GRANIČNA STANJA NOSIVOSTI BETONSKIH KONSTRUKCIJA SADRŽAJ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "GRANIČNA STANJA NOSIVOSTI BETONSKIH KONSTRUKCIJA SADRŽAJ"

Transcript

1 GRANIČNA STANJA NOSIVOSTI BETONSKIH KONSTRUKCIJA SADRŽAJ 1 FIZIKALNO-MEHANIČKA SVOJSTVA MATERIJALA Beton Računska čvrstoća betona Višeosno stanje naprezanja Razred okoliša Čelik za armiranje OSNOVE PRORAČUNA KONSTRUKCIJA DIMENZIONIRANJE PREMA GRANIČNOM STANJU NOSIVOSTI Elementi naprezani na savijanje Jednostruko armirani pravokutni presjek Dvostruko armirani pravokutni presjek Dimenzioniranje T-presjeka na moment savijanja Minimalna armatura Maksimalna armatura Elementi naprezani uzdužnom silom Centrično tlačno naprezani elementi Centrično vlačno naprezani elementi Dimenzioniranje pravokutnih presjeka pomoću dijagrama interakcije Dimenzioniranje pravokutnih presjeka na ekscentrični tlak Dimenzioniranje pravokutnih presjeka na ekscentrični vlak Vlačna sila djeluje između armatura (mali ekscentricitet) Vlačna sila djeluje izvan presjeka (veliki ekscentricitet) Lokalna tlačna naprezanja Poprečna armatura u gredama Dimenzioniranje presjeka na moment torzije Proračun ploča na proboj Vitki elementi naprezani ekscentričnom tlačnom silom Približan proračun prema EC LITERATURA Zagreb,

2 1 FIZIKALNO-MEHANIČKA SVOJSTVA MATERIJALA Svojstva materijala koriste se za određivanje otpornosti (nosivosti) elemenata i konstrukcija. Određuju se ispitivanjem u skladu s EC2, odnosno ENV 206 (Europäische Vornorm). 1.1 Beton Beton je građevinski materijal izrađen miješanjem veziva (cement), vode i agregata (pijesak, šljunak drobljenac). Osim tih obaveznih komponenti u sastav betona mogu ulaziti i dodaci (aditivi) koji mu daju posebna svojstva (zaptivači, aeranti, plastifikatori, regulatori vezivanja, sredstva protiv mraza...) U skladu sa ENV 206, beton koji se predviđa za sustave od betona, armiranog i prednapetog betona, treba biti načinjen od agregata, cementa, vode i dodataka u omjeru koji će osigurati dobru obradivost i svojstva koja ne smiju biti ispod vrijednosti danih tim propisima. Za gustoću nearmiranog betona uzima se ρ = 2400 kg/m 3, a armiranog ρ = 2500 kg/m Zapreminsa težina AB (kn/m3) Armatura (kg/m3) Slika 1.1 Utjecaj količine armature na zapreminsku težinu armiranog betona. Zapreminska težina armiranog betona ovisi o količini armature. Neki elementi mogu imati veliki postotak armiranja uzdužnom i poprečnom armaturom, a time i veću zapreminsku težinu. Ako pretpostavimo zapreminsku težinu nearmiranog betona 24.0 kn/m 3 može se koristiti slijedeći izraz za izračun zapreminske težine armiranog betona: Zapreminska težina AB=24+A s,uk *0.007 U gornji izraz potrebno je upisati A s,uk u kg/m 3 da bi dobili zapreminsku težinu u kn/m 3. Npr. za 143 kg/m 3 proizlazi zapreminska težina AB od 25.0 kn/m 3. Npr. za 286 kg/m 3 proizlazi zapreminska težina AB od 26.0 kn/m 3. Glavne mehaničke karakteristike betona jesu njegove čvrstoće (tlačna, vlačna i posmična) i deformabilnost. Deformabilnost materijala je njegovo svojstvo da se elastično i plastično deformira do trenutka razaranja. Na ova mehanička svojstva betona utječe veliki broj čimbenika, od kojih su najvažniji: kakvoća cementa, kakvoća i granulometrijski sastav ispune, 2

3 vodocementni faktor, konstrukcija smjese betona, prirodne primjese u ispuni i vodi, te posebni dodaci cementu ili betonskoj smjesi da bi se postigla posebna svojstva, način pripreme i ugradnje betona u konstrukciju i njega betona. Karakteristična tlačna čvrstoća (klasa betona) određuje se na osnovi računa vjerojatnosti i statistike korištenjem rezultata ispitivanja probnih uzoraka u obliku valjka dimenzija 150/300 mm, starih 28 dana. Zahtijeva se da najmanje 95% svih rezultata pokaže čvrstoću veću ili jednaku propisanoj klasi betona, odnosno da najviše 5% rezultata može biti manje čvrstoće od određene klase betona (5% fraktil). Pretpostavka je da će statistička raspodjela rezultata ispitivanja tlačne čvrstoće slijediti lognormalnu (Gaussovu) krivulju (Slika 1.2). Ucestalost p=5% σ σ f ck 1.64 σ f cm Cvrstoca Slika 1.2 Gaussova (lognormalna) krivulja raspodjele rezultata ispitivanja tlačne čvrstoće betona. Sva pravila i formule za konstruiranje i dimenzioniranje, prema Eurokodu 2, osnivaju se na karakterističnoj čvrstoći dobivenoj preko valjaka f ck,cyl ili skraćeno f ck. Međutim, kako neke zemlje određuju karakterističnu čvrstoću betona preko rezultata dobivenih ispitivanjem kocki stranice 200 mm f ck,cube, to se daje tablica za pretvorbu ovih čvrstoća. Ako je potrebno poznavati srednju tlačnu čvrstoću betona, ona se može približno odrediti po izrazu: f cm = f ck + 8 (N/mm 2 ) (1.1) f c Razredi C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 betona f ck (N/mm 2 ) f ck,cube f cm Tablica 1.1 Razredi betona. Čvrstoća betona starosti do 1000 dana u odnosu na konačnu f c može se približno odrediti korištenjem dijagrama. 3

4 Slika 1.3 Promjena čvrstoće betona starenjem. Idealizirani radni dijagram naprezanje deformacija za beton, predložen Eurokodom 2 za analizu armiranobetonskih i prednapetih sustava po nelinearnoj teoriji, teoriji plastičnosti ili za proračun po teoriji drugog reda za kratkotrajno opterećenje prikazan je na slici 1.4. σc f c 0.4f c α =arctge 1 cm ε c1 ε cu εc Slika 1.4 Idealizirani dijagram σ - ε za beton. Funkcija dijagrama na slici 1.4. u intervalu 0 ε c ε cu dana je u obliku: 2 fc( k η η ) σ c = 1 + ( k 2) η (1.2) f c - tlačna čvrstoća betona za koju se uzima da je jednaka računskoj čvrstoći (f c = f cd = f ck /γ c ) η = ε c /ε c1 - odnos deformacije betona prema ε c1 ε c1 - odgovarajuća deformacija maksimalnoj vrijednosti naprezanja f c, obično se uzima ε c1 = (ε c < 0 ako je naprezanje tlačno) k = 1.1 E c ε c1 /f c (1.3) E cm - sekantni ili statički modul elastičnosti betona E cm ( f ) 1 3 = (1.4) ck Na slici 1.5 vrijednost f ck predstavlja karakterističnu tlačnu čvrstoću betona dobivenu ispitivanjem valjka, a f cd =f ck /γ c predstavlja računsku čvrstoću betona. Koeficijentom α=0.85 uzima se u obzir nepovoljno djelovanje dugotrajnog opterećenja te drugih nepovoljnih čimbenika na čvrstoću betona. 4

5 Eurocode 2 predlaže dva računska dijagrama betona. Prvi je oblika pravokutnik plus parabola i drugi oblika pravokutnika. Oba dijagrama imaju graničnu deformaciju ε cu = Kod centričkog tlaka granična deformacija ne smije prelaziti σc f ck 0.4f ck Radni dijagram Racunski dijagram Racunski dijagram α 1 =arctge cm ε c1 ε cu εc σ α c fcd α=0,85 f cd=fck/γ c -2-3,5 εc σc α fcd -0,7 α=0,95 0,85-3,5 εc Slika 1.5 Radni i računski dijagrami betona. Vlačna čvrstoća betona definirana je prema obliku uzorka i metodi ispitivanja na vlak. Tako se razlikuje: f ct,ax - vlačna čvrstoća dobivena ispitivanjem uzorka na središnji vlak f ct,sp - vlačna čvrstoća dobivena cijepanjem f ct,fl - vlačna čvrstoća dobivena savijanjem uzorka. Kako se za proračun koristi f ct,ax, to su izrazi za pretvorbu: f ct,ax = 0.9 f ct,sp f ct,ax = 0.5 f ct,fl. Budući da vlačna čvrstoća u pravilu jako varira za neku klasu betona, a može biti značajna u analizi sigurnosti i trajnosti, uvodi se srednja vrijednost za vlačnu čvrstoću između donje granice za karakterističnu vlačnu čvrstoću f ctk,0.05 i gornje granice f ctk,0.95, odnosno one s 5%-tnim i druge s 95%-tnim fraktilom. Ovisno o klasi betona, vlačne čvrstoće su dane u tablici 1.2 u N/mm 2. Klasa C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 betona f ct,m f ctk, 0, f ctk, 0, Tablica 1.2 Vlačne čvrstoće betona. Također daju se približni izrazi za procjenu srednje vlačne čvrstoće te karakterističnih: f ct,m = 0.30 f ck 2/3 (1.5) f ctk, 0.05 = 0.70 f ct,m (1.6) f ctk, 0.95 = 1.3 f ct,m (1.7) Donja granična vrijednost za vlačnu čvrstoću f ctk,0.05 predstavlja veličinu koju će imati ili čak premašiti 95% rezultata ispitivanja, a samo će 5% biti ispod nje. Gornja granična vrijednost za vlačnu čvrstoću f ctk,0.95, predstavlja veličinu koju će premašiti samo 5% rezultata, a 95% će dati vrijednost jednaku ili manju od nje. 5

6 Kada se određuje deformacija betona pod opterećenjem, koristi se sekantni modul elastičnosti između naprezanja σ c = 0 i σ c = 0.4 f ck, a označuje se za beton normalne gustoće kao E cm. Ako nema točnijeg podatka za sekantni modul elastičnosti betona, dopušta se približni izraz za njegovo prognoziranje: E = f + 8 (N/mm 2 ). (1.8) cm ck Vrijednosti dobivene pomoću izraza zaokružene su i svrstane u tablicu. Razred C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 betona E cm (N/mm 2 ) Tablica 1.3 Moduli elastičnosti betona. Koeficijent poprečne deformacije bira se između 0 i 0.2. Kada je utjecaj poprečne deformacije znatan, uzima se μ c = 0.2. Za naponsko stanje II. (pojava pukotina u vlačnoj zoni) može se uzeti μ c = 0. Za temperaturni koeficijent predlaže se vrijednost α T,c = 10-5 K Računska čvrstoća betona Za dimenzioniranje prema graničnim stanjima nosivosti potrebno je poznavati računsku čvrstoću betona. Prema Eurocodeu 2 računska čvrstoća se dobije tako da se tlačna čvrstoća dobivena ispitivanjem valjaka podijeli s koeficijentom sigurnosti za materijale γ M =γ c =1.5, koja se još reducira koeficijentom α = 0.85 ili α = 0.80 zbog nepovoljnih učinaka dugotrajnog opterećenja i dinamičkog djelovanja te zbog razlike između čvrstoće betona u konstrukciji i one probnih tijela. Računska tlačna čvrstoća betona iznosi: α f cd =α f ck /γ c =0.85 f ck /1.5 (1.9) Slika 1.6 Računski dijagram betona oblika parabola + pravokutnik. Parabola: α fcd σ c = ( 4 εc) εc za 0 ε c 2 4 Pravac: σ c = α fcd za 2 ε c Višeosno stanje naprezanja Deformacije i čvrstoće betona razlikuju se ovisno o tome je li to jednoosno ili višeosno stanje naprezanja. Prema rezultatima ispitivanja u stanju troosnog tlačnog naprezanja prema radovima Richarta, Balmera, Brandtzaega i Browna dolazi do velikog porasta čvrstoće i deformacije betona. Za isti razred betona deformacija je porasla za 20 puta na 60, a tlačna čvrstoća je i 6 puta veća. Kod višeosnog stanja naprezanja pojavljuju se velike plastične deformacije pred slom betona, koje rastu i bez prirasta opterećenja. 6

7 Slika 1.7 Radni dijagrami betona kod višeosnog tlačnog naprezanja prema Richartu. Beton je materijal s izrazito nehomogenom strukturom, a osim toga protkan je porama s mjestimičnim nalazištima krupnijih šupljina. U očvrslome cementnom tijestu, a naročito na spoju s agregatom, ima mikropukotina i prije nego je beton opterećen. Zbog tih razloga uobičajene teorije čvrstoća mogu se na beton primjenjivati samo s izvjesnom aproksimacijom. Richard, Brandtzaeg i Brown na osnovi eksperimenata postavljaju izraz za tlačnu čvrstoću betona: f cc =f ck +4.1 f l gdje su: f cc - tlačna čvrstoća betona pri troosnom tlaku f ck - tlačna čvrstoća betona pri jednoosnom tlaku (razred betona) f l - bočni tlak. Taj efekt povećane nosivosti u smjeru glavnog naprezanja pri troosnom tlaku primjenjuje se kod ovijenih stupova Razred okoliša Beton u eksploataciji može biti izložen različitim djelovanjima. Prema uvjetima u kojima se beton nalazi propisani su minimalni tehnološki zahtjevi u vezi sastava betona, karakteristične tlačne čvrstoće, minimalnog zaštitnog sloja, vodocementni omjer i sl. prema kojima treba odabirati i projektirati razred betona. Razred Opis okoliša Informativni primjer moguće pojave razreda izloženosti Najmanji razred tlačne čvrstoće betona 1. Nema rizika od oštećenja X0 Bez rizika djelovanja Elementi bez armature u neagresivnom okolišu (npr. Nearmirani temelji koji nisu izloženi smrzavanju i odmrzavanju, nearmirani unutarnji elementi) C 20/ Korozija armature uzrokovana karbonitizacijom Elementi u prostorijama obične vlažnosti zraka (uključujući kuhinje, XC1 Suho ili trajno vlažno kupaonice, praonice rublja u stambenim zgradama); elementi stalno C 20/25 20 uronjeni u vodu XC2 Vlažno, rijetko suho Dijelovi spremnika za vodu; dijelovi temelja C 30/37 35 XC3 Umjerena vlažnost Dijelovi do kojih vanjski zrak ima stalni ili povremeni pristup (npr. Zgrade otvorenih oblika); prostorije s atmosferom visoke vlažnosti (npr. C 30/37 35 Minim. Zaštitni sloj cmin (mm) 7

8 Javne kuhinje, kupališta, praonice, vlažni prostori zatvorenih bazena za kupanje, ) XC4 Cikličko vlažno I suho Vanjski betonski elementi izravno izloženi kiši; elementi u području vlaženja vodom (slatkovodna jezera i/ili rijeke, C 30/ Korozija armature uzrokovana kloridima koji nisu iz mora XD1 Suho ili trajno vlažno Područja prskanja vode s prometnih površina; privatne garaže C 30/37 55 XD2 Vlažno, rijetko suho Bazeni za plivanje i kupališta sa slanom vodom; elementi izloženi industrijskim vodama koji sadrže kloride C 30/37 55 XD3 Cikličko vlažno i suho Elementi izloženi prskanju vode s prometnih površina na koja se nanose sredstva za odleđivanje; parkirališne ploče bez zaštitnog sloja C 35/ Korozija armature uzrokovana kloridima iz mora Izloženi soli iz zraka, XS1 ali ne u direktnom dodiru s morskom Vanjski elementi u blizini obale C 30/37 55 vodom XS2 Uronjeno Stalno uronjeni elementi u lukama C 35/45 55 XS3 U zonama plime i prskanja vode Zidovi lukobrana i molova C 35/45 55 Umjereno zasićeno XF1 vodom bez sredstava za odleđivanje Vanjski elementi C 30/37 - Umjereno zasićeno Područja prskanja vode s prometnih površina, sa sredstvom za XF2 vodom sa sredstvom odleđivanje (ali drukčije od onog kod XF4); područje prskanja morskom za odleđivanje ili vodom C 25/30 - morska voda XF3 XF4 XA1 XA2 XA3 XM1 XM2 XM3 Jako zasićeno vodom bez sredstava za odleđivanje Jako zasićeno vodom sa sredstvom za odleđivanje ili morska voda Slabo kemijski agresivan okoliš Umjereno kem. agresivan okoliš; konstrukcije u marinama Jako kemijski agresivan okoliš Umjereno habanje Znatno habanje Ekstremno habanje Otvoreni spremnici za vodu; elementi u području kvašenja vodom (slatkovodna jezera i/ili rijeke) C 30/37 - Prometne površine tretirane sredstvima za odleđivanje; pretežno vodoravni elementi izloženi prskanju vode s prometnih površina na koja se nanose sredstva za odleđivanje; parkirališne ploče bez zaštitnog sloja); elementi u području morske plime; mjesta na kojima može doći do struganja u postrojenjima za tretiranje voda iz kanalizacije Spremnici u postrojenjima za tretiranje voda iz kanalizacije; spremnici tekućih umjetnih gnojiva Betonski elementi u dodiru s morskom vodom; elementi u agresivnom tlu Kemijski agresivne vode u postrojenjima za tretiranje otpadnih voda; spremnici za silažu i korita (žlijebovi) za hranjenje životinja; rashladni tornjevi s dimnjacima za odvođenje dimnih plinova Elementi industrijskih konstrukcija izloženi prometu vozila s pneumatskim gumama na kotačima Elementi industrijskih konstrukcija izloženi prometu viljuškara s pneumatskim ili tvrdim gumama na kotačima Elementi industrijskih konstrukcija izloženi prometu viljuškara s pneumatskim gumama ili čeličnim kotačima; hidrauličke konstrukcije u vrtložnim (uzburkanim) vodama (npr. Bazeni za destilaciju); površine izložene prometu gusjeničara C 30/37 - C 30/37 - C 35/45 - C 35/45 - C 30/37 25 C 30/37 45 C 35/45 50 Tablica 1.4 Razredi izloženosti i minimalne vrijednosti razreda betona i zaštitnih slojeva. 1.2 Čelik za armiranje Za armiranje betonskih konstrukcija rabe se čelici pod nazivom betonski čelik ili čelik za armiranje. Betonski čelik dijeli se prema: profilu, na žice φ 12 mm i šipke φ > 12 mm; mehaničkim karakteristikama (granica popuštanja, vlačna čvrstoća i rastezljivost pri slomu probnog uzorka na dijelu njegove dužine 10φ), na visoko i normalno duktilne čelike; zavarljivosti, na nezavarljiv, zavarljiv pod određenim uvjetima i zavarljiv; površinskoj obradi pri izvlačenju, na glatki i rebrasti, uključujući i zavarene mreže; vrsti obrade, na toplo valjan, toplo valjan i hladno obrađen i termički poboljšan čelik. Proizvođač čelika za armiranje garantira ove mehaničke karakteristike: karakterističnu čvrstoću pri kidanju (vlačna čvrstoća) (f tk ); 8

9 karakterističnu granicu popuštanja (f yk ); rastezljivost poslije kidanja na dužini od 10φ (δ); sposobnost savijanja i povratnog savijanja šipke oko trna određenog promjera s određenim kutom savijanja bez pukotina šipke u vlačnom i tlačnom pojasu; karakterističnu dinamičku čvrstoću (granicu zamora). Dokaz svih nabrojenih mehaničkih svojstava armature obavlja se prema standardima ispitivanja čelika za armiranje. Jedan od glavnih uvjeta armiranobetonskih konstrukcija je potpuno sprezanje između betona i čelika, što znači da ne smije nastupiti klizanje armature u betonu. Pri malim posmičnim naprezanjima između armature i betona zadovoljava glatki okrugli presjek. S izradom kvalitetnijeg čelika rasla je sila u armaturi, pa je sve više prijetila opasnost da se čelik odijeli od betona. Sprečavanje klizanja postiže se upotrebom rebrastih ili sukanih profila te sukano rebrastih profila. Rebrasti čelici imaju znatno bolju prionljivost od glatkih čelika pa dopuštaju upotrebu većih naprezanja s tim da se mogu očekivati pravilno raspoređene pukotine u betonu manjih širina. Od čelika za armiranje zahtijeva se i velika rastezljivost, tj. veliko relativno produljenje prije sloma. Ona je potrebna u prvom redu radi izravnavanja naprezanja u pojedinim šipkama armature na mjestu pukotina. Svojstvo velike rastezljivosti poželjno je i za nekontrolirano preopterećenje konstrukcije, kad velika rastezanja armature izazivaju u betonu široke pukotine i upućuju na opasnost od sloma. S druge strane, potrebna je velika rastezljivost pri hladnoj izradi kuka i ogiba. Čelične šipke male rastezljivosti moraju se savijati u užarenom stanju, što znatno otežava rad, a kod nekih vrsta čelika time se kvare ili mijenjaju njegova svojstva (hladno obrađeni čelik). Čelik koji se rabi za armaturu dobavlja se u šipkama, kolutovima i mrežama raznih oblika i presjeka, raznih duljina, a i raznih kvaliteta. Na slici 1.8 prikazano je nekoliko oblika armatura koje se upotrebljavaju u armiranom betonu: Glatka armatura je od prirodnog čelika B240, B220 (GA 240/360). Rebrasta armatura je od visokovrijednoga prirodno tvrdog čelika dobivenoga prikladnim legiranjem B400, B500 (RA 400/500, RA 500/550). Sukani profili su hladno obrađeni čelici. Mrežasta armatura je također od hladno obrađenih glatkih i rebrastih žica koje se zavaruju točkasto elektrootporom u krutu mrežu MAG 500/560 i MAR 500/560. Bi-armatura sastoji se od dvije hladno obrađene žice međusobno spojene poprečnim šipkama od prirodnog čelika i zavarene. Nije dopuštena za dinamičko opterećene konstrukcije i konstrukcije koje moraju biti nepropusne za vodu B680 (BiA- 680/800). 9

10 Slika 1.8 Oblici armature. Kod nas se je do sada upotrebljavala GA 240/360, rebrasta RA 400/500 i RA 500/550 te mrežasta armatura MAG 500/560. Rebrasta armatura isporučuje se u snopovima ravnih šipaka duljine od 12 do iznimno 14m, a po narudžbi kupaca profili od 8, 10, 12 i 14 mm u kolutovima duljine do 50 m. Radni dijagram naprezanje-deformacija za meki čelik (sl.1.9), vrijednost f tk znači karakterističnu vlačnu čvrstoću čelika, a f yk karakterističnu granicu popuštanja koja odgovara naprezanju za koje je nepovratna deformacija 0.2%. σs f t f y Radni dijagram Racunski dijagram Racunski dijagram σs σs f tk f td f yk f yd f yd α =arctge s α =arctge s α =arctge s ε y ε u ε s ε yd ε yk ε uk =10,0% εs εyd Slika 1.9 Radni i računski dijagrami armature. 20,0% εs Eurokodom 2, odnosno EN 10080, zahtijeva se: - za čelik visoke duktilnosti da je ε uk 5%, (f t /f y ) k 1.08, - za čelik normalne duktilnosti da bude ε uk 2.5%, (f t /f y ) k Za modul elastičnosti predlaže se stalna veličina E s = N/mm 2, a za temperaturni koeficijent α T,s = 10-5 K -1 kod temperatura od - 20 o do 200 o C. 10

11 Normama za čelik predviđaju se dvije vrste betonskog čelika različitih prema duktilnosti: B500H - čelik kome je granica popuštanja 500 N/mm 2 i koji ima visok duktilitet ((f t /f y ) k = 1.08, ε uk > 5.0%), B500N - čelik kome je granica popuštanja 500 N/mm 2 i koji ima normalan duktilitet ((f t /f y ) k = 1.05, ε uk > 2.5%). Vrsta kombinacije Beton γ c Armatura i prednapeti čelik γ s Osnovne kombinacije Izvanredne kombinacije (osim potresa) Tablica 1.5 Parcijalni koeficijenti sigurnosti za svojstva gradiva. 2 OSNOVE PRORAČUNA KONSTRUKCIJA Konstrukcija mora biti planirana, projektirana i izvedena na način da tijekom predviđenog vijeka trajanja uz zadovoljavajući stupanj pouzdanosti i na ekonomičan način: ostane uporabiva za predviđenu namjenu bude u stanju podnijeti sva predvidiva djelovanja i učinke tijekom izvedbe i uporabe Proračun i izvedba konstrukcije moraju biti takvi da se ona ne može oštetiti zbog požara, eksplozije, udara ili ljudske greške nerazmjerno uzroku (mora se ostvarivati razmjernost uzroka i posljedice). Proračunske situacije opisuju okolnosti u kojima konstrukcija ispunjava svoju ulogu a moraju biti dovoljno zahtjevne i tako varirane da obuhvate sve uvjete koji se mogu očekivati tijekom izvedbe i uporabe konstrukcije. Proračunske situacije dijele se na: Stalne situacije svi uvjeti uobičajene uporabe Prolazne situacije povremeni uvjeti, npr. tijekom izvedbe ili popravka Izvanredne situacije iznimni uvjeti ili požar, eksplozija, udar Seizmičke situacije potres Sigurnost neke nosive konstrukcije protiv otkazivanja nosivosti općenito je uvjetovana time da njena otpornost R bude veća od ekstremnog djelovanja S, koje će na nju djelovati u vijeku njenog trajanja. Kriterij za određivanje sigurnosti nosive konstrukcije može se iskazati na sljedeći način: R>S (2.1) Zona sigurnosti ili veličina stanja nosivosti definirana je kao razlika između otpornosti i djelovanja na konstrukciju: Z=R-S (2.2) U pristupima sigurnosti građevina razlikujemo dva osnovna pristupa: determinističko i probabilističko poimanje sigurnosti. 11

12 Determinističko poimanje sigurnosti koristilo se u prvim metodama proračuna (metoda dopuštenih napona). Pretpostavlja sigurnu konstrukciju, kada su naprezanja od vanjskog opterećenja manja od propisanih dopuštenih naprezanja. Dopuštena naprezanja vezana su s faktorom sigurnosti uz određene granične veličine (npr. granica popuštanja, čvrstoća). Probabilističko poimanje sigurnosti temelji se na pretpostavci da ne postoji potpuno sigurna konstrukcija. Svaka konstrukcija odnosno element konstrukcije ima neku vjerojatnost otkazivanja nosivosti. Za proračun je potrebno sve varijable statistički obraditi i koristiti ih u obliku funkcija određene raspodijele vjerojatnosti. Granična stanja su stanja izvan kojih konstrukcija više ne zadovoljava projektom predviđene zahtjeve. Razlikuju se: granična stanja nosivosti GSN (eng. ULS) i granična stanja uporabljivosti GSU (eng. SLS). Metoda dopuštenih naprezanja: R S (2.3) γ Gdje je S-vanjski utjecaj, a R- otpornost. Dosadašnja metoda graničnih stanja prebacila je koeficijent sigurnosti na drugu stranu ove nejednadžbe. γ S R (2.4) Globalni koeficijent sigurnosti u novom propisu rastavlja se na parcijalne koeficijente sigurnosti za djelovanja γ S i parcijalne koeficijente sigurnosti za otpornost γ R : γ γ S R (2.5) R S Konstrukcija je sigurna ako vrijedi: R γ S S (2.6) γ R Osnove novog postupka proračuna konstrukcija sadržane su u europskoj normi EN 1990, glavnom eurokodu u sklopu usklađene grupe europskih normi za projektiranje konstrukcija -Structural Eurocodes. Metoda graničnih stanja je semiprobabilistička metoda u kojoj se po zakonima vjerojatnosti određuju reprezentativne vrijednosti za djelovanje i karakteristične vrijednosti za otpornost materijala. Tim se vrijednostima pridružuju parcijalni koeficijenti sigurnosti pa se dobivaju računske vrijednosti. Metoda je slična determinističkoj metodi s tom razlikom da se pojedine veličine određuju probabilističkim postupcima. Koeficijenti sigurnosti služe da pokriju sve netočne pretpostavke koje smo uveli u proračun, kao što su: Netočnost procjene stalnog i pokretnog opterećenja, Netočnost određivanja čvrstoća i deformacija materijala, Netočnost usvojenog statičkog sustava u odnosu na stvarno ponašanje konstrukcije, Odstupanje računskih radnih dijagrama σ ε od stvarnih za pojedine materijale, Tolerantne greške proračuna, Greške određivanja kritičnih presjeka kod dimenzioniranja konstrukcije, 12

13 Utjecaj puzanja i skupljanja betona na konačnu čvrstoću, kao i utjecaj nejednolike temperature, Netočnosti izvedbe (tolerantna odstupanja vertikalnosti elemenata, netočnost dimenzija presjeka, itd.), Netočnost u položaju armature, naročito odstupanje u veličini zaštitnog sloja u odnosu na projektiranu statičku visinu presjeka, Moguću koroziju čelika, koja utječe na smanjenje nosivosti, Zanemarivanje prostornog djelovanja konstrukcije i zanemarivanje prostornog stanja naprezanja na čvrstoće. GSN (ULS) granična stanja nosivosti stanja koja mogu izazvati rušenje konstrukcije (stanja netom prije rušenja konstrukcije) ili dovode konstrukciju u stanje mehanizma. Tu spadaju: gubitak ravnoteže konstrukcije ili njezina elementa promatranih kao kruto tijelo granično stanje sloma ili prekomjerne deformacije kritičnog presjeka gubitak ravnoteže zbog velikog deformiranja(teorija II. reda) granično stanje sloma uzrokovano zamorom transformacija konstrukcije u mehanizam Metoda graničnih stanja temelji se na šest pretpostavki: 1. vrijedi Bernoullijeva hipoteza ravnih presjeka, 2. beton u vlačnoj zoni uopće ne sudjeluje u nošenju, 3. ostvarena je dobra prionljivost između armature i betona do sloma, 4. vrijedi računski dijagram betona σ c - ε c, 5. vrijedi računski dijagram armature σ s - ε s, 6. unutarnje sile proračunavaju se po teoriji elastičnosti za naponsko stanje I (bez pukotina) Granično stanje sloma: S d R d (2.7) S d - proračunska vrijednost djelovanja R d - proračunska vrijednost nosivosti (svojstva materijala) Granično stanje statičke ravnoteže ili velikih pomaka konstrukcije: E d,dst E d,stb (2.8) E d,dst - proračunska vrijednost destabilizirajućeg djelovanja - proračunska vrijednost stabilizirajućeg djelovanja E d,stb 3 DIMENZIONIRANJE PREMA GRANIČNOM STANJU NOSIVOSTI 3.1 Elementi naprezani na savijanje Jednostruko armirani pravokutni presjek Izrazi za dimenzioniranje dobiju se iz uvjeta ravnoteže koji za savijanje glasi: M sd = M Rd gdje je: M sd = Σ(γ g,i M g,i + γ q M q,1 )+ γ p M p - računski moment savijanja (3.1) 13

14 M Rd = F c z = 0.85 α v x b f cd z = μ Rd b d 2 f cd - računski moment nosivosti presjeka α v - koeficijent punoće x = ξ d - udaljenost neutralne osi od tlačnog ruba z = ζ d - krak unutrašnjih sila μ Rd - bezdimenzijska vrijednost za moment nosivosti. Uvrštavanjem izraza za računske momente u jednadžbu (3.1) dolazi se do formule za bezdimenzijsku vrijednost momenta savijanja: μ Msd sd = = 2 rd 0.85 v bd f μ = α ξ ζ (3.2) cd gdje je ε c2 ξ = - koeficijent udaljenosti neutralne osi od tlačnog ruba (3.3) ε + ε s1 c2 n.os εc x 0.85f cd Fc h d z As1 b d1 εs1 Fs1 Slika 3.1 Dimenzioniranje na moment savijanja. ε c deformacija betona na tlačnom rubu ε s1 deformacija armature u težištu vlačnih šipki F s1 sila u vlačnoj armaturi F c sila u betonu Izraz za potrebnu vlačnu armaturu dobije se iz uvjeta ravnoteže: MSd = Fs1 z = fyd As1 z (3.4) MSd MSd As1 = = z f ( ζ d)f (3.5) yd yd Pet osnovnih mogućnosti naprezanja ovisit će o deformacijama betona i čelika: -3,5% h d d-d d2 2 A s εc2 d1 b A s1 εs1 20% 3% 0-2% Slika 3.2 Dijagrami deformacija. 1. Ekscentrični vlak s malim ekscentritetom, čelik je potpuno iskorišten. 5 εc1 14

15 2. Savijanje ili savijanje s uzdužnom vlačnom silom, čelik je potpuno iskorišten, beton dostiže granične deformacije. 3. Savijanje ili savijanje s uzdužnom tlačnom silom, beton i čelik su potpuno iskorišteni. 4. Ekscentrični tlak, beton je potpuno iskorišten, čelik dostiže graničnu deformaciju 5. Ekscentrični tlak s malim ekscentricitetom, cijeli presjek je u tlaku, deformacije u betonu ograničuju se od -3,5-2,0 o / oo. ζ, ξ ζ ξ μ Sd Slika 3.3 Funkcija ovisnosti koeficijenta neutralne osi i kraka unutarnjih sila o μ Sd. Vrijednosti koeficijenta neutralne osi i kraka unutarnjih sila određene su za različite vrijednosti deformacija na gornjem i donjem rubu presjeka (ε s1 i ε c2 ) prema slici 3.2, i dane u tabličnom obliku. Funkcionalna ovisnost koeficijenata ζ i ξ prikazana je na slici 3.3 i može se dobro interpolirati polinomom drugog stupnja. Maksimalno odstupanje za ζ funkciju iznosi 1%. 2 ζ μ Sd μ (3.6) ξ = Sd 2 = μ Sd μsd + (3.7) Izrazi 3.6 i 3.7 mogu se upotrijebiti u probabilističkom proračunu potrebne armature kad je potrebno napisati izraze u zatvorenom obliku. Da bi se osigurala sposobnost rotacije presjeka (duktilnost), Eurokodom 2 propisuje se dodatni uvjet da odnos x/d ne prekorači limitiranu vrijednost: ξ lim =0.45=(x/d) lim za razrede betona do C35/45 ξ lim =0.35=(x/d) lim za razrede betona od C40/50 i više ξ lim =0.25=(x/d) lim kod primjene teorije plastičnosti za proračun unutarnjih sila u pločama. Razred betona C μ lim ζ lim ξ lim ε c2 ( ) ε s1 ( ) C35/ C40/ Tablica 3.1 Limitirane vrijednosti ovise o razredu betona. Ukoliko je proračunski moment savijanja veći od limitiranog M Sd >M Rd,lim potrebno je povećati visinu presjeka. Ako to nije moguće presjek se može dvostruko armirati Dvostruko armirani pravokutni presjek Ukoliko je M Sd >M Rd,lim ili ( μ Sd > μ lim ) presjek se mora dvostruko armirati. Presjek je potrebno armirati i u tlačnoj zoni. 15

16 h d d1 d-d d 2 2 x 1 s1 As2 x 1 N. OS bw εc 0.85fcd Slika 3.4. Dvostruko armirani presjek za negativni moment savijanja. εs1 x Fs z Fc Najveći moment savijanja koji jednostruko armirani presjek može preuzeti je: 2 M = μ b d f (3.8) Rd,lim lim w cd Tlačna armatura povećava duktilnost, ali ukupna armatura mora biti manja od 4% presjeka betona. Koeficijent armiranja cjelokupnog presjeka: ρ max A = s1,max b + A w h s2,max 0,04 Ukupna vlačna armatura sastoji se od dva dijela: A s1 =A s1,lim +A s2 (3.9) Vlačna i tlačna armatura dane su izrazima: MRd,lim MSd MRd,lim As1 = + -vlačna armatura (3.10) ( ζ d)f (d d )f lim yd 2 yd A s2 MSd M = (d d )f Rd,lim 2 yd - tlačna armatura (3.11) Kako bi osigurali tlačnu armaturu od izvijanja, u dvostruko armiranom presjeku utjecaj tlačne armature na njegovu nosivost može se uzeti u obzir ako je ona povezana sponama na razmaku: s w 15φ (φ - promjer šipke tlačne armature) i ako je zadovoljen uvjet x 2d 2 (x - udaljenost neutralne osi od tlačnog ruba presjeka, d 2 -udaljenost težišta tlačne armature od ruba presjeka). Povećanjem armature smanjujemo duktilnost presjeka. Eurokod 8 daje slijedeće klase duktilnosti: fcd ρs2 Visoka H ρ s 1,max = 0,35 + 0, 0015 (3.12) f yd ρs1 fcd ρs2 Srednja N ρ s 1,max = 0,65 + 0, 0015 (3.13) f yd ρs1 Niska L ρ s 1,max = 0,75ρmax = 0, 03 (3.14) Dimenzioniranje T-presjeka na moment savijanja Kod ploča s rebrima proračunska širina ploče ovisi o dimenzijama ploče i rebra, o vrsti opterećenja, rasponu, uvjetima na ležajevima i poprečnoj armaturi. Za proračun unutarnjih sila, kada se ne zahtijeva velika točnost (npr. kontinuirani nosači u zgradama), može se pretpostaviti stalna širina duž čitavog raspona. 16

17 L 0 mi b i; mi 10 Slika 3.5 Sudjelujuća širina grede T-presjeka. Proračunska širina ploče, b eff, za unutarnju gredu T-presjeka uzima se iz dva uvjeta: b1+ bw + b2 b eff L0 L0 L0 + bw + = + bw gdje su: b 1 i b 2 - polovica svijetlog razmaka rebara lijevo, odnosno desno od rebra. L 0 - razmak nul-točaka mom. dijagrama (za prvo polje L 0 =0.85 L, za srednje L 0 =0.7 L, a za prostu gredu L 0 =L, za konzolu L 0 =2L). Proračunska širina ploče, b eff, za rubnu gredu uzima se iz dva uvjeta: b1+ bw b eff L0 + bw 10 polje MSd Za pozitivni moment b=b eff : μ sd = ; Uz uvjet da neutralna os prolazi kroz ploču 2 beff d fcd (x h f ) ležaj MSd Za negativni moment b=b w : μ sd = ; 2 bw d fcd MSd Potrebna armatura: As1 = ( ζ d) f yd Kod pozitivnog momenta savijanja, kad neutralna os prolazi kroz ploču ili njezinim donjim rubom, presjek se računa kao greda dimenzija b eff /h. Poprečna armatura računa se za širinu rebra b w. Slika 3.6 Dimenzioniranje T-presjeka na pozitivan moment savijanja.. 17

18 Slika 3.7 Dimenzioniranje T-presjeka na negativan moment savijanja. Ukoliko kod dimenzioniranja na pozitivan moment savijanja neutralna os prolazi kroz rebro (x>h f ) tada postoje dva slučaja: 1. Za b eff 5b w -može se zanemariti dio rebra ispod ploče, te tada cijelu tlačnu silu preuzima ploča, tj.pojasnica T-presjeka. polje MSd Potrebna armatura: As1 = hf (d )fyd 2 Tlačna naprezanja ne smiju premašiti računsku čvrstoću betona proračunska: polje MSd σ cd = 0.85 fcd hf (d ) ( beff hf ) 2 2. Za b eff <5b w - takav T-presjek treba računati tako da se tlačni dio presjeka zamijeni pravokutnikom širine b i kojem neutralna os prolazi donjim rubom. b i = λ b b eff Koeficijent λ b pronalazi se u tablici ovisno o: h f /d i b eff /b w, te ξ=x/d koji se uzima za ε c2 = i ε s1 = Nakon toga provodi se dimenzioniranje kao za pravokutni presjek b i /h. Minimalna površina armature za T-presjek računa se prema izrazu: Polje: As1,min = 0.6 bw d / fyk bw d Ležaj: As1,min = beff d Maksimalna površina armature za T-presjek u polju računa se prema izrazu: fcd As1,max = 0.85 beff hf f yd Minimalna armatura Slom slabo armiranih presjeka nastaje trenutačno. Da se takav slom ne dogodi potrebno je presjek armirati minimalnom armaturom. Količina armature u vlačnoj zoni mora biti tolika da primi silu vlaka koju prije pojave prve pukotine preuzima vlačna zona betona. Minimalna armatura je armatura momenta prve pukotine. M W cr c fct,m As1,min = = (3.15) z f (0.9 d) f yk yk A f (0.9 d) = W f (3.16) s1,min yk c ct,m W c - moment otpora betonskog presjeka f - srednja vlačna čvrstoća betona. ct,m 18

19 Za pravokutni presjek: z=0.9*d- krak unutarnjih sila 2 b h b ( 1.1 d) 2 2 Wc = = = 0.2 b d (3.17) 6 6 f 0.1 f (3.18) ct,m ck A f 0.9 d 0.1 f 0.2 b d fck As1,min = b d (3.20) fyk Prema HRN ENV minimalna armatura određuje se po izrazu: A = 0.6 b d / f b d (f yk u N/mm 2 ) (3.21) 2 s1,min yk = ck (3.19) s1,min t yk t gdje je b t srednja širina vlačne zone. Iz uvjeta duktilnosti, kako ne bi došlo do krtog loma, odabrana armatura mora biti veća od minimalne i manja od maksimalne Maksimalna armatura Prema HRN ENV maksimalna armatura određuje se po izrazu: As1,max = 0.04 b d (3.22) Prema kriteriju za položaj neutralne osi, maksimalna armatura za jednostruko armirani presjek: fck za C 35/45 (x/d 0.45) As1,max = b d (npr. za C25 i B500 A s1max =1.19%bd) fy fck za C 40/50 (x/d 0.35) As1,max = b d (npr. za C40 i B500 A s1max =1.48% bd) fy Maksimalna armatura za dvostruko armirani presjek određuje se iz dva kriterija: 1. Vlačna armatura mora biti manja od 2% betonskog presjeka: As1,max = 0.02 b d 2. Maksimalni moment mora biti manji od 1.5 MRd,lim : fck za C 35/45 (x/d 0.45) As1,max = b d (npr. za C25 i B500 f A s1max =1.78%bd) za C 40/50 (x/d 0.35) ck As1,max b d fy y f = (npr. za C40 i B500 A s1max =2.00% bd) 3.2 Elementi naprezani uzdužnom silom Centrično tlačno naprezani elementi Kratki elementi, odnosno elementi kojima je vitkost λ 25, te odnos stranica h 4b, proračunavaju se ne uzimajući u obzir imperfekcije: h b ; emin imperfekcije od netočnosti izvedbe. 20mm 19

20 Slika 3.8. Poprečni presjek naprezan centričnom tlačnom silom. Uz pretpostavku zajedničke nosivosti betona i čelika izraz za centrično opterećen element glasi: N Sd N Rd (3.23) NSd = Ac σ c + As σ s Za punu iskorištenost betona ε c = -2.0 i čelika proizlazi: NSd = Ac 0.85 fcd + As fyd (3.24) Potrebna uzdužna armatura prema EC2 računa se po izrazu: NSd Ac 0.85 fcd As = (3.25) fyd Izraz definiran prema EC2 nije na strani sigurnosti jer ne oduzima površinu armature od površine betona. Točniji izraz glasi: N = (A A ) σ + A σ = (A A ) 0.85 f + A f (3.26) Sd c s c s s c s cd s yd Potrebna armatura za presjek opterećen centričnom tlačnom silom iznosi: NSd Ac 0.85 fcd As = f 0.85 f yd cd (3.27) Minimalne dimenzije tlačnih elemenata jesu: 20 cm - za stup izveden na licu mjesta 14 cm - za predgotovljeni tlačni element. Minimalna površina uzdužne armature proračuna se po izrazu: A s,min = 0.15 N sd /f yd A c (3.28) a za najmanji profil treba uzeti φ 12 mm. Maksimalna količina armature na mjestu nastavaka može biti: A s,max = 0.08 A c (3.29) Najmanji profil spona je φ 6 mm, ali ne manji od 1/4 φ (uzdužne armature). Razmak spona treba biti: e b 12 φ 300 mm gdje je: b - manja stranica presjeka φ - promjer najtanje uzdužne šipke. Razmak spona treba reducirati faktorom 0.6: - iznad grede ili ploče oslonjene na stup i ispod nje na dužini veće dimenzije stupa - na mjestu nastavaka uzdužnih šipki profila većih od 14 mm. 20

21 Svaku šipku ili grupu šipki u kutu presjeka valja sponama pridržati od izvijanja. Do 5 šipki u kutu ili blizu njega može se osigurati od izvijanja jednom sponom. U stupovima poligonalnog presjeka mora se, u svakom njegovu kutu, predvidjeti barem jedna uzdužna šipka, a u onima kružnog presjeka barem 6 uzdužnih šipki jednoliko raspoređenih po opsegu spona. Slika 3.9. Razmak poprečne armature stupa. Naprezanje u betonu i armaturi kod centrično tlačno opterećenog presjeka: N = F + F (3.30) c Sd c s ε = ε (3.31) s σ c σ s = Ecm Es (3.32) Es σ s = σc = αe σc E (3.33) cm N = (A A ) σ + A σ (3.34) Sd c s c s s N Sd = (Ac A s) σ c + As αe σc (3.35) Naprezanje u betonu u trenutku opterećenja t=0. NSd NSd NSd σ = c (Ac A s) As α = e Ac A s ( αe 1) = (3.36) + + Aid Idealna površina poprečnog presjeka: A = A + A ( α 1) = A + ρ ( α 1) (3.37) id c s e c e A A s ρ = (3.38) c 21

22 Vremenom, zbog puzanja i skupljanja, beton se skraćuje, naprezanje u betonu se smanjuje a naprezanje u armaturi raste. Utjecaj puzanja betona može se približno uzeti preko efektivnog modula elastičnosti: Ecm Ec,eff = (3.39) ϕ(t,t 0) Odnos modula elastičnosti čelika i betona: α e = E s /Ecm za t=0 (3.40) α = E /E za t= (3.41) e s c,eff Centrično vlačno naprezani elementi Slika Poprečni presjek naprezan centričnom vlačnom silom. Sve sile vlaka preuzima armatura. Potrebna uzdužna armatura računa se po izrazu: N Sd N Rd (3.42) NSd = As σ s = As fyd (3.43) NSd As = (3.44) f yd 3.3 Dimenzioniranje pravokutnih presjeka pomoću dijagrama interakcije Armiranobetonske presjeke naprezane ekscentričnom tlačnom ili vlačnom silom vrlo je jednostavno dimenzionirati upotrebom dijagrama interakcije. Ovi dijagrami konstruirani su za pravokutne i okrugle presjeke naprezane oko jedne glavne osi i oko dvije glavne osi sa i bez uzdužne sile. Slika Poprečni presjek, dijagrami deformacija i naprezanja. Dijagrami interakcije konstruirani su upotrebom jednadžbi ravnoteže: N sd = N Rd 22

23 M sd = M Rd Uvrštavanjem vrijednosti za računske nosivosti dolazi se do formula za bezdimenzijske vrijednosti: Sd ν N Sd = (3.45) b df cd μ = MSd Sd (3.46) 2 b d fcd Iz dijagrama interakcije očita se mehanički koeficijent armiranja ω. fyd ω1 = ρ1 - mehanički koeficijent armiranja vlačne armature. fcd fyd ω2 = ρ2 - mehanički koeficijent armiranja tlačne armature. fcd Dijagrami interakcije su napravljeni za ekscentrični tlak i vlak, za različite čvrstoće armature, za različite omjere d 1 /h (d 2 /h) te za različite odnose tlačne i vlačne armature β=a s2 /A s1. Za simetričnu armaturu koeficijent β=1. Potrebna armatura računa se po izrazu: fcd As1 = ω b h (3.47) f A s2 yd = β A (3.48) s1 3.4 Dimenzioniranje pravokutnih presjeka na ekscentrični tlak Proračun se može provoditi prema postupku Wuczkowskog upotrebom tablica za dimenzioniranje pravokutnih presjeka naprezanih na savijanje. Slika Presjek opterećen na ekscentrični tlak. MSds = MSd + NSd zs1 (3.49) μ = MSds Sd 2 b d fcd (3.50) MSds NSd As1 = zf f (3.51) yd yd Ukoliko je M Sd >M Rd,lim ili ( μ > μ lim ) presjek se mora dvostruko armirati. Sd 23

24 A A s1 s2 M M M N = + ( ζ d)f (d d )f f Rds,lim Sds Rds,lim Sd lim yd 2 yd yd MSds M = (d d )f Rds,lim 2 yd (3.52) (3.53) 3.5 Dimenzioniranje pravokutnih presjeka na ekscentrični vlak Vlačna sila djeluje između armatura (mali ekscentricitet) Cijeli je presjek opterećen na vlak (mali ekscentricitet). Računska vlačna sila se u odnosu udaljenosti dijeli na sile u armaturi. Slika Element opterećen ekscentričnom vlačnom silom. Potrebna armatura: Nsd e1 As1 = fyd e1 + e2 gornja armatura (prema slici) (3.54) Nsd e2 As1 = f e + e donja armatura (prema slici) (3.55) yd Vlačna sila djeluje izvan presjeka (veliki ekscentricitet) Proračun se može provoditi prema postupku Wuczkowskog upotrebom tablica za dimenzioniranje pravokutnih presjeka naprezanih na savijanje. Slika Presjek opterećen na ekscentrični vlak. Moment savijanja s obzirom na težište vlačne armature bit će: MSds = MSd NSd zs1 (3.56) μ = MSds Sd (3.57) 2 b d f cd 24

25 A M Sds s1 = + zf yd N f Sd yd Ukoliko je M Sd >M Rd,lim ili ( μ Sd > μ lim ) presjek se mora dvostruko armirati. A A s1 s2 M M M N = + + ( ζ d)f (d d )f f Rds,lim Sds Rds,lim Sd lim yd 2 yd yd MSds M = (d d )f Rds,lim 2 yd (3.58) (3.59) (3.60) 3.6 Lokalna tlačna naprezanja Lokalna tlačna naprezanja pojavljuju se u području elementa gdje se predaje vanjska sila u element preko smanjene površine. Lokalni tlačni naponi pojavljuju se u području elementa gdje se predaje vanjska sila u element preko smanjene površine. Na primjer na mjestu uvođenja sile prednapinjanja, ili kod ležajeva na mostu. Lokalni tlačna naprezanja rasprostiru se u dubinu elementa, pa je na dubini z d njihova raspodjela približno konstantna po cijeloj širini elementa. Tlak se rasprostire u oba pravca. Slika 3.15 Rasprostiranje tlačnih naprezanja Za veće dimenzije presjeka elementa na koje djeluje lokalno naprezanje koje može biti i nesimetrično ili za djelovanje više lokalnih naprezanja, površina rasprostiranja može biti i manja od površine presjeka elementa, pa ju je za svaki konkretan slučaj djelovanja potrebno odrediti. Nagib rasprostiranja uzima se približno 1:2, s tim da bude b 1 3b 0 i d 1 3d 0 Zbog otklona trajektorija tlaka σ z dolazi do pojave vlačnih naprezanja σ x okomito na trajektorije tlaka. Do dubine z 0.1 d 1 od površine naprezanja σ x su tlačna, a za dubine z > 0.1 d 1 ona su vlačna. Najveća su vlačna naprezanja na dubini z = 0.6 d 1. Ona se mogu dobiti prema empirijskom izrazu: F0( d1 d0) σ x (3.61) 2 b1 d1 Ukupna vlačna sila cijepanja u elementu na visini elementa z izračunava se iz odnosa: 25

26 F0 d1 d0 d1 Fq : = : (3.62) Slika 3.16 Dijagram naprezanja. Iz čega je: d 0 Fq = 0.25 F0 1 (3.63) d1 Tako dobivena sila cijepanja nešto je manja od izračunane po empirijskoj formuli koja se preporučuje za upotrebu: d 0 Fq = 0.3 F0 1 (3.64) d1 Računska sila cijepanja bit će: Fqd =1.35F qg +1.5F qq. a poprečna armatura u obliku spona: Fqd Asw = (3.65) f yd Za drugi smjer proračun je analogan. 26

27 Slika 3.17 Površine rasprostiranja nesimetričnih tlačnih naprezanja. 3.7 Poprečna armatura u gredama Proračun elemenata na poprečne sile provodi se prema poboljšanoj Mörsch-Ritterovoj analogiji s rešetkom. Prema toj metodi pretpostavlja se da jedan dio poprečne sile preuzima beton i uzdužna armatura, a preostali se dio prihvaća sponama ili kosom armaturom (Standardna metoda). Prema drugoj metodi (Metoda slobodnog odabira nagiba tlačnih štapova), nosivost betona se ne uzima u obzir, već se uzima blaži kut nagiba tlačnih dijagonala od 45. Time se dobiva manja poprečna armatura ali se povećava uzdužna armatura ili dolazi do većeg pomaka dijagrama vlačnih sila. Slika 3.18 Mörschova rešetka - nosivi mehanizam s vertikalnim sponama. Slika 3.19 Mörschova rešetka - nosivi mehanizam s kosim sponama. Uvjet nosivosti na poprečne sile: 27

28 V Sd V (3.66) Rd V Sd računska poprečna sila VSd = ( VG γ G + VQ γ Q ) V Rd računska nosivost na poprečne sile Računska poprečna sila proračunava se na udaljenosti a od osi ležaja: ( γ γ ) V = V a g+ q = V a q (3.67) Sd Sd G Q Sd sd b a = lez + d 2 i može se nalaziti u slijedećim granicama: KONSTRUKTIVNA POPR. ARMATURA PRORAČUN POPR. ARMATURE NEDOPUŠTENO PODRUČJE 0 V Rd1 V wd V Sd V V Sd Rd2 Slika 3.20 Područja poprečnih sila. Proračunska nosivost na poprečnu silu elementa bez poprečne armature dana je izrazom: ( ) VRd1 = τrd k ρ σ cp bw d (3.68) gdje je: τrd - računska posmična čvrstoća betona C 12/16 16/20 20/25 25/30 30/37 35/45 40/50 45/55 50/60 Rd 0,18 0,22 0,26 0,30 0,34 0,37 0,41 0,44 0,48 Tablica 3.2 Računska posmična čvrstoća betona k= 1.6 d 1.0 korekcijski faktor kojim se povećava nosivost na poprečne sile (d je u metrima) Asl ρ 1 = koeficijent armiranja uzdužne armature sidrene za najmanje (d+l b,net ) bw d iza promatranog presjeka. σ =( 1.35N + 1.5N )/ A - središnje tlačno naprezanje cp G Q c Proračunska nosivost tlačnih štapova je: V = 0.5 ν f b z (3.69) Rd2 cd w gdje je: ν - koeficijent redukcije tlačne čvrstoće betonskih tlačnih štapova fck ν = 0.7, f ck i 200 dani su u N/mm 2, 0.5 ν<

29 b w - najmanja širina presjeka u vlačnoj zoni z=0.9 d - krak unutarnjih sila Kad je element naprezan uzdužnom tlačnom silom ( σ ) ( N f A / γ ) /A Rd2 Rd2 cp,eff cd Rd2 V Rd2 se umanjuje prema izrazu: V = 1.67 V 1 /f V (3.70) σ = (3.71) cp,eff Sd yk s2 s c Kako se pukotine javljaju u smjeru tlaka, a da ne bi došlo do drobljenja betona mora vrijediti: V Sd <V Rd2. U protivnom nužno je povećati presjek grede (visinu ili širinu) ili razred betona. Poprečnu armaturu potrebno je proračunati za prihvaćanje poprečnih sila ako je: V Rd1 <V Sd V Rd2 (3.72) Slika 3.21 Reducirani dijagram poprečnih sila na primjeru grede s jednim prepustom. Na slici su prikazana područja poprečnih sila. U području 1, gdje je poprečna sila V Sd <V Rd1 postavlja se minimalna armatura. U području 2 gdje je V Rd1 <V Sd V Rd2 potrebno je proračunati poprečnu armaturu. Granica između područja je V Rd1, a udaljenost od osi ležaja do granice x određuje se: VSd VRd1 VRd1 = VSd qsd x x = (3.73) qsd Dvije su metode za proračun poprečne armature u gredama: Standardna metoda i Metoda slobodnog izbora nagiba tlačnih štapova. U obje metode pretpostavlja se profil spona i njihova reznost te se proračunava potreban razmak pretpostavljenih spona. a) Standardna metoda 29

30 Standardna metoda pretpostavlja nagib tlačnih štapova u betonu od 45. Obuhvaća kontrolu nosivosti tlačnih štapova (V Sd V Rd2 ) i proračun poprečne armature korištenjem uvjeta ravnoteže: V Sd = V Rd = V cd + V wd Asw fyw,d z V wd = - dio poprečne sile koji preuzimaju vertikalne spone sw V wd = V ' - V Sd cd = V ' - V Sd Rd1 Asw fyw,d z A = V ' sw fyw,d z Sd - V Rd1 s w = ' sw VSd VRd1 Potreban razmak vertikalnih spona: Asw,1 m fyw,d 0.9 d sw = (3.74) V Sd VRd1 Potreban razmak kosih spona: Asw,1 m fyw,d 0.9 d sinα sw = ( 1+ ctgα ) (3.75) V Sd VRd1 gdje je α kut nagiba spona u odnosu na uzdužnu os. b) Metoda slobodnog izbora nagiba tlačnih štapova Uzima doprinos betona nosivosti na poprečne sile preko nagiba tlačnih dijagonala koji je redovito blaži od 45 o. Obično se koristi kada istodobno djeluje poprečna sila i moment torzije. Nagib tlačnih štapova prema uzdužnoj osi grede bira se u granicama: 0.4 ctgθ kada se glavna uzdužna armatura vodi do ležaja 0.5 ctgθ kada se glavna uzdužna armatura postepeno prekida u polju. Za armiranobetonske elemente predlaže se θ=39 koji se umanjuje ako djeluje još i tlačna sila uzduž elementa i/ili sila prednapinjanja. Potreban razmak vertikalnih spona: Asw,1 m fyw,d 0.9 d ctgθ sw = (3.76) VSd Potreban razmak kosih spona: Asw,1 m fyw,d 0.9 d sinα sw = ( ctgθ + ctgα ) (3.77) VSd gdje je α kut nagiba spona u odnosu na uzdužnu os. Kod elemenata s kosom poprečnom armaturom granična nosivost na poprečne sile iznosi: ctgθ + ctgα VRd2 = ν fcd bw z (3.78) 2 1+ ctg θ Uz uvjet: Asw fyw,d 0.5 ν fcd sinα (3.79) b s 1 cosα w w 30

31 Slika 3.22 Kutevi nagiba tlačnih i vlačnih dijagonala zamišljene rešetke. Nakon raspucavanja nosača, sila u donjem pojasu, odnosno sila u armaturi iznosi: MSd FSd = VSd ( ctgθ ctgα ) z Što znači da je za drugi član potrebno povećati uzdužnu armaturu. Minimalna poprečna armatura A sw,min (=maksimalni razmak odabranih spona): Minimalna armatura se mora postaviti čak i onda kad proračun pokaže da ona nije potrebna. Postoje dva uvjeta za odabir minimalne armature. Potrebno je proračunati najveći razmak po oba kriterija i odabrati manji. 1. uvjet: A sw,min = ρ min s w b w sinα, gdje je ρ w,min minimalni koeficijent armiranja poprečne armature ovisno o kakvoći betona i čelika Klasa betona Vrsta čelika B 220 B 400 B 500 C 12/15 i C 20/ C 25/30 i C 35/ C 40/50 i C 50/ Tablica 3.3 Minimalni koeficijent armiranja ρ min greda poprečnom armaturom, prema Eurokodu 2. Asw,min s w,max = (3.80) ρmin bw 2. uvjet: Najveći razmaci spona u smjeru glavne armature, ovisno o veličini računske poprečne sile Maksimalni razmak Broj Računska poprečna sila V sd spona u smjeru glavne vlačne armature s w max 1 V sd 0.2 V Rd2 0.8 d 30 cm V Rd2 < V sd 0.67 V Rd2 0.6 d 30 cm V Rd2 < V sd V Rd2 0.3 d 20 cm Tablica 3.4 Najveći razmaci spona u smjeru glavne armature, ovisno o veličini računske poprečne sile. 31

32 Slika 3.23 Poprečna vertikalna armatura grede. Slika 3.24 Širine pukotina u rebru ovisno o načinu armiranja. 3.8 Dimenzioniranje presjeka na moment torzije Naprezanje elemenata samo momentima torzije vrlo je rijetko u konstrukcijama. Torzijske momente obično prate momenti savijanja s normalnim silama i bez njih, te poprečne sile. U skladu s tim provjera nosivosti elemenata provodi se za: naprezanje momentom torzije; naprezanje momentom torzije i momentom savijanja; naprezanje momentom torzije i poprečnom silom; naprezanje momentom torzije, momentom savijanja i poprečnom silom. S obzirom na značenje, a potom i daljnje tretiranje, razlikuju se: kompatibilna (sekundama) i ravnotežna (primarna) torzija. Kompatibilna je torzija ona torzija u armiranobetonskim konstrukcijama koja nastaje zbog monolitnog spoja između elemenata, a nije prijeko potrebna za ravnotežu, pa se za granično stanje nosivosti može zanemariti. Zbog naprezanja torzijom u elementima nastaju dugotrajne plastične deformacije, te raspucavanje, što znatno smanjuje torzijsku krutost. Posljedica je toga znatno smanjenje momenta torzije ili njegovo potpuno iščezavanje i odgovarajući porast momenata savijanja shodno uvjetima ravnoteže. Torzija u elementima A-C i B-D Torzija u elementu A-B 32

BETONSKE KONSTRUKCIJE I. Predavanja

BETONSKE KONSTRUKCIJE I. Predavanja BETONSKE KONSTRUKCIJE I Predavanja Zagreb, 010. Igor Gukov SADRŽAJ 1. UVOD...3. FIZIKALNO-MEHANIČKA SVOJSTVA MATERIJALA...6.1. Beton...7.1.1 Računska čvrstoća betona...11.1. Višeosno stanje naprezanja...11.1.3

Διαβάστε περισσότερα

6. Plan armature prednapetog nosača

6. Plan armature prednapetog nosača 6. Plan armature prednapetog nosača 6.1. Rekapitulacija odabrane armature Prednapeta armatura odabrano:3 natege 6812 Uzdužna nenapeta armatura. u polju donji rub nosača (mjerodavna je provjera nosivosti

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE "YTONG STROP" strana

A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE YTONG STROP strana S A D R Ž A J OPĆI DIO: Izvadak iz sudskog registra o registraciji Rješenje o upisu u imenik ovlaštenih inženjera građevinarstva Izvješće o kontroli Tipskog projekta glede mehaničke otpornosti i stabilnosti

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Kontrola proizvodnje betona prema EN 206-1

Kontrola proizvodnje betona prema EN 206-1 Kontrola proizvodnje betona prema EN 206-1 Sadržaj Agregat Kriteriji za granulometrijski sastav agregata 4 Pregled svojstava i kategorija 8 Cement Označavanje cementa prema EN 197-1 12 Beton Odnosi između

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

PRILOG 1 PRAVILNIK BAB 87

PRILOG 1 PRAVILNIK BAB 87 PRILOG 1 PRAVILNIK BAB 87 PRILOG 1.1 PRAVILNIK O TEHNIČKIM NORMATIVIMA ZA BETON I ARMIRANI BETON I OPŠTE ODREDBE 1 Ovim pravilnikom propisuju se uslovi i zahtevi koji moraju biti ispunjeni pri projektovanju,

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

PREDNAPETI BETON 2 MATERIJALI, SUSTAVI I TEHNOLOGIJA PREDNAPINJANJA TE PODRUČJE PRIMJENE. Zahtjevi na beton u prednapetim konstrukcijama:

PREDNAPETI BETON 2 MATERIJALI, SUSTAVI I TEHNOLOGIJA PREDNAPINJANJA TE PODRUČJE PRIMJENE. Zahtjevi na beton u prednapetim konstrukcijama: PREDNAPETI BETON 2 MATERIJALI, SUSTAVI I TEHNOLOGIJA PREDNAPINJANJA TE PODRUČJE PRIMJENE BETON Zahtjevi na beton u prednapetim konstrukcijama: Visoka tlačna čvrstoća (s niskim v/c odnosom) Mali iznos skupljanja

Διαβάστε περισσότερα

OSNOVE PRORAČUNA I DJELOVANJA NA KONSTRUKCIJE SADRŽAJ

OSNOVE PRORAČUNA I DJELOVANJA NA KONSTRUKCIJE SADRŽAJ OSNOVE PRORAČUNA I DJELOVANJA NA KONSTRUKCIJE SADRŽAJ 1 OSNOVE PRORAČUNA KONSTRUKCIJA... 2 2 DJELOVANJA NA KONSTRUKCIJE... 6 2.1 Klasifikacija djelovanja... 7 2.2 Vlastita težina... 8 2.3 Uporabna opterećenja

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

unutrašnja opterećenja

unutrašnja opterećenja * Ravnoteža u deformabilnom tijelu Koncentrisana sila (idealizacija) Površinska sila Spoljašnja opterećenja: površinske i zapreminske sile Reakcije oslonaca Jednačine ravnoteže Linearna raspodjela opterećenja

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

PREDNAPETI BETON. Predavanja. Zagreb, 2007.

PREDNAPETI BETON. Predavanja. Zagreb, 2007. PREDNAPETI BETON Predavanja Zagreb, 2007. SADRŽAJ 1. UVOD...3 2. SVOJSTVA MATERIJALA...7 2.1. Čelik za prednapinjanje...7 2.2. Beton...9 2.3. Mort za injektiranje...10 3. SUSTAVI ZA PREDNAPINJANJE...13

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού

EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού EN 1998 - ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ σελ.1 γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού εφελκυσμός άνω ίνα {L} i=1 εφελκυσμός άνω ίνα {R} i=2 N sd.l

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Οριακή Κατάσταση. με ή χωρίς ορθή δύναμη

Οριακή Κατάσταση. με ή χωρίς ορθή δύναμη ΤΕΕ Θράκης Κομοτηνή 10.10.2009 Σχεδιασμός φορέων από σκυρόδεμα με βάση τον Ευρωκώδικα 2 Μέρος 1-1 (EN 1992-1-1) Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη Γιαννόπουλος Πλούταρχος Δρ.

Διαβάστε περισσότερα

Diferencijalni račun

Diferencijalni račun ni račun October 28, 2008 ni račun Uvod i motivacija Točka infleksije ni račun Realna funkcija jedne realne varijable Neka je X neprazan podskup realnih brojeva. Ako svakom elementu x X po postupku f pridružimo

Διαβάστε περισσότερα

MOSTOVI SA KOSIM ZATEGAMA

MOSTOVI SA KOSIM ZATEGAMA MOSTOVI SA KOSIM ZATEGAMA U toku posljednjih tridesetak godina mostovi sa kosim zategama doživljavaju spektakularan razvoj u cijelom svijetu. Ekonomičnost ovih mostova ne leži samo u odličnom iskorištenju

Διαβάστε περισσότερα

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku.

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku. 1. FUNKCIJE, LIMES, NEPREKINUTOST 1.1 Brojevi - slijed, interval, limes Slijed realnih brojeva je postava brojeva na primjer u obliku 1,,3..., nn, + 1... koji na realnoj osi imaju oznaceno mjesto odgovarajucom

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

A 2 A 1 Q=? p a. Rješenje:

A 2 A 1 Q=? p a. Rješenje: 8. VJEŽBA - RIJEŠENI ZADACI IZ MEANIKE FLUIDA. Oreite minimalni protok Q u nestlačiom strujanju fluia ko koje će ejektor početi usisaati flui kroz ertikalnu cječicu. Zaano je A = cm, A =,5 cm, h=,9 m.

Διαβάστε περισσότερα

VELEUČILIŠTE U RIJECI Prometni odjel. Zdenko Novak 1. UVOD

VELEUČILIŠTE U RIJECI Prometni odjel. Zdenko Novak 1. UVOD 10.2012-13. VELEUČILIŠTE U RIJECI Prometni odjel Zdenko Novak TEHNIČKA SREDSTVA U CESTOVNOM PROMETU 1. UVOD 1 Literatura: [1] Novak, Z.: Predavanja Tehnička sredstva u cestovnom prometu, Web stranice Veleučilišta

Διαβάστε περισσότερα

ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi)

ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi) ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi) Zavarivanje = spajanje dijelova koji su na mjestu spoja dovođenjem topline omekšani ili rastopljeni, uz dodavanje dodatnog materijala ili bez

Διαβάστε περισσότερα

Proračun toplotne zaštite

Proračun toplotne zaštite Proračun toplotne zaštite za objekat Stambeni objekat urađen prema JUS U.J5.600 iz 1998 i JUS U.J5.510 iz 1987 godine. Sadržaj - analiza konstrukcija - analiza linijskih gubitaka - proračun toplotnih transmisionih

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

2.2. Analiza vremena Pert metodom

2.2. Analiza vremena Pert metodom 2.2. Analiza vremena Pert metodom Dok je kod CPM metode poznato samo jedno vreme trajanja aktivnosti t, kod Pert metode dane su tri procjene: a - optimistično vreme (najkraće moguće vreme u kojemu se može

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

Katalog proizvoda s tehničkim podacima

Katalog proizvoda s tehničkim podacima Ytong sustav gradnje Katalog s tehničkim podacima λ 10 DRY = 0,09 Najbolja toplinska izolacija kompletan sustav za energetski učinkovitu gradnju Tehnički podaci Stranice od 16-21 vanjski zidovi Stranice

Διαβάστε περισσότερα

Kontrola kvaliteta betona Projekat betona

Kontrola kvaliteta betona Projekat betona Kontrola kvaliteta betona Projekat betona Predavanje, 08.01.2013. Pripremili: Doc.dr. Merima Šahinagić-Isović Asis. Marko Ćećez SADRŽAJ Kontrola kvaliteta betona: Opće postavke Partije betona Kontrola

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije

Διαβάστε περισσότερα

stolica yachtsman Od polietilena bijele boje otpornog na udarce. Tapecirana. Stolice i stolovi A B C D E F G Visina (inch) Dubina (inch) Širina (inch)

stolica yachtsman Od polietilena bijele boje otpornog na udarce. Tapecirana. Stolice i stolovi A B C D E F G Visina (inch) Dubina (inch) Širina (inch) A B C D E F G STOLICE Naziv Visina (inch) Širina (inch) Dubina (inch) AQ1000002 SKIPPER SKLOPIVA STOLICA BIJELA SA BIJELIM JASTUKOM 18 20 17 A AQ1000025 SKIPPER SKLOPIVA STOLICA,BIJELA SA BIJELO PLAVIM

Διαβάστε περισσότερα

6a. BETONSKE STIJENE. 6a. BETONSKE STIJENE

6a. BETONSKE STIJENE. 6a. BETONSKE STIJENE BETON Poznat u doba rimljana, vezivo puzzolan (vulkanski pepeo iz mjesta Pozuoliu blizini Vezuva) s dodacima. Ponovno uveden u graditeljstvo sredinom 19. stoljeća - vezivo portland cement - Engleska. Danas

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

Ekstremi funkcije jedne varijable

Ekstremi funkcije jedne varijable maksimum funkcije y = f(x) je vrijednost f(x 0 ) za koju vrijedi f(x 0 + h) < f(x 0 ) (1) za po volji male vrijednosti h minimum funkcije y = f(x) je vrijednost f(x 0 ) za koju vrijedi f(x 0 + h) > f(x

Διαβάστε περισσότερα

ispod 20, što joj daje odlike izvrsne antene za DX rad na 80 m opsegu gdje je optimalni elevacijski kut od 15 do 20.

ispod 20, što joj daje odlike izvrsne antene za DX rad na 80 m opsegu gdje je optimalni elevacijski kut od 15 do 20. Piše: Mladen Petrović, 9A4ZZ GP antena EVA-DX 80 Ground plane antenna EVA-DX 80 Uobičajeno je da se vertikalne antene visine reda λ/4 i više, za donje opsege 40 m, 80 m i 160 m postavljaju neposredno iznad

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

RADIJALNI KLIZNI LEŽAJ

RADIJALNI KLIZNI LEŽAJ FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE ZAVOD ZA STROJARSTVO I BRODOGRADNJU KATEDRA ZA ELEMENTE STROJEVA Damir Jelaska RADIJALNI KLIZNI LEŽAJ (Proračun) Split, srpanj, 2003. O Z N A K E A H

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

PROJEKAT BETONSKE MEŠAVINE Redosled postupaka

PROJEKAT BETONSKE MEŠAVINE Redosled postupaka Redosled postupaka - Izbor komponentnih materijala (na osnovu vrste konstrukcije, sredine u kojoj se gradi i ekonomskih aktora) - Određivanje nominalno najvećeg zrna agregata (D) (na osnovu planova oplate

Διαβάστε περισσότερα

Fizika 1. Auditorne vježbe 5. Dunja Polić. Dinamika: Newtonovi zakoni. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva

Fizika 1. Auditorne vježbe 5. Dunja Polić. Dinamika: Newtonovi zakoni. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Školska godina 2006/2007 Fizika 1 Auditorne vježbe 5 Dinamika: Newtonovi zakoni 12. prosinca 2008. Dunja Polić (dunja.polic@fesb.hr)

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) x y

( ) ( ) ( ) ( ) x y Zadatak 4 (Vlado, srednja škola) Poprečni presjek rakete je u obliku elipse kojoj je velika os 4.8 m, a mala 4. m. U nju treba staviti meteorološki satelit koji je u presjeku pravokutnog oblika. Koliko

Διαβάστε περισσότερα

Konopi. ARTIKl BOJA PlAVO/ŽUTA. ARTIKl BOJA CRVENO/PlAVA. PREKIDNA ČVRSTOĆA (dan) DUŽINA (m) Φ (mm) ARTIKl BOJA PlAVA. ARTIKl BOJA CRVENA

Konopi. ARTIKl BOJA PlAVO/ŽUTA. ARTIKl BOJA CRVENO/PlAVA. PREKIDNA ČVRSTOĆA (dan) DUŽINA (m) Φ (mm) ARTIKl BOJA PlAVA. ARTIKl BOJA CRVENA KONOP ZA ŠKOTE RACE - materijal jezgra dyneema na 16 struka, izvana poliester na 32 struka - za dizanje i spuštanje jedara, otporan na habanje, mala rastezljivost CRVENO/ PlAVO/ TF30 05000 TF33 05000 5

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

2. METODE RJEŠAVANJA STRUJNIH KRUGOVA ISTOSMJERNE STRUJE

2. METODE RJEŠAVANJA STRUJNIH KRUGOVA ISTOSMJERNE STRUJE 2. METOE RJEŠVNJ STRUJNH KRUGOV STOSMJERNE STRUJE U svrhu lakšeg snalaženja u analizi složenih strujnih krugova i električnih mreža uvode se nazivi za pojedine dijelove mreže. Onaj dio električne mreže

Διαβάστε περισσότερα

='5$9.2 STRUJNI IZVOR

='5$9.2 STRUJNI IZVOR . STJN KGOV MŽ.. Strujni krug... zvori Skup elektrotehničkih elemenata koji su preko električnih vodiča međusobno spojeni naziva se električna mreža ili elektrotehnički sklop. električnoj mreži, kada su

Διαβάστε περισσότερα

Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1

Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1 Uvod u numeričku matematiku Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1 1 Odjel za matematiku Sveučilište u Rijeci Numerička integracija O problemima integriranja

Διαβάστε περισσότερα

Metode prognoziranja na vremenskim nizovima

Metode prognoziranja na vremenskim nizovima Metode prognoziranja na vremenskim nizovima Pomoću ovih metoda buduće vrijednosti prognoziraju se na temelju povijesnih podataka. Pravila po kojima se ponašaju podaci iz prošlosti primjenjuje se na buduće

Διαβάστε περισσότερα

SPECIJALNE INŽENJERSKE GRAĐEVINE 4. PREDAVANJE

SPECIJALNE INŽENJERSKE GRAĐEVINE 4. PREDAVANJE SPECIJALNE INŽENJERSKE GRAĐEVINE 4. PREDAVANJE Visoke građevine VISOKE GRAĐEVINE SADRŽAJ PREDAVANJA (1.dio) Uvodno Povijest i kronologija visokih građevina Nosivi elementi za osnovna opterećenja Mjere

Διαβάστε περισσότερα

Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΚΥΡΟΔΕΜΑ ΙΙ. http://www.luckyweek.eu/civil.teipir

Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΚΥΡΟΔΕΜΑ ΙΙ. http://www.luckyweek.eu/civil.teipir Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΚΥΡΟΔΕΜΑ ΙΙ http://www.luckyweek.eu/civil.teipir Άσκηση Σελίδα Υποστύλωμα Δοκός Πλακοδοκός Άλλο Κάμψη Διάτμηση Λυγισμός Στρέψη Ροπή Σχεδιασμού 01 03 02 07

Διαβάστε περισσότερα

je zidni element I razreda namijenjen za oblaganja. obujamska masa (u suhom stanju) srednja vrijednost tlačne čvrstoće ρ b razred požarne otpornosti

je zidni element I razreda namijenjen za oblaganja. obujamska masa (u suhom stanju) srednja vrijednost tlačne čvrstoće ρ b razred požarne otpornosti PLOČA - P 5 je zidni element I razreda namijenjen za oblaganja. Zbog male debljine, a velike površine, ploča je idealna za završne radove u interijerima građevina, prije svega kod oblaganja kupaonskih

Διαβάστε περισσότερα

Fakultet strojarstva i brodogranje ZAVRŠNI RAD

Fakultet strojarstva i brodogranje ZAVRŠNI RAD Sveučilište u Zagrebu Fakultet strojarstva i brodogranje ZVRŠNI RD Voditelj rada: Prof.dr.sc. Milan Opalić Zagreb, 2013. Sveučilište u Zagrebu Fakultet strojarstva i brodogranje ZVRŠNI RD 0035163306 Zagreb,

Διαβάστε περισσότερα

Mašinski fakultet Univerziteta u Beogradu/ Mašinski elementi 1/ Predavanje 3. Slika1.1 Primeri nepokretne i obrtne osovine

Mašinski fakultet Univerziteta u Beogradu/ Mašinski elementi 1/ Predavanje 3. Slika1.1 Primeri nepokretne i obrtne osovine ašinski fakultet Univerziteta u Beogradu/ ašinski elementi 1/ Predavanje.1 OSOVINE I VRATILA.1.1. Uvod Vratila i osovine, kao osnovni elementi obrtnog kretanja, moraju uvek biti preko kliznih i kotrljajnih

Διαβάστε περισσότερα

CIGLA - tehnički priručnik

CIGLA - tehnički priručnik CIGLA - tehnički priručnik SADRŽAJ TERMO PROGRAM KLASIČNI PROGRAM STROPNI PROGRAM TROŠKOVNIK ZA UGRADNJU PROIZVODA 04 13 16 21 Proizvodi Građevinska fizika Prednosti termo bloka Proizvodi Proizvodi Tehničke

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

ΕΝ 1992 (Ευρωκώδικας 2)

ΕΝ 1992 (Ευρωκώδικας 2) 2/3 ΕΝ 1992 (Ευρωκώδικας 2) Σχεδιασμός Κατασκευών από Σκυρόδεμα Ε. Μπούσιας Τμήμα Πολιτικών Μηχ., Πανεπιστήμιο Πατρών Μέρος 1-1 Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3: Κεφάλαιο 4: Κεφάλαιο 5: Κεφάλαιο 6: Κεφάλαιο

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο:

Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο: Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 6-6-009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο Δίνεται ο ξυλότυπος

Διαβάστε περισσότερα

9. Loksodroma i ortodroma

9. Loksodroma i ortodroma Loksodroma 9. Loksodroma i ortodroma Loksodroma 1 je krivulje na površini Zemlje koja sve meridijane sijece pod istim kutom. Osim u posebnim slucajevima ima oblik spirale cije ishodište i završnica teže

Διαβάστε περισσότερα

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Παρουσίαση Ευρωκώδικα 2 Εφαρµογή στο FESPA. Χάρης Μουζάκης Επίκουρος Καθηγητής Ε.Μ.Π

Παρουσίαση Ευρωκώδικα 2 Εφαρµογή στο FESPA. Χάρης Μουζάκης Επίκουρος Καθηγητής Ε.Μ.Π Παρουσίαση Ευρωκώδικα 2 Επίκουρος Καθηγητής Ε.Μ.Π Εισαγωγή Ο Ευρωκώδικας 2 περιλαµβάνει τα ακόλουθα µέρη: Μέρος 1.1: Γενικοί κανόνες και κανόνες για κτίρια Μέρος 1.2: Σχεδιασµός για πυρασφάλεια Μέρος 2:

Διαβάστε περισσότερα

6. TEHNIČKE MJERE SIGURNOSTI U IZVEDBI ELEKTROENERGETSKIH VODOVA

6. TEHNIČKE MJERE SIGURNOSTI U IZVEDBI ELEKTROENERGETSKIH VODOVA SIGURNOST U PRIMJENI ELEKTRIČNE ENERGIJE 6. TEHNIČKE MJERE SIGURNOSTI U IZVEDBI ELEKTROENERGETSKIH VODOVA Doc. dr. sc. Vitomir Komen, dipl. ing. el. 1/14 SADRŽAJ: 6.1 Sigurnosni razmaci i sigurnosne visine

Διαβάστε περισσότερα

Funkcije više varijabli

Funkcije više varijabli VJEŽBE IZ MATEMATIKE 2 Ivana Baranović Miroslav Jerković Lekcija 7 Pojam funkcije dviju varijabla, grafa i parcijalnih derivacija Poglavlje 1 Funkcije više varijabli 1.1 Domena Jedno od osnovnih pitanja

Διαβάστε περισσότερα

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA Sarajevo, 3.04.016. godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA

Διαβάστε περισσότερα

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable Sadržaj 1 DIFERENCIJALNI RAČUN 3 1.1 Granična vrijednost i neprekidnost funkcije........... 3 1.2 Derivacija realne funkcije jedne varijable............ 4 1.2.1 Pravila deriviranja....................

Διαβάστε περισσότερα

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43 Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje- / 43 Ciljevi učenja Ciljevi učenja za predavanja i vježbe: Integral kao antiderivacija Prepoznavanje očiglednih supstitucija Metoda supstitucije-složeniji

Διαβάστε περισσότερα

Temeljni pojmovi o trokutu

Temeljni pojmovi o trokutu 1. Temeljni pojmovi o trokutu U ovom poglavlju upoznat ćemo osnovne elemente trokuta i odnose medu - njima. Zatim ćemo definirati težišnice, visine, srednjice, simetrale stranica i simetrale kutova trokuta.

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

Uležišteni ventili (PN 6) VL 2 prolazni ventil, prirubnica VL 3 troputni ventil, prirubnica

Uležišteni ventili (PN 6) VL 2 prolazni ventil, prirubnica VL 3 troputni ventil, prirubnica Tehnički podaci Uležišteni ventili (PN 6) VL 2 prolazni ventil, prirubnica VL 3 troputni ventil, prirubnica Opis VL 2 VL 3 Ventili VL 2 i VL 3 pružaju kvalitetno, isplativo rješenje za većinu primjena

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

f[n] = f[n]z n = F (z). (9.2) n=0

f[n] = f[n]z n = F (z). (9.2) n=0 9. Z transformacija 9.. Z transformacija Z transformacija nia brojeva {f[n]} a koje vrijedi je Z [ f[n] ] = f[n] = 0, n < 0 9.) f[n] n = F ). 9.) Ovom transformacijom niu brojeva {f[n]} pridružuje se funkcija

Διαβάστε περισσότερα

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj Rešavanje jednačina ravnoteže

Διαβάστε περισσότερα

8. ALATI ZA PREOBLIKOVANJE

8. ALATI ZA PREOBLIKOVANJE 8. ALATI ZA PREOBLIKOVANJE 8.1 Osnove preoblikovanja Preoblikovanje je promjena oblika čvrstog tijela postupcima trajne ili plastične deformacije bez odvajanja i promjene mase materijala (DIN 8850, 2.grupa).

Διαβάστε περισσότερα

USB Charger. Battery charger/power supply via 12 or 24V cigarette lighter

USB Charger. Battery charger/power supply via 12 or 24V cigarette lighter USB Charger Battery charger/power supply via 12 or 24V cigarette lighter Compact charger for devices chargeable via USB For example ipod, iphone, MP3 player, etc. Output voltage: 5V; up to 1.2A; short-circuit

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

Oznaka CE aktivna pasivna konstrukcijska

Oznaka CE aktivna pasivna konstrukcijska 5.7 Sigurnosno staklo RX SAFE 5.7 Posljedica suvremenih tehnologija velika su poboljšanja karakteristika stakla u smislu zaštite od topline, sunca i zvuka. Građevinski elementi od stakla daju poseban pečat

Διαβάστε περισσότερα

PROFILI ZA ŽBUKANJE I DOPUNSKI PROIZVODI ZA ŽBUKANJE

PROFILI ZA ŽBUKANJE I DOPUNSKI PROIZVODI ZA ŽBUKANJE PROFILI ZA ŽBUKANJE I DOPUNSKI PROIZVODI ZA ŽBUKANJE PROFILI ZA ŽBUKANJE I DOPUNSKI PROIZVODI ZA ŽBUKANJE 2 MASTERPLAST GROUP INTERNATIONAL PROFILI ZA ŽBUKANJE I DOPUNSKI PROIZVODI ZA ŽBUKANJE MASTERPLAST

Διαβάστε περισσότερα

lor Waterproof Elastocolor Akrilatna boja za trajni kontakt s vodom VODONEPROPUSNA JEDNOSTAVNA ZA ODRŽAVANJE PI-MC-IR

lor Waterproof Elastocolor Akrilatna boja za trajni kontakt s vodom VODONEPROPUSNA JEDNOSTAVNA ZA ODRŽAVANJE PI-MC-IR Elastocolor lor roofof Akrilatna boja za trajni kontakt s vodom U SKOLADU S EUROPSKOM NORMOM HRN EN 1504-2 (C) NAČELA PI-MC-IR MATERIJALI ZA ZAŠTITU I POPRAVAK BETONSKIH KONSTRUKCIJA VODONEPROPUSNA JEDNOSTAVNA

Διαβάστε περισσότερα

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18 OSNOVNI PRINCIPI PREBROJAVANJA () 6. studenog 2011. 1 / 18 TRI OSNOVNA PRINCIPA PREBROJAVANJA -vrlo često susrećemo se sa problemima prebrojavanja elemenata nekog konačnog skupa S () 6. studenog 2011.

Διαβάστε περισσότερα

ΟΠΛΙΣΜΕΝΟ ΣΚΥΡΟ ΕΜΑ ΕΛΕΓΧΟΥ ΣΕ ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΚΩΣ 2000 ΚΑΙ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 2 ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ

ΟΠΛΙΣΜΕΝΟ ΣΚΥΡΟ ΕΜΑ ΕΛΕΓΧΟΥ ΣΕ ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΚΩΣ 2000 ΚΑΙ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 2 ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΟΠΛΙΣΜΕΝΟ ΣΚΥΡΟ ΕΜΑ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΣΕ ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΚΩΣ 000 ΚΑΙ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ ΜΑΡΙΑ ΜΟΥΝΤΡΑΚΗ ΜΗΧΑΝΟΛΟΓΟΣ Τ.Ε. ΗΡΑΚΛΕΙΟ ΜΑΪΟΣ 005 ΕΛΕΥΘΕΡΙΑ ΣΤΑΜΑΤΑΚΗ ΠΟΛΙΤΙΚΟΣ

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcije 9 i 10 Elementarne funkcije. Funkcije važne u primjenama Vjeºbe iz Matematike 1. 9. i 10. Elementarne funkcije. Funkcije vaºne u primjenama

Διαβάστε περισσότερα

Tačno merenje Precizno Tačno i precizno

Tačno merenje Precizno Tačno i precizno MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA Izmeriti neku veličinu u fizici znači naći brojni odnos merene fizičke veličine prema vrednosti iste fizičke veličine, koja je dogovorno izabrana za jedinicu.

Διαβάστε περισσότερα

ВИШЕСТЕПЕНИ РЕДУКТОР

ВИШЕСТЕПЕНИ РЕДУКТОР Средња машинска школа РАДОЈЕ ДАКИЋ ВИШЕСТЕПЕНИ РЕДУКТОР Милош Мајсторовић Београд 200 год. 2 2 3 0 02 4 4 9 0 9 Poz. Kol. JM. Dimenzije, broj crteza: Standard: 24 Vijak M Poklopac vratila I Sklop vratila

Διαβάστε περισσότερα

Predavanje br 3 TRANSPORT I LOGISTIKA 2006/2007 OSNOVE ZA DIMENZIONISANJE ČELIČNIH KONSTRUKCIJA

Predavanje br 3 TRANSPORT I LOGISTIKA 2006/2007 OSNOVE ZA DIMENZIONISANJE ČELIČNIH KONSTRUKCIJA ANALIZA NOSEĆIH STRUKTURA 11 Predavanje br TRANSPORT I LOGISTIKA 006/007 OSNOVE ZA DIMENZIONISANJE ČELIČNIH KONSTRUKCIJA Dimenzionisanje čeličnih konstrukcija se izvodi na bazi poznavanja rasporeda spoljašnjih

Διαβάστε περισσότερα

Masivni mostovi DJELOVANJA NA MOSTOVE

Masivni mostovi DJELOVANJA NA MOSTOVE Masivni mostovi DJELOVANJA NA MOSTOVE Povezanost europskih normi za proračun konstrukcija EN 1990 Općenito Osnove o Eurocodovima proračuna EN 1991 Djelovanja na konstrukcije Sigurnost, uporabljivost i

Διαβάστε περισσότερα