσότερα

Μαθηματικά προσανατολισμού Β Λυκείου

Μαθηματικά προσανατολισμού Β Λυκείου Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI

Διαβάστε περισσότερα

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ ΚΕΦ:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ Τετραγωνικές μορφές: Συναρτήσεις με τύπο Q ν α ι j j, j [ ] ν α α ν αν α νν ν Τ Χ ΑΧ Για παράδειγμα εάν v Q α + α + α + α α + α + α + α δηλ a a a a α + α + α

Διαβάστε περισσότερα

Je rhma John L mma Dvoretzky-Rogers

Je rhma John L mma Dvoretzky-Rogers Kefˆlaio 2 Je rhma Joh L mma Dvoretzky-Rogers 2.1 Elleiyoeidèc mègistou ìgkou eìc kurtoô s matoc Ορισμός 2.1.1. Ελλειψοειδές στον R είναι ένα κυρτό σώμα της μορφής { } (2.1.1) E = x R x, v i 2 : 1, όπου

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 14, 30 Απριλίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Χώροι με εσωτερικό γινόμενο (Ευκλείδειοι χώροι) 2. Βέλτιστες προσεγγίσεις

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Ορίζουσα Gram και οι Εφαρµογές της Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 65 11 Η Ορίζουσα Gram και

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

Ορισμένες σελίδες του βιβλίου

Ορισμένες σελίδες του βιβλίου Ορισμένες σελίδες του βιβλίου 7. Θεωρούμε το σύνολο αναφοράς 0,,. Να οριστούν τα σύνολα: Α. των τριψηφίων αριθμών που σχηματίζουν τα στοιχεία του Ω. Β. των τριψηφίων αριθμών με διαφορετικά ψηφία Γ. των

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 5

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 5 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 5 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html ευτέρα 23

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1.1 Όρια ακολουθιών Λέμε ότι η ακολουθία { n } συγκλίνει με όριο R αν για κάθε ϵ > 0 υπάρχει ακέραιος N = N(ϵ) τέτοιος ώστε (1.1) n < ϵ για κάθε n > N, και

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης 1 Oct 16 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 4 η Γεωμετρική Αναπαράσταση

Διαβάστε περισσότερα

x y z d e f g h k = 0 a b c d e f g h k

x y z d e f g h k = 0 a b c d e f g h k Σύνοψη Κεφαλαίου 3: Προβολική Γεωμετρία Προοπτική. Εάν π και π 2 είναι δύο επίπεδα που δεν περνάνε από την αρχή O στο R 3, λέμε οτι τα σημεία P στο π και Q στο π 2 βρίσκονται σε προοπτική από το O εάν

Διαβάστε περισσότερα

Μαθηματική Εισαγωγή Συναρτήσεις

Μαθηματική Εισαγωγή Συναρτήσεις Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας Διανύσματα Καστοριά,

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Μαθηματική Εισαγωγή Συναρτήσεις

Μαθηματική Εισαγωγή Συναρτήσεις Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς Καστοριά, Ιούλιος 14 A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών.

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών. Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών (βλ ενότητες 8 και 8 από το βιβλίο Εισαγωγή στη Γραμμική Άλγεβρα, Ι Χατζάρας, Θ Γραμμένος, 0) (Δείτε τα παραδείγματα 8 (, ) και

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii018/laii018html ευτέρα 3 Απριλίου 018 Αν C = x

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο συμβολίζουμε με Σε αυτό το σύνολο γνωρίζουμε

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii08/laii08.html Παρασκευή 4 Μαίου

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 4 Μαίου 2018 Ασκηση

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου

Διαβάστε περισσότερα

Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 3. Σύντομες Λύσεις

Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 3. Σύντομες Λύσεις Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων Γ. Καραγιώργος ykarag@aegean.gr Quiz Σύντομες Λύσεις Άσκηση. Δείξτε ότι η απεικόνιση u, v = u v + 5u v, όπου u = (u, u ), v = (v, v ),

Διαβάστε περισσότερα

1 m z. 1 mz. 1 mz M 1, 2 M 1

1 m z. 1 mz. 1 mz M 1, 2 M 1 Σύνοψη Κεφαλαίου 6: Υπερβολική Γεωμετρία Υπερβολική γεωμετρία: το μοντέλο του δίσκου 1. Στο μοντέλο του Poincaré της υπερβολικής γεωμετρίας, υπερβολικά σημεία είναι τα σημεία του μοναδιαίου δίσκου, D =

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΔΙΑΝΥΣΜΑΤΑ Επιμέλεια: Άλκης Τζελέπης ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΝΝΟΙΑ - ΠΡΑΞΕΙΣ. Αν τα διανύσματα,, σχηματίζουν τρίγωνο, να αποδείξετε ότι το ίδιο συμβαίνει

Διαβάστε περισσότερα

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Νοεμβρίου 007 Ημερομηνία παράδοσης της Εργασίας: 4 Δεκεμβρίου 007 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2019/laii2019html Παρασκευή 29 Μαρτίου 2019 Ασκηση

Διαβάστε περισσότερα

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή Αντιστροφή Υποθέτουμε ότι υπάρχει ένας κανόνας ο οποίος επιτρέπει την μετάβαση από ένα σχήμα σε ένα άλλο, με τέτοιο τρόπο ώστε το δεύτερο σχήμα να είναι τελείως ορισμένο όταν το πρώτο είναι δοσμένο και

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Β Λυκείου

Μαθηματικά Προσανατολισμού Β Λυκείου Μαθηματικά Προσανατολισμού Β Λυκείου Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι έτσι ώστε το διάνυσμα ΟΙ να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία Ox. Λέμε

Διαβάστε περισσότερα

ΠΡΑΓΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΠΡΑΓΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 1 ΚΕΦΑΛΑΙΟ 1 : ΠΡΑΓΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 11 ΕΙΣΑΓΩΓΗ Σε ότι ακολουθεί συμβολίζουμε με το σύνολο των φυσικών αριθμών και με και R τα σύνολα των ακεραίων των ρητών και των πραγματικών αριθμών

Διαβάστε περισσότερα

i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1),

i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1), Κεφάλαιο 6 Συμπάγεια 6.1 Ορισμός της συμπάγειας Οπως θα φανεί στην αμέσως επόμενη παράγραφο, υπάρχουν διάφοροι τρόποι με τους οποίους μπορεί κανείς να εισάγει την έννοια του συμπαγούς μετρικού χώρου. Ο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 8 Ημερομηνία παράδοσης της Εργασίας: Φεβρουαρίου 8 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii09/laii09.html Παρασκευή 0 Μαίου

Διαβάστε περισσότερα

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;

Διαβάστε περισσότερα

h(x, y) = card ({ 1 i n : x i y i

h(x, y) = card ({ 1 i n : x i y i Κεφάλαιο 1 Μετρικοί χώροι 1.1 Ορισμός και παραδείγματα Ορισμός 1.1.1 μετρική). Εστω X ένα μη κενό σύνολο. Μετρική στο X λέγεται κάθε συνάρτηση ρ : X X R με τις παρακάτω ιδιότητες: i) ρx, y) για κάθε x,

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 8 Νοεμβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 6 Ιανουαρίου 0 Οι ασκήσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

από t 1 (x) = A 1 x A 1 b.

από t 1 (x) = A 1 x A 1 b. Σύνοψη Κεφαλαίου 2: Ομοπαραλληλική Γεωμετρία Γεωμετρία και μετασχηματισμοί 1. Μία ισομετρία του R 2 είναι μία απεικόνιση από το R 2 στο R 2 που διατηρεί αποστάσεις. Κάθε ισομετρία του R 2 έχει μία από

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ. (ii) Αν ο Β m+1, με m N, αντιστρέφεται, τότε και ο Β αντιστρέφεται

ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ. (ii) Αν ο Β m+1, με m N, αντιστρέφεται, τότε και ο Β αντιστρέφεται ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ 1) Έστω A, Β Μ n (R) τέτοιοι, ώστε A + Β = Ι n. Να δείξετε ότι : A = A 2 κκκ Β = Β 2 ΑΑ = Ο 2) Έστω A, Β Μ n (R), με A = A 2 και ΑΑ + ΒΒ = Ο. Να δειχθεί ότι ΑΑ = ΒΒ

Διαβάστε περισσότερα

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

[ ] και το διάνυσµα των συντελεστών:

[ ] και το διάνυσµα των συντελεστών: Μηχανική ΙΙ Τµήµα Ιωάννου-Απόστολάτου 8 Μαϊου 2001 Εσωτερικά γινόµενα διανυσµάτων µέτρο διανύσµατος- ορθογώνια διανύσµατα Έστω ένας διανυσµατικός χώρος V, στο πεδίο των µιγαδικών αριθµών Τα στοιχεία του

Διαβάστε περισσότερα

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς 2.1 Η έννοια του διανύσματος Ο τρόπος που παριστάνομε τα διανυσματικά μεγέθη είναι με τη μαθηματική έννοια του διανύσματος. Διάνυσμα δεν είναι τίποτε

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0. Ασκήσεις4 46 Ασκήσεις 4 Τριγωνίσιμες γραμμικές απεικονίσεις, Θεώρημα των Cayley-Hamilton Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Κριτήριο τριγωνισιμότητας

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΔΕΥΤΕΡΟ - Διανύσματα - Πράξεις με πίνακες - Διαφορικός λογισμός (1D) ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 05 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα Ιδιάζουσες τιμές πίνακα Επειδή οι πίνακες που παρουσιάζονται στις εφαρμογές είναι μη τετραγωνικοί, υπάρχει ανάγκη να βρεθεί μία μέθοδος που να «μελετά» τους μη τετραγωνικούς με «μεθόδους και ποσά» που

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Τα διανύσματα xy, R είναι κάθετα αν και μόνο αν x y 0. Για το εσωτερικό γινόμενο των διανυσμάτων. Το ορθογώνιο συμπλήρωμα ενός υπόχωρου

Τα διανύσματα xy, R είναι κάθετα αν και μόνο αν x y 0. Για το εσωτερικό γινόμενο των διανυσμάτων. Το ορθογώνιο συμπλήρωμα ενός υπόχωρου ΤΥΠΟΛΟΓΙΟ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Ο ανάστροφος πίνακας του [ j ] σημειώνεται με [ j ] (δηλαδή οι γραμμές γίνονται στήλες αντίστροφα Ιδιότητες: ( ( B B ( R ( B B Ο αντίστροφος ενός τετραγωνικού πίνακα [ j ]

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

β = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ...

β = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ... Αµυραδάκη 0, Νίκαια (104903576) ΝΟΕΜΒΡΙΟΣ 01 ΘΕΜΑ 1 ο i) Αν Α( x 1, y 1 ) και Β(x, y ) δυο σηµεία του καρτεσιανού επιπέδου και (x, y) οι συντεταγµένες του µέσου Μ του ΑΒ, να αποδείξετε ότι : x 1 + x x

Διαβάστε περισσότερα

Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα

Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα 33.4.Συνεχείς συναρτήσεις Η έννοια της συνεχούς συνάρτησης είναι θεμελιώδης και μελετάται κατ αρχήν για συναρτήσεις μιας και κατόπιν δύο ή περισσότερων μεταβλητών στα μαθήματα του Απειροστικού Λογισμού.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΤΕΛΙΚΗΣ ΕΞΕΤΑΣΗΣ 9 Ιουνίου (διάρκεια ώρες και λ) Διαβάστε προσεκτικά και απαντήστε

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους Aσκήσεις1 1 Βασικά σημεία Ευκλείδεια διαίρεση πολυωνύμων Ορισμός και ιδιότητες μκδ και εκπ Ιδιότητες σχετικών πρώτων πολυωνύμων Τα ανάγωγα πολυώνυμα στο [ ] και [ ] Ασκήσεις1 Πολυώνυμα Ανάλυση πολυωνύμου

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Η χρησιμότητα της Γραμμικής Άλγεβρας είναι σχεδόν αυταπόδεικτη. Αρκεί μια ματιά στο πρόγραμμα σπουδών, σχεδόν κάθε πανεπιστημιακού τμήματος θετικών επιστημών, για να διαπιστώσει κανείς την παρουσία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ Εισαγωγή Οι αριθμοί που εκφράζουν το πλήθος των στοιχείων ανά αποτελούν ίσως τους πιο σημαντικούς αριθμούς της Συνδυαστικής και καλούνται διωνυμικοί συντελεστές διότι εμφανίζονται

Διαβάστε περισσότερα

Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12

Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12 Τράπεζα 0- Πολλαπλασιασμός αριθμού με διάνυσμα.58 Θεωρούμε τα διανύσματα α,β,γ και τυχαίο σημείο Ο. Αν α β 5γ, α 3β 4γ και 3α β 6γ, τότε: α) να εκφράσετε τα διανύσματα, συναρτήσει των διανυσμάτων α,β,γ.

Διαβάστε περισσότερα

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 63 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Η Εξίσωση Αx + Βy + Γ = 0, με Α 0 ή Β 0 Έστω ε μια ευθεία στο καρτεσιανό επίπεδο Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο Σ (, 0 β ) και έχει συντελεστή διεύθυνσης

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ορθοκανονικοποίηση, Ορίζουσες, Ιδιοτιμές και Ιδιοδιανύσματα Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδος ελαχίστων τετραγώνων Τα σφάλματα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 23 Μαρτίου 2018

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις

Διαβάστε περισσότερα

δίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α.

δίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α. 3.1 Η έννοια της συνάρτησης Ορισμοί Συνάρτηση f από ένα συνόλου Α σε ένα σύνολο Β είναι μια αντιστοιχία των στοιχείων του Α στα στοιχεία του Β, κατά την οποία κάθε στοιχείο του Α αντιστοιχεί σε ένα μόνο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Γραμμικοί Κώδικες. 2.1 Η έννοια του Γραμμικού κώδικα

ΚΕΦΑΛΑΙΟ 2. Γραμμικοί Κώδικες. 2.1 Η έννοια του Γραμμικού κώδικα ΚΕΦΑΛΑΙΟ 2 Γραμμικοί Κώδικες 2.1 Η έννοια του Γραμμικού κώδικα Μέχρι τώρα θεωρούσαμε έναν κώδικα C με παραμέτρους (n, M, d) απλώς ως ένα υποσύνολο του συνόλου A n, όπου A είναι ένα αλφάβητο. Είχαμε, όμως,

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii9/laii9html Παρασκευή 9 Μαρτίου 9 Ασκηση Εστω (E,,

Διαβάστε περισσότερα

n 5 = 7 ε (π.χ. ορίζοντας n0 = 1+ ε συνεπώς (σύμϕωνα με τις παραπάνω ισοδυναμίες) an 5 < ε. Επομένως a n β n 23 + β n+1

n 5 = 7 ε (π.χ. ορίζοντας n0 = 1+ ε συνεπώς (σύμϕωνα με τις παραπάνω ισοδυναμίες) an 5 < ε. Επομένως a n β n 23 + β n+1 Θέμα 1 (α) Υποθέτουμε (προς απαγωγή σε άτοπο) ότι το σύνολο A έχει μέγιστο στοιχείο, έστω a = max A Τότε, εϕόσον a A, έχουμε a R Q και a M Ομως ο αριθμός μητρώου M είναι ρητός αριθμός, άρα (εϕόσον ο a

Διαβάστε περισσότερα

Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων)

Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων) Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων) Στην πράξη, για πολύ σημαντικές εφαρμογές, γίνονται μετρήσεις τιμών μιας ποσότητας σε μια κλινική, για μια σφυγμομέτρηση,

Διαβάστε περισσότερα

1ο τεταρτημόριο x>0,y>0 Ν Β

1ο τεταρτημόριο x>0,y>0 Ν Β ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ( 6.2 ) Καρτεσιανό σύστημα συντεταγμένων ονομάζεται ένα επίπεδο εφοδιασμένο με δύο κάθετους άξονες οι οποίοι έχουν κοινή αρχή Ο και είναι αριθμημένοι με τις ίδιες μονάδες μήκους.

Διαβάστε περισσότερα

Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα

Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Περίληψη του μαθήματος Μιχάλης Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης 1η εβδομάδα. Στα πρώτα δύο μαθήματα είπαμε κάποια πολύ βασικά πράγματα για

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 5

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 5 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2019/laii2019html Παρασκευή 12 Απριλίου 2019 Αν

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2018/laii2018html ευτέρα 23 Απριλίου 2018 Αν C

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΜΑ Α Άσκηση, μιγαδικοί αριθμοί να αποδείξετε ότι: Αν = Έχουμε: = ( ) ( ) ( ) ( ) = = =. Το τελευταίο ισχύει, άρα ισχύει και η ισοδύναμη αρχική σχέση.

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ).

ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ). 1 ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ). A n Πόρισμα 1: Ο βαθμός του χαρ/κου πολυωνύμου ενός

Διαβάστε περισσότερα

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j Κεφάλαιο Πίνακες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο Είδος Α 56 Είδος

Διαβάστε περισσότερα

Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 2. Σύντομες Λύσεις

Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 2. Σύντομες Λύσεις Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων Γ. Καραγιώργος ykarag@aegean.gr Quiz 2 Σύντομες Λύσεις Άσκηση 1. Βρείτε μία βάση και τη διάσταση, για τους διανυσματικούς χώρους M 3

Διαβάστε περισσότερα

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ Άξονας Έστω η ευθεία x x (σχ. 21) και τα σηµεία Ο, Ι πάνω σ αυτή, ώστε ΟΙ= i όπου i το µοναδιαίο διάνυσµα, δηλαδή ένα διάνυσµα που θεωρούµε ότι η φορά του είναι θετική και το µέτρο

Διαβάστε περισσότερα

ÅÓÙÔÅÑÉÊÏ ÃÉÍÏÌÅÍÏ ÄÉÁÍÕÓÌÁÔÙÍ ΟΡΙΣΜΟΣ

ÅÓÙÔÅÑÉÊÏ ÃÉÍÏÌÅÍÏ ÄÉÁÍÕÓÌÁÔÙÍ ΟΡΙΣΜΟΣ Μαθηματικά Κατεύθυνσης Β Λυκείου-Απ Παπανικολάου ÅÓÙÔÅÑÉÊÏ ÃÉÍÏÌÅÍÏ ÄÉÁÍÕÓÌÁÔÙÍ ΟΡΙΣΜΟΣ Ονομάζουμε εσωτερικό γινόμενο δύο μη μηδενικών διανυσμάτων και και το συμβολίζουμε με α β τον πραγματικό αριθμό αβ

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες

Διαβάστε περισσότερα