Στα παρακάτω σχήµατα δίνονται οι γραφικές παραστάσεις δύο συναρτήσεων. Να βρείτε τα σηµεία στα οποία αυτές δεν είναι συνεχείς. 2 3,5 1 O. x 2.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Στα παρακάτω σχήµατα δίνονται οι γραφικές παραστάσεις δύο συναρτήσεων. Να βρείτε τα σηµεία στα οποία αυτές δεν είναι συνεχείς. 2 3,5 1 O. x 2."

Transcript

1 .8 Ασκήσεις σχλικύ βιβλίυ σελίδας 97 0 A µάδας. Στα αρακάτω σχήµατα δίννται ι γραφικές αραστάσεις δύ συναρτήσεων. Να βρείτε τα σηµεία στα ία αυτές δεν είναι συνεχείς. 3 3,5 3 - εν είναι συνεχής στ αφύ ( ) = ( ) = Πρσχή, στ 3,5 δεν ρίζεται = αφύ εν είναι συνεχής στ = ( ) = ( ) = 3 Πρσχή, στ 3 δεν ρίζεται.i) Να µελετήσετε ως ρς τη συνέχεια στ < ( ) = ( ) = 4 = 8, Άρα 4, 3, ( ) αν = τη συνάρτηση = () συνεχής στ = 3 3 ( ) = = 8 και () = = 8.

2 .ii) Να µελετήσετε ως ρς τη συνέχεια στ τη συνάρτηση, < ( ) = αν = 3, ( ) = =, Άρα ( ) = () συνεχής στ = ( ) = 3 = και () = 3 =.iii) Να µελετήσετε ως ρς τη συνέχεια στ ( ) =, 3, = ( ) = = Άρα συνεχής στ ( )( ) = = αν τη συνάρτηση = ( ) = = 3 = ( )

3 3 3.i) Να µελετήσετε ως ρς τη συνέχεια τη συνάρτηση ( ) = και µετά να χαράξετε τη γραφική της αράσταση. Ο τύς της συνάρτησης γράφεται ( ) =,, < ή > Στ διάστηµα (, ) είναι ( ) =, συνεχής σαν λυωνυµική. Στα διαστήµατα (, ), (, ) είναι ( ) = ( ) = = Άρα η δεν είναι συνεχής στ ( ) = Άρα συνεχής στ ( ) = =, = ( ) = ( ) = = = ( ) =, >, συνεχής σαν ρητή. = =, ( ) = 3.ii) Να µελετήσετε ως ρς τη συνέχεια τη συνάρτηση ( ) = και µετά να χαράξετε τη γραφική της αράσταση. Για, τύς της συνάρτησης γράφεται ( ) = ( )( 3) = 3 Στ (, ) (, ) είναι ( ) = 3, συνεχής σαν λυωνυµική. 5 5,= 5 6, ( ) = ( 3) = 3 = ( ) = 5 Άρα η δεν είναι συνεχής στ = -

4 4 3.iii) Να µελετήσετε ως ρς τη συνέχεια τη συνάρτηση () = και µετά να χαράξετε τη γραφική της αράσταση. Στ διάστηµα (, ) είναι ( ) = συνεχής σαν λυωνυµική. Στ διάστηµα (, ) είναι ( ) = ln συνεχής σαν λγαριθµική ( ) = ( ) = =, ( ) = ln= 0, ln = ln= 0 Άρα η δεν είναι συνεχής στ = 4 -, < ln, 5 3.iv) Να µελετήσετε ως ρς τη συνέχεια τη συνάρτηση ( ) = > e, 0, 0 και µετά να χαράξετε τη γραφική της αράσταση. Στ διάστηµα (, 0) είναι ( ) = e, συνεχής σαν εκθετική. Στ διάστηµα (0, ) είναι ( ) =, συνεχής σαν λυωνυµική. 0 ( ) = 0 e = 0 e = 0 ( ) = 0 ( 0 ) = 0 = Άρα η είναι συνεχής στ ( ) = 0 = = 0

5 5 4.i) Να µελετήσετε ως ρς τη συνέχεια τη συνάρτηση ( ) = Στ διάστηµα (, ) είναι ( ) = ( = ) 3,, > ( )( ) = = συνεχής. Στ διάστηµα (, ) είναι ( ) = 3 συνεχής. ( ) = ( ) = ( 3) = 3 = ( ) = = Άρα η δεν είναι συνεχής στ = 4.ii) Να µελετήσετε ως ρς τη συνέχεια τη συνάρτηση ( ) = και µετά να χαράξετε τη γραφική της αράσταση. ηµ, < 0 συν, 0 ηµ Στ διάστηµα (, 0) είναι ( ) =, συνεχής σαν ηλίκ συνεχών. Στ διάστηµα (0, ) είναι ( ) = συν, συνεχής. ηµ 0 ( ) = 0 = ( ) = συν = συν0 = και ( 0 ) = συν0 = 0 0 Άρα συνεχής στ = 0 5.i) Να αδείξετε ότι η συνάρτηση ( ) = ηµ(συν) είναι συνεχής. Πεδί ρισµύ τ R. Η είναι συνεχής σαν σύνθεση των συνεχών ηµ, συν

6 6 5.ii) Να αδείξετε ότι η συνάρτηση ( ) = ln ( ) είναι συνεχής. = 4 = 3 < 0 > 0 για κάθε R. Άρα Η είναι συνεχής σαν σύνθεση των συνεχών ln, D = R 5.iii) Να αδείξετε ότι η συνάρτηση ( ) = ηµ( ) είναι συνεχής. Πεδί ρισµύ τ R. Η είναι συνεχής σαν σύνθεση των συνεχών συναρτήσεων ηµ, 5.iv) Να αδείξετε ότι η συνάρτηση ( ) = Πεδί ρισµύ τ R. e ηµ Η είναι συνεχής σαν σύνθεση των συνεχών είναι συνεχής. e, ηµ 5.v) Να αδείξετε ότι η συνάρτηση ( ) = ln ( ln ) είναι συνεχής. Πρέει ln > 0 ln > ln >. Εµένως εδί ρισµύ είναι τ διάστηµα (, ) Η είναι συνεχής σαν σύνθεση των συνεχών ln, ln 6. Να αδείξετε ότι η εξίσωση ηµ = 0 έχει µία τυλάχιστν λύση στ διάστηµα (0, ) Θεωρύµε τη συνάρτηση ( ) = ηµ, η ία είναι συνεχής στ διάστηµα [0, ] µε (0) () = (ηµ0 0 )( ηµ ) = ( ) = < 0. Κατά τ θεώρηµα Bolzano, η εξίσωση ( ) = 0, δηλαδή η εξίσωση ηµ = 0 έχει µία τυλάχιστν λύση στ διάστηµα (0, )

7 7 7. Για κάθε µία αό τις αρακάτω λυωνυµικές συναρτήσεις, να βρείτε έναν ακέραι α τέτιν, ώστε στ διάστηµα (α, α ) η εξίσωση ( ) = 0 να έχει µία τυλάχιστν ρίζα. 3 5 i) ( ) = ii) ( ) = 4 iii) ( ) = 4 iv) ( ) = 3 Οι συναρτήσεις είναι συνεχείς στ R σαν λυωνυµικές. Αναζητάµε κατάλληλη τιµή τυ α, ώστε να ικανιείται η συνθήκη (α) (α ) < 0 τυ θεωρήµατς Bolzano i) Είναι (0) = < 0 και (0 ) = () = = > 0 άρα α = 0 ii) Είναι (0) = > 0 και ( ) = = < 0 άρα α = iii) Είναι () = 4 = < 0 και () = = 6 > 0 άρα α = iv) Είναι () = = > 0 και () = 8 = 4 < 0 άρα α = 8. Να αδείξετε ότι η εξίσωση α( µ)( ν) β( λ)( ν) γ(( λ)( µ) = 0, όυ α, β, γ > 0 και λ < µ < ν, έχει δύ ρίζες άνισες, µια στ διάστηµα (λ, µ) και µια στ (µ, ν). Θεωρύµε τη συνάρτηση ( ) = α( µ)( ν) β( λ)( ν) γ(( λ)( µ) συνεχής στ R (τριώνυµ αν κάνυµε τις ράξεις και διατάξυµε ως ρς ) (λ) = α(λ µ)(λ ν) 0 0 = α(λ µ)(λ ν) > 0 () αφύ α > 0, λ < µ και λ < ν (µ) = 0 β(µ λ)(µ ν) 0 = β(µ λ)(µ ν) < 0 () (), () (λ) (µ) < 0 Κατά τ θεώρηµα Bolzano, η εξίσωση ( ) = 0 έχει µία τυλάχιστν ρίζα στ διάστηµα (λ, µ) Οµίως, η εξίσωση ( ) = 0 έχει µία τυλάχιστν ρίζα στ διάστηµα (µ, ν) Εειδή, όµως, η ( ) είναι τριώνυµ, έχει τ λύ δύ ρίζες, τις,.

8 8 9.i) Να βρείτε τ ρόσηµ της συνάρτησης για όλες τις ραγµατικές τιµές τυ, όταν 3 ( ) = συνεχής. ( ) = ( ) ( ) = ( )( ) = ( )( )( ) Ρίζες :,, Πίνακας ρσήµυ της ιάστηµα (, ) (, ) (, ) (, ) Αριθµός 3 3/ 0 ( ) 8 5/8 Πρόσηµ της 9.ii) Να βρείτε τ ρόσηµ της συνάρτησης για όλες τις ραγµατικές τιµές τυ, όταν 4 ( ) = 9 συνεχής. ( ) = ( 9) = ( 3)( 3) Ρίζες : 3, 0, 3 Πίνακας ρσήµυ της ιάστηµα (, 3) ( 3, 0) (0, 3) (3, ) Αριθµός 4 4 ( ) 8 8 Πρόσηµ της

9 9 9.iii) Να βρείτε τ ρόσηµ της συνάρτησης για όλες τις ραγµατικές τιµές τυ, όταν ( ) = εφ 3, (, ) συνεχής στ (, ) (, ) (, ) Ρίζες : ( ) = 0 εφ 3 = 0 εφ = 3 = ή = 3 3 Πίνακας ρσήµυ της ιάστηµα (, 3 ) (, 3 ) (, 3) (, 3 ), ) Αριθµός ( ) Πρόσηµ της 9.iv) Να βρείτε τ ρόσηµ της συνάρτησης για όλες τις ραγµατικές τιµές τυ, όταν ( ) = ηµ συν, [0, ] συνεχής Ρίζες : ( ) = 0 ηµ συν = 0 ηµ = συν ηµ συν εφ = = 3 ή = Πίνακας ρσήµυ της ιάστηµα 0, ) (, ) ( 7 4, Αριθµός 0 ( ) Πρόσηµ της

10 0 0.i) Να βρείτε τ σύνλ τιµών της συνάρτησης ( ) = ln, [, e] συνεχής και γν. αύξυσα στ [, e]. Άρα ( [, e] ) = [ ( ), ( e ) ] Αλλά () = ln = 0 = και ( e ) = lne = = 0 Οότε ( [, e] ) = [, 0] 0.ii) Να βρείτε τ σύνλ τιµών της συνάρτησης ( ) συνεχής και γν. φθίνυσα στ (0, ). 0 ( ) = ( ) = 0 ( ) = 0 = ( ) = = 0 Άρα ((0, )) = (0, ) =, (0, ) 0.iii) Να βρείτε τ σύνλ τιµών της συνάρτησης ( ) = ηµ, 0, 6 ) συνεχής και γν. αύξυσα στ 0, 6 ). ( 0 ) = ηµ0 = ( ) = ( 6) = ηµ = 6 = 6 ( ) Άρα 0, 6 ) = [, ) 0.iv) Να βρείτε τ σύνλ τιµών της συνάρτησης ( ) συνεχής και γν. αύξυσα στ (, 0) ( ) = (e ) = 0 = ( 0 ) = e 0 = = Άρα ((, 0)) = (, ] = e, (, 0]

11 Β µάδας. ( κ )( κ), Αν ( ) = κ5, > είναι συνεχής στ =. συνεχής στ = ( ) =, να ρσδιρίσετε τ κ, ώστε η να ( κ ) = 4 κ = κ 5 = 4 κ ( ) = () (κ 5) = κ κ = 0 κ = κ. α β <, Αν ( ) = 5, = α β, > ίες η να είναι συνεχής στ συνεχής στ = =., να βρείτε τις τιµές των α, β R για τις ( ) = ( ) = () α ( α Για α = 4 έχυµε β = 5 4 = Για α = 3 έχυµε β = 5 3 = 8 β ) = β = α β = 5 α β = 5 και α β = 5 α β = 5 και β = 5 α α 5 α = 5 και (α β) = 5 β = 5 α α α = 0 α = 4 ή α = 3 και β = 5 α

12 3. i) Έστω µία συνάρτηση η ία να είναι συνεχής στ = 0. Να βρείτε τ (0), αν για κάθε R ισχύει ( ) = συν. ii) Οµίως, να βρείτε τ g(0) για τη συνάρτηση g υ είναι συνεχής στ = 0 0 και για κάθε R ισχύει g( ) ηµ i) Η υόθεση ( ) = συν ( ) = συνεχής στ ii) g( ) ηµ = 0 (0) = Για κάθε > 0 η () ηµ ( ) συν. ( ) = 0 0 g( ) ηµ ηµ g( ) ηµ Αλλά 0 = 0 = και Αό τ κριτήρι αρεµβλής θα έχυµε Εειδή g συνεχής στ συν = 0 g( ) 0 = 0, θα είναι g(0) = 0 ηµ () ηµ ηµ = 0 = ( ) g( ) = 0 g( ) = 4. Αν ι συναρτήσεις, g είναι ρισµένες και συνεχείς στ [0, ] και ληρύν τις σχέσεις (0) < g(0) και () > g(), να αδείξετε ότι υάρχει ένα τυλάχιστν ξ (0, ) τέτι ώστε (ξ) = g(ξ). Θεωρύµε τη συνάρτηση h() = () g( ) στ [0, ] συνεχής σαν διαφρά συνεχών. h(0) = (0) g(0) < 0 και h() = () g() > 0 h(0) h() < 0. Αό τ θεώρηµα Bolzano, θα υάρχει ένα τυλάχιστν ξ (0, ) τέτι ώστε h(ξ) = 0 (ξ) g(ξ) = 0 (ξ) = g(ξ)

13 3 5.i) Να αδείξετε ότι η εξίσωση 4 6 = 0 έχει µία τυλάχιστν ρίζα στ (, ). 4 6 Αρκεί η εξίσωση ( )( ) ( )( ) = 0 να έχει µία τυλάχιστν ρίζα στ (, ). 4 6 Θεωρύµε τη συνάρτηση h() = ( )( ) ( )( ) συνεχής σαν λυωνυµική στ (, ). h() = ( 4 )( ) 0 = ( ) = 6 h() = 0 ( )( ) = (64 ) = 65 Άρα h() h() < 0 Αό τ θεώρηµα Bolzano, η εξίσωση h() = 0 θα έχει µία τυλάχιστν ρίζα στ διάστηµα (, ) 5.ii) Να αδείξετε ότι η εξίσωση ρίζα στ (, ). Η εξίσωση γίνεται Θεωρύµε τη συνάρτηση h() = e ln e ( ) ln ( ) = 0 = 0 έχει µία τυλάχιστν e ( ) ln ( ), συνεχής σαν άθρισµα συνεχών στ (, ). h() = e ( ) ln ( ) = e < 0 h() = e ( ) ln ( ) = ln > 0 Άρα h() h() < 0 Αό τ θεώρηµα Bolzano, η εξίσωση h() = 0 θα έχει µία τυλάχιστν ρίζα στ διάστηµα (, )

14 4 6.i) Να αδείξετε ότι ι γραφικές αραστάσεις των συναρτήσεων ( ) = g( ) = D =R και έχυν ακριβώς ένα κινό σηµεί. Dg =R Αρκεί η εξίσωση ( ) = g( ), δηλαδή η εξίσωση ρίζα στ R Εειδή, όµως, στ (0, ) e > 0, θα είναι και Θεωρύµε τη συνάρτηση h() = ( ) g( ) = διαφρά συνεχών. Αδεικνύυµε ότι η h είναι γνησίως αύξυσα: Έστω < τυχαία e < e και e = e και να έχει ακριβώς µία > 0 άρα > 0, ότε αναζητάµε τη ρίζα e > στ (0, ), συνεχής σαν e < e και < (ρσθέτυµε) e < e h( ) < h( ) Βρίσκυµε τ σύνλ τιµών της h : h() = 0 ( ) 0 e = e 0 0 = 0 e = h() = ( e ) = e = 0 = Άρα h(a) = (, ) To 0 h(a) και αφύ h γν. αύξυσα, η εξίσωση h() = 0, δηλαδή η εξίσωση ( ) g( ) = 0 θα έχει ακριβώς µία ρίζα.

15 5 6.ii) Να αδείξετε ότι ι γραφικές αραστάσεις των συναρτήσεων ( ) = ln και g( ) = D = (0, ) και έχυν ακριβώς ένα κινό σηµεί. Dg =R Αρκεί η εξίσωση ( ) = g( ), δηλαδή η εξίσωση ρίζα στ (0, ) ln = Θεωρύµε τη συνάρτηση h() = ( ) g( ) = ln συνεχής σαν διαφρά συνεχών. Αδεικνύυµε ότι η h είναι γνησίως αύξυσα: Έστω < τυχαία ln < ln και ln < ln και > < να έχει ακριβώς µία στ (0, ) η ία είναι ln < ln Βρίσκυµε τ σύνλ τιµών της h : h() = 0 ( ) 0 ln = ln 0 = 0 = h() = ( ln ) = ln = 0 = Άρα h(α) = (, ) h( ) < h( ) To 0 h(a) και αφύ h γν. αύξυσα, η εξίσωση h() = 0, δηλαδή η εξίσωση ( ) g( ) = 0 θα έχει ακριβώς µία ρίζα.

16 6 7. i) Έστω µια συνεχής συνάρτηση στ διάστηµα [, ], για την ία ισχύει () = για κάθε [, ]. α) Να βρείτε τις ρίζες της εξίσωσης ( ) = 0. β) Να αδείξετε ότι η διατηρεί τ ρόσηµό της στ διάστηµα (, ). γ) Πις µρεί να είναι τύς της και ια η γραφική της αράσταση ; ii) Με ανάλγ τρό να βρείτε τν τύ της συνεχύς συνάρτησης στ σύνλ R, για την ία ισχύει () = για κάθε R. i) α) () = για κάθε [, ] () = ( ) = 0 για κάθε [, ] () () = 0 () = 0 = ή = ι ρίζες. β) Η είναι συνεχής στ (, ) και δε µηδενίζεται σ αυτό, άρα διατηρεί τ ρόσηµo της. γ) Αφύ η διατηρεί ρόσηµ, λόγω της () θα είναι ( ) = στ (, ) ή ( ) = Εειδή είναι ρίζα της () = 0 = Η () ( ) = ( ) = 0 = () = 0 = ( ) = 0 = στ (, ) () και στ [, ] ή ( ) = ( ) και και ( ) στ [, ] Εµένως η C είναι τ ηµικύκλι µε κέντρ την αρχή Ο και ακτίνα ρ =, υ ανήκει στα τεταρτηµόρια ή στα 3 4. ii) α) () = ( ) = 0 για κάθε R ( ) = ή ( ) =, R (3) () = 0 (3) = 0 = 0 µναδική ρίζα. β) Η είναι συνεχής στ (, 0) και δε µηδενίζεται σ αυτό διατηρεί τ ρόσηµό της στ (, 0) Οµίως στ (0, ) γ) Αφύ η διατηρεί ρόσηµ στ (, 0), λόγω της (3) θα είναι ( ) = ή ( ) = στ (, 0). Και εειδή τ 0 είναι ρίζα, δηλαδή (0) = 0, θα είναι ( ) = ή ( ) = στ (, 0] Οµίως ( ) = ή ( ) = στ [0, ) Πρκύτυν ι συνδυασµί

17 7 (Α) η έχει ρόσηµ () στ (, 0) και () στ (0, ) ότε ( ) =, 0, 0 (Β) η έχει ρόσηµ () στ (, 0) και ( ) στ (0, ) ότε ( ) =, 0, 0 ( ) = στ R (Γ) η έχει ρόσηµ ( ) στ (, 0) και () στ (0, ) ότε ( ) =, 0, 0 ( ) = στ R ( ) η έχει ρόσηµ ( ) στ (, 0) και ( ) στ (0, ) ότε ( ) =, 0, 0 -

18 8 8. ίνεται τ τετράγων ΟΑΒΓ τυ διλανύ σχήµατς και µία συνεχής στ [0, ] συνάρτηση, της ίας η γραφική αράσταση βρίσκεται λόκληρη µέσα στ τετράγων αυτό και µε σύνλ τιµών τ [0, ]. i) Να βρείτε τις εξισώσεις των διαγωνίων τυ τετραγώνυ και ii) Να αδείξετε, µε τ θεώρηµα τυ Bolzano, ότι η C τέµνει και τις Γ(0, ) B(, ) A(, 0) δύ διαγώνιες. i) Εξίσωση της ΟΒ : =, [0, ] Εξίσωση της AΓ : 0= ( ) =, [0, ] ii) Είναι 0 ( ) στ [0, ] () Θεωρύµε τη συνάρτηση g() = ( ) στ [0, ], συνεχής σαν διαφρά συνεχών. g(0) = ( 0 ) 0 = ( 0 ) 0 και g() = ( ) () 0 άρα g(0)g() 0 Οότε αν g(0) = 0 (0) = 0 ή g() = 0 () = τότε η C τέµνει την διαγώνι ΟΒ στα σηµεία Ο η Β αντίστιχα Αν g(0) g() < 0 τότε κατά τ θεώρηµα Bolzano, υάρχει ένα τυλάχιστν (0, ) ώστε g( ) = 0 ( ) ( ) = 0 = Άρα η C τέµνει τη διαγώνι ΟΒ σε σηµεί (, ) Συνεώς σε όλες τις εριτώσεις η C τέµνει τη διαγώνι ΟΒ Θεωρύµε τη συνάρτηση h() = ( ) ( ) = ( ) στ [0, ], συνεχής σαν διαφρά συνεχών. h(0) = ( 0 ) 0 = ( 0 ) () 0 και h() = ( ) = ( ) () 0 άρα h(0)h() 0 Οότε αν h(0) = 0 (0) = ή h() = 0 () = 0 τότε η C τέµνει την διαγώνι ΓΑ στα σηµεία Γ η Α αντίστιχα Αν h(0) h() < 0 τότε κατά τ θεώρηµα Bolzano, υάρχει ένα τυλάχιστν ) = 0 (0, ) ώστε h( ( ) ( ) = = 0 Άρα η C τέµνει τη διαγώνι ΑΓ σε σηµεί (, ) Συνεώς σε όλες τις εριτώσεις η C τέµνει τη διαγώνι ΑΓ

19 9 Παρατήρηση : Αν η C τέµνει την διαγώνι ΟΒ στ Ο δεν µρεί να τέµνει την ΓΑ στ Γ ενώ αν τέµνει την διαγώνι ΟΒ στ Β δεν µρεί να τέµνει την ΑΓ στ Α 9. Στ διλανό σχήµα η καµύλη C είναι η γραφική αράσταση µιας συνάρτησης υ είναι συνεχής στ [α, β] και τ M (, ) είναι σηµεί τυ ειέδυ. i) Να βρείτε τν τύ της αόστασης d() = ( M M) τυ σηµείυ M (, ) αό τ σηµεί Μ(, ()) M 0 ( 0, 0 ) Ο M(, ()) A(α, (α)) α Β(β, (β)) της C για κάθε [α, β]. ii) Να αδείξετε ότι η συνάρτηση d είναι συνεχής στ [α, β] και στη συνέχεια ότι υάρχει ένα τυλάχιστν σηµεί της C υ αέχει αό τ M λιγότερ αό ότι αέχυν τα υόλια σηµεία της και ένα τυλάχιστν σηµεί της C υ αέχει αό τ M ερισσότερ αό ότι αέχυν τα υόλια σηµεία της. i) d() = ( ) ( ( ) ), [α, β]. 0 0 ii) Η συνάρτηση d είναι συνεχής σαν ρίζα αθρίσµατς συνεχών συναρτήσεων στ [α, β]. Άρα θα έχει ελάχιστ και µέγιστ, δηλαδή θα υάρχυν, [α, β] τέτια, ώστε d( ) d() d( ) για κάθε [α, β]. β

] ) = ([f(x) ] 2 ) + (g (x) 2 = 2f(x) f (x) + 2 g (x) g (x) = 2f(x) g (x) + 2 g (x) [ f(x)] = 2f(x) g (x) 2 g (x) f(x) = 0. Άρα φ(x) = c.

] ) = ([f(x) ] 2 ) + (g (x) 2 = 2f(x) f (x) + 2 g (x) g (x) = 2f(x) g (x) + 2 g (x) [ f(x)] = 2f(x) g (x) 2 g (x) f(x) = 0. Άρα φ(x) = c. 1.6 Ασκήσεις σχλικύ βιβλίυ σελίδας 56 58 A Οµάδας 1. Αν για τις συναρτήσεις f, g ισχύυν : f () = g() και g () = f() για κάθε R, να αδείξετε ότι η συνάρτηση φ() = [f() ] + [g () ] είναι σταθερή. Στ διάστηµα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 22 1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΜΑΘΗΜΑ 22 1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ ΜΑΘΗΜΑ.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Ορισµός της συνέχειας Πράξεις µε συνεχείς συναρτήσεις Συνέχεια συνάρτησης σε διάστηµα Θεωρία Ασκήσεις. Ορισµός Συνάρτηση f λέγεται συνεχής σε σηµεί όταν f () = f ( ).

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Απλές περιπτώσεις Εφαρμόζουμε τις ιδιότητες των ορίων. Ουσιαστικά κάνουμε αντικατάσταση. lim 3x 4x + 8 = 3 1 4 1 + 8 = 3+ 4 + 8 = 9

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Απλές περιπτώσεις Εφαρμόζουμε τις ιδιότητες των ορίων. Ουσιαστικά κάνουμε αντικατάσταση. lim 3x 4x + 8 = 3 1 4 1 + 8 = 3+ 4 + 8 = 9 ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ υ ΜΑΘΗΜΑΤΟΣ. Να βρείτε τα αρακάτω όρια: α. ( 4 8) + 6 + 8 0 Αλές εριτώσεις Εφαρμόζυμε τις ιδιότητες των ρίων. Ουσιαστικά κάνυμε αντικατάσταση. α. 4 + 8 4 + 8 + 4 + 8 9 8 0 8 4 0 0 + 6

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΤΕΤΑ ΤΗ 18 ΑΪ Υ 2016 ΑΤΕΥΘΥ ΣΗΣ ( Α Α ΣΥΣΤΗ Α) ,β), τότε να αποδείξετε ότι το f(x

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΤΕΤΑ ΤΗ 18 ΑΪ Υ 2016 ΑΤΕΥΘΥ ΣΗΣ ( Α Α ΣΥΣΤΗ Α) ,β), τότε να αποδείξετε ότι το f(x ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΑ Α ΑΕΑΔΕΣ ΕΕΤΑΣΕΣ Γ ΤΑΗΣ ΗΕΗΣΥ ΓΕΥ ΥΕΥ Α ΕΑ (ΑΔΑ Β ) ΤΕΤΑΤΗ 8 ΑΪΥ 6 ΕΕΤΑΖΕ ΑΘΗΑ: ΑΘΗΑΤΑ ΣΑΑΤΣΥ (Ε ΣΥΣΤΗΑ) ΑΤΕΥΘΥΣΗΣ (ΑΑ ΣΥΣΤΗΑ) ΣΥ ΣΕΔΩ: ΤΕΣ (3) A. Έστω

Διαβάστε περισσότερα

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ)

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ) Ελευθέρις Πρωταάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ) Να βρείτε την τιµή των αραστάσεων: o o συν 90 + ηµ 0 -σφ75 α) A =, ηµ o o 0 + συν 80

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΘΕΩΡΗΜΑ ROLLE ΚΑΙ Θ.Μ.Τ ΑΣΚΗΣΕΙΣ. Ασκήσεις ύο θέσεις x, x Ρίζες εξίσωσης Ανισότητες

ΜΑΘΗΜΑ ΘΕΩΡΗΜΑ ROLLE ΚΑΙ Θ.Μ.Τ ΑΣΚΗΣΕΙΣ. Ασκήσεις ύο θέσεις x, x Ρίζες εξίσωσης Ανισότητες ΜΑΘΗΜΑ 8.5 ΘΕΩΡΗΜΑ ROLLE ΚΑΙ Θ.Μ.Τ ΑΣΚΗΣΕΙΣ Ασκήσεις ύ θέσεις, Ρίζες εξίσωσης Ανισότητες. Η συνάρτηση f είναι συνεχής στ διάστηµα [α, β] και παραγωγίσιµη στ (α, β) µε f(α) β και f(β) α. Να απδείξετε ότι

Διαβάστε περισσότερα

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 73 8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ρισμός της συνέχειας Έστω οι συναρτήσεις g h παρακάτω σχήματα των οποίων οι γραφικές παραστάσεις δίνονται στα C h 6 l ( C l g( C g l l (a Παρατηρούμε ότι:

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 12: ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 12: ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..9: Ασύμτωτες Κανόνες de l Hospital Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση. ΘΕΜΑ Β Να βρείτε

Διαβάστε περισσότερα

2.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ

2.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ ΜΟΝΑΔΕΣ ΜΕΤΡΗΣΗΣ ΤΟΞΩΝ ΓΩΝΙΩΝ Χρησιμιύμε τις αρακάτω μνάδες μέτρησης τόξων και γωνιών: Τόξ ενός ακτινίυ ( rad ), λέγεται τ τόξ u υ έχει μήκς ίσ με την ακτίνα R τυ κύκλυ Αν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 00 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ : Θεωρύμε τυς μιγαδικύς αριθμύς α) z(t) + z(t) = z(t)

Διαβάστε περισσότερα

1.06 Δίνεται ένα σύστημα (Σ) 2 γραμμικών

1.06 Δίνεται ένα σύστημα (Σ) 2 γραμμικών ΣΥΣΤΗΜΑΤΑ λ y λ.0 Δίνεται τ σύστημα:, λy λ λ R. Να υλγίσετε τις τιμές τυ λ ώστε για τη λύση τυ συστήματς (,y) να ισχύει y 0.0 Δίνεται η συνάρτηση : αν 0 f() με λ R λ αν 0 Να βρεθύν ι τιμές τυ λ ώστε f(0)

Διαβάστε περισσότερα

2.1. Ασκήσεις σχολικού βιβλίου σελίδας A Oµάδας. 1.i) 1.ii) 1.iii) = 0. f x = x + 1 στο x ο. Να βρείτε την παράγωγο της συνάρτησης ( ) Λύση

2.1. Ασκήσεις σχολικού βιβλίου σελίδας A Oµάδας. 1.i) 1.ii) 1.iii) = 0. f x = x + 1 στο x ο. Να βρείτε την παράγωγο της συνάρτησης ( ) Λύση . Ασκήσεις σχλικύ βιβλίυ σελίδας 9 A Oµάδας. Να βρείτε την παράγωγ της συνάρτησης ( D R ( ( ( στ. Να βρείτε την παράγωγ της συνάρτησης ( D ( R ( ( ( στ ( ( ( ( ( ( ( (.i Να βρείτε την παράγωγ της συνάρτησης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Α) Να αοδείξετε ότι: α) Η συνάρτηση f() = ln, [,] αντιστρέφεται και να ορίσετε την f. β) ln d + d =. Β) Δίνεται η συνάρτηση α) h() h(), για κάθε [, + ). = d. Να αοδείξετε

Διαβάστε περισσότερα

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σουδών Ημερομηνία: 9 Ιουνίου 217 Ααντήσεις Θεμάτων Θέμα Α Α1. Θεωρία, βλ. σχολικό βιβλίο

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ ΚΩΛΕΤΤΗ 9- -68 8464 84767 www.iraklitos.gr ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΤΕΤΑΡΤΗ 8 ΜΑΪΟΥ 6 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΟΙ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΑΠΟ ΤΟΥΣ ΚΑΘΗΓΗΤΕΣ κύριο ΦΟΥΝΤΟΥΛΑΚΗ ΜΑΝΩΛΗ κυρία ΦΟΥΝΤΟΥΛΑΚΗ ΑΓΓΕΛΙΚΗ του ΦΡΟΝΤΙΣΤΗΡΙΟΥ www.orion.edu.gr

Διαβάστε περισσότερα

ΘΕΜΑ 1. θ (0, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη πραγματικοί αριθμοί. β) Έστω z,z. Δ = 4εφ θ 4= 4(εφ θ 1) < 0 γιατί π

ΘΕΜΑ 1. θ (0, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη πραγματικοί αριθμοί. β) Έστω z,z. Δ = 4εφ θ 4= 4(εφ θ 1) < 0 γιατί π ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Δίνεται η εξίσωση: z (εφθ)z + =, θ (, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη ραγματικοί αριθμοί. β) Έστω z,z οι ρίζες της αραάνω εξίσωσης. Αν ισχύει

Διαβάστε περισσότερα

2.5. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i. 1.ii Να εξετάσετε αν η συνάρτηση

2.5. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i. 1.ii Να εξετάσετε αν η συνάρτηση .5 Ασκήσεις σχολικού βιβλίου σελίδας 49 5 A Οµάδας.i Να εξετάσετε αν η συνάρτηση f() + ικανοοιεί τις υοθέσεις του θεωρήµατος Rolle στο διάστηµα [, ], και αν ναι στη συνέχεια να βρείτε όλα τα ξ (α, β) για

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ x. Η f είναι συνεχής στο x0. lim lim 1. Παρατηρούμε, δηλαδή, ότι μια

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ x. Η f είναι συνεχής στο x0. lim lim 1. Παρατηρούμε, δηλαδή, ότι μια ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 ΘΕΜΑ A A. Αοδεικνύουμε το θεώρημα στην ερίτωση ου είναι f () >. Έστω, με. Θα δείξουμε ότι f ( ) f ( ). Πράγματι, στο διάστημα [, ] η f ικανοοιεί

Διαβάστε περισσότερα

( ) ( + 30 ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( + 30 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Ζωδόχυ Πηγς 8 Σαλαμίνα Τηλ 07-7 /000 8. Να υλγιστύν ι τριγωνμετριί αριμί των γωνιών: α) 8 β) 90 γ) Σε τέτιυ είδυς ασσεις ετελύμε διαίρεση όταν έχυμε γωνία : σε μίρες διαίρεση με τ 0 αι μας ενδιαφέρει μόν

Διαβάστε περισσότερα

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ΘΕΜΑ Α Α1. Απόδειξη σχολικού βιβλίου σελ Ορισμός σχολικού βιβλίου σελ. 303 Α2.

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ΘΕΜΑ Α Α1. Απόδειξη σχολικού βιβλίου σελ Ορισμός σχολικού βιβλίου σελ. 303 Α2. ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ // ΘΕΜΑ Α Α. Αόδειξη σχολικού βιβλίου σελ. Α. Ορισμός σχολικού βιβλίου σελ. Β. Ορισμός σχολικού βιβλίου σελ. Γ. Λ, Λ, Σ, Σ, 5 Σ ΘΕΜΑ Β Β. Α) Εειδή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΤΟ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ

ΜΑΘΗΜΑ ΤΟ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΘΕΩΡΙΑ ΜΑΘΗΜΑ 7.5 ΤΟ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ. Θεώρηµα Rlle Αν µια συνάρτηση f είναι : Θεωρία Σχόλια Μέθοδοι Ασκήσεις (Αναζητώ ρίζα) συνεχής σε κλειστό διάστηµα [α, β] αραγωγίσιµη στο ανοικτό (α, β) f (α) f

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ 1, 23/03/2018 ΘΕΜΑ Α

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ 1, 23/03/2018 ΘΕΜΑ Α Λύσεις των θεμάτων ροσομοίωσης //8 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ //8 ΘΕΜΑ Α Α. Μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα κλειστο διάστημα a β όταν είναι συνεχής σε κάθε σημείο του a β και ειλέον:

Διαβάστε περισσότερα

Απόδειξη Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f (x) 0.

Απόδειξη Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f (x) 0. Αόδειξη Αοδεικνύουμε το θεώρημα στην ερίτωση ου είναι f () 0. Έστω, με. Θα δείξουμε ότι f( ) f( ). 1 1 1 Πράγματι, στο διάστημα [, ] η f ικανοοιεί τις ροϋοθέσεις του Θ.Μ.Τ. δηλαδή 1 είναι συνεχής στο 1,.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 A ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 A ΦΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 16 Ε_.ΜλΘΟ(α) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Ηµεροµηνία: Πέµτη 7 Ιανουαρίου 16 ιάρκεια Εξέτασης:

Διαβάστε περισσότερα

1 εφ x dx. 1 ν 1. συνx. 2 + ln1 = - ln 2. J 3-2 = 1 2 J 1 = ln 2 2, οπότε. x lnx 2 x, x > 0.

1 εφ x dx. 1 ν 1. συνx. 2 + ln1 = - ln 2. J 3-2 = 1 2 J 1 = ln 2 2, οπότε. x lnx 2 x, x > 0. 99 ΘΕΜΑΤΑ. Αν J ν ν εφ d, ν *, τότε α να αοδείξετε ότι για κάθε ν >, ισχύει J ν β να υολογίσετε το J 5. α Έχουµε J ν-, ν J ν ν εφ d εφ εφ d εφ ( d συν εφ d συν εφ d εφ (εφ d J ν- β Έχουµε ν εφ ν J ν- ν

Διαβάστε περισσότερα

Λύσεις θεμάτων προσομοίωσης-1 ο /2017 ΛΥΣΕΙΣ

Λύσεις θεμάτων προσομοίωσης-1 ο /2017 ΛΥΣΕΙΣ Λύσεις θεμάτων ροσομοίωσης- ο /7 ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΣΑΒΒΑΤΟ, ΜΑΡΤΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ

Διαβάστε περισσότερα

3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ 1. Ορισµός Έστω µία συνάρτηση f µε εδίο ορισµού Α και A Θα λέµε ότι η f είναι εριοδική όταν υάρχει ραγµατικός αριθµός Τ > 0 έτσι ώστε για κάθε Α να ισχύει : i)

Διαβάστε περισσότερα

Άγγελος Λιβαθινός, Μαθηματικός. ΑΠΑΝΤΗΣΕΙΣ-ΛΥΣΕΙΣ. Α1. Θεωρία ( Σχολικό Βιβλίο, Σελίδα 98. Μέτρο Μιγαδικού αριθμού- ιδιότητα)

Άγγελος Λιβαθινός, Μαθηματικός. ΑΠΑΝΤΗΣΕΙΣ-ΛΥΣΕΙΣ. Α1. Θεωρία ( Σχολικό Βιβλίο, Σελίδα 98. Μέτρο Μιγαδικού αριθμού- ιδιότητα) ΘΕΜΑ 1 ο ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΕΩΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ-ΛΥΣΕΙΣ Α1 Θεωρία ( Σχολικό Βιβλίο, Σελίδα

Διαβάστε περισσότερα

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ ΘΕΜΑ Ο Μιγαδικοί i Δίνεται ο μιγαδικός και έστω w α. Να ρεθεί ο μιγαδικός w όταν w. Να δείετε ότι w i γ. Αν η εικόνα του κινείται στον κύκλο κέντρου, και ακτίνας και Μ είναι η εικόνα του w στο μιγαδικό

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 8 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Σάββατο Αριλίου 8 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ

Διαβάστε περισσότερα

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σουδών Ημερομηνία: 9 Ιουνίου 217 Ααντήσεις Θεμάτων Θέμα Α Α1. Θεωρία, βλ. σχολικό βιβλίο

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (09/06/2017)

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (09/06/2017) ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (9/6/7) Α. σελ. 35 Α. α. ΨΕΥΔΗΣ, β. σελ. 99 Α3. σελ. 73 Α. α) Λ

Διαβάστε περισσότερα

, x > 0. Β) να µελετηθεί η µονοτονία και τα ακρότατα της f. Γ) να δείξετε ότι η C f είναι κυρτή και ότι δεν υπάρχουν τρία συνευθειακά σηµεία

, x > 0. Β) να µελετηθεί η µονοτονία και τα ακρότατα της f. Γ) να δείξετε ότι η C f είναι κυρτή και ότι δεν υπάρχουν τρία συνευθειακά σηµεία f ( t ) ίνεται η συνεχής συνάρτηση f : [, + ) R µε: f ( ) = + ( + ), > t Α ) να δείξετε ότι: α) f ( ) = ln +, > β) f ( ) = Β) να µελετηθεί η µονοτονία και τα ακρότατα της f Γ) να δείξετε ότι η C f είναι

Διαβάστε περισσότερα

ÈÅÌÁÔÁ 2008 ÏÅÖÅ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ

ÈÅÌÁÔÁ 2008 ÏÅÖÅ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Εαναλητικά Θέµατα ΟΕΦΕ 8 ΘΕΜΑ ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΠΑΝΤΗΣΕΙΣ Α. α. Βλέε Πόρισµα σελίδα 5 σχολικού βιβλίου. β. Βλέε σελίδα 4 σχολικού βιβλίου. Β. α. (Σ), β. (Σ), γ. (Σ), δ. (Σ).

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος. Λύσεις των ασκήσεων

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος. Λύσεις των ασκήσεων ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Μαθηματικά Β μέρος Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σουδών και Σουδών Οικονομίας & Πληροφορικής Λύσεις των

Διαβάστε περισσότερα

Εκφωνήσεις των θεμάτων των εξετάσεων Επεξεργασμένες ενδεικτικές απαντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα

Εκφωνήσεις των θεμάτων των εξετάσεων Επεξεργασμένες ενδεικτικές απαντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα . Εκφωνήσεις των θεμάτων των εξετάσεων Εεξεργασμένες ενδεικτικές ααντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα Εεξεργασία: Δημήτριος Σαθάρας Σχολικός Σύμβουλος Μαθηματικών Συντονιστής βαθμολογητών

Διαβάστε περισσότερα

( f ) ( T) ( g) ( H)

( f ) ( T) ( g) ( H) ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Αόδειξη (iii), σελ.44 σχολικού βιβλίου Α. Ορισµός,

Διαβάστε περισσότερα

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σουδών Ημερομηνία: 9 Ιουνίου 217 Ααντήσεις Θεμάτων Θέμα Α Α1. Θεωρία, βλ. σχολικό βιβλίο

Διαβάστε περισσότερα

Πανελλαδικές εξετάσεις 2016

Πανελλαδικές εξετάσεις 2016 Πανελλαδικές εξετάσεις 6 Ενδεικτικές ααντήσεις στο µάθηµα Μαθηµατικά Οµάδας Προσανατολισµού Θετικών Σουδών Οικονοµίας και Πληροφορικής Θέµα Α A. Σχολικό βιβλίο σελ.(6-6) A. Σχολικό βιβλίο σελ.(4) A. Σχολικό

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ ΘΕΜΑ Α Α1. Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα. Ποια συνάρτηση ονομάζεται αρχική ή αράγουσα της f στο ; Μονάδες 4 Α. Να διατυώσετε το θεώρημα Rolle. Μονάδες (1+1+1+1)4 Α3. Να διατυώσετε και να

Διαβάστε περισσότερα

γραφική παράσταση της συνάρτησης f, τον άξονα x x και τις ευθείες x = 1 και x = 2. lim lim (x 3) ) = 9α οπότε: (1 e ) (x 3) (1 e )(x 3) (x 3)

γραφική παράσταση της συνάρτησης f, τον άξονα x x και τις ευθείες x = 1 και x = 2. lim lim (x 3) ) = 9α οπότε: (1 e ) (x 3) (1 e )(x 3) (x 3) ΘΕΜΑΤΑ Έστω f µια ραγµατική συνάρτηση µε τύο f() α) Αν η f είναι συνεχής, να αοδείξετε ότι α - 9 α,, > β) Να βρείτε την εξίσωση της εφατοµένης της γραφικής αράστασης C f της συνάρτησης f στο σηµείο Α(4,

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ ΚΩΛΕΤΤΗ 9- -68 86 8767 www.iraklits.gr ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ε Ν Δ Ε Ι Κ Τ Ι Κ Ε Σ Α Π Α Ν Τ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2013

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ Α Α. Αόδειξη Σχολικού Βιβλίου σελ. - Α. Θεωρία Σχολικού Βιβλίου σελ. 6-7 Α. Θεωρία Σχολικού Βιβλίου σελ Α. α Λάθος, β

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΟΡΙΑ. ,δηλαδή ορίζεται τουλάχιστον σ ένα από τα σύνολα (α, x. lim. lim g(x) , λ σταθερά lim g(x) (ισχύει και για περισσότερες από 2

ΒΑΣΙΚΑ ΟΡΙΑ. ,δηλαδή ορίζεται τουλάχιστον σ ένα από τα σύνολα (α, x. lim. lim g(x) , λ σταθερά lim g(x) (ισχύει και για περισσότερες από 2 ΒΑΣΙΚΑ ΟΡΙΑ Έστω μια συνάρτηση f η οοία ορίζεται όσο κοντά θέλουμε στο,δηλαδή ορίζεται τουλάχιστον σ ένα αό τα σύνολα (α, ) (,β) ή (α, ) ή (,β). Όταν οι τιμές της f()ροσεγγίζουν όσο θέλουμε τον ραγματικό

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΜΟΡΙΟΔΟΤΗΣΗ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2017

ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΜΟΡΙΟΔΟΤΗΣΗ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2017 Α ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΜΟΡΙΟΔΟΤΗΣΗ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ Α Έστω, єδ με

Διαβάστε περισσότερα

1 Τριγωνοµετρικοί αριθµοί

1 Τριγωνοµετρικοί αριθµοί Τριγωνµετρικί αριθµί Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Τριγωνµετρικί αριθµί υ συνδένται µε τις ξείες γωνίες ρθγωνίυ τριγώνυ Έστω ΑΒΓ ( A= 90 o ) ρθγώνι τρίγων µε λευρές α, β, γ. Γνωρίζυµε ότι: µήκς αέναντι

Διαβάστε περισσότερα

Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων

Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων 7 Μαΐου 3 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ααντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων ΘΕΜΑ Α Α. Αόδειξη σχολικού βιβλίου σελ.33 Α. Ορισμός σχολικού βιβλίου σελ.6 Α3. Ορισμός σχολικού βιβλίου

Διαβάστε περισσότερα

1 η δεκάδα θεµάτων επανάληψης

1 η δεκάδα θεµάτων επανάληψης 1 1 η δεκάδα θεµάτων εανάληψης 1. ίνεται το ολυώνυµο Ρ(x) = x 3 x 2 4x + 4 Να αοδείξετε ότι ο αριθµός ρ = 1 είναι ρίζα του ολυωνύµου i Να βρείτε το ηλίκο της διαίρεσης του ολυωνύµου Ρ(x) µε το ολυώνυµο

Διαβάστε περισσότερα

Σχέδιο βαθμολόγησης-προσομοίωση Προσανατολισμού Γ Λυκείου - 1/2017 ΣΧΕΔΙΟ ΒΑΘΜΟΛΟΓΗΣΗΣ

Σχέδιο βαθμολόγησης-προσομοίωση Προσανατολισμού Γ Λυκείου - 1/2017 ΣΧΕΔΙΟ ΒΑΘΜΟΛΟΓΗΣΗΣ Σχέδιο βαθμολόγησης-προσομοίωση Προσανατολισμού Γ Λυκείου - /7 ΣΧΕΔΙΟ ΒΑΘΜΟΛΟΓΗΣΗΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΣΑΒΒΑΤΟ, ΜΑΡΤΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού x 0 x 0. , 0,, οπότε η f είναι γνησίως αύξουσα στο 0, και

Μαθηματικά Προσανατολισμού x 0 x 0. , 0,, οπότε η f είναι γνησίως αύξουσα στο 0, και ΘΕΜΑ Α Α1. Σχολικό βιβλίο σελ. 6 Α. Σχολικό βιβλίο σελ. 11 Α. Σχολικό βιβλίο σελ 6-7 Α. α. Λάθος Θέμα Β β. Σωστό γ. Λάθος δ. Σωστό ε. Σωστό Μαθηματικά Προσανατολισμού 18-5-16 Β1. Η f είναι αραγωγίσιμη

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 Στασίνου 6, Γραφ., Στρόβολος, Λευκωσία Τηλ. 57-78 Φαξ: 57-79 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 7 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ Παρασκευή, 9/5/7 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΑΠΟ ΤΗΝ ΜΕΡΟΣ Α ln( x). Να υολογίσετε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ. A1. Έστω f μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ. A1. Έστω f μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 8 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α A. Έστω f μια

Διαβάστε περισσότερα

1.1 Τριγωνομετρικές Συναρτήσεις

1.1 Τριγωνομετρικές Συναρτήσεις 11 Τριγωνομετρικές Συναρτήσεις Ποια συνάρτηση ονομάζουμε εριοδική; ΑΠΑΝΤΗΣΗ Μια συνάρτηση f με εδίο ορισμού το σύνολο Α λέγεται εριοδική, όταν υάρχει ραγματικός αριθμός Τ > 0 τέτοιος, ώστε για κάθε x A

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Απλές περιπτώσεις Εφαρµόζουµε τις ιδιότητες των ορίων. Ουσιαστικά κάνουµε αντικατάσταση. lim 3x 4x+ 8 = = =

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Απλές περιπτώσεις Εφαρµόζουµε τις ιδιότητες των ορίων. Ουσιαστικά κάνουµε αντικατάσταση. lim 3x 4x+ 8 = = = ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ Να βρείτε τα παρακάτω όρια: α ( 4 8) + 6 + 8 Απλές περιπτώσεις Εφαρµόζυµε τις ιδιότητες των ρίων Ουσιαστικά κάνυµε αντικατάσταση α 4+ 8 = 4 + 8= + 4+ 8= 9 8 8 = = 4 + 6 = + 6= Αν f( )

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 5 : Δίνετι η πργωγίσιμη συνάρτηση, με πεδί ρισμύ κι σύνλ τιμών

Διαβάστε περισσότερα

A3. Σχολικό βιβλίο σελίδα 73 Α4. α. Λάθος, β. Σωστό, γ. Λάθος, δ. Σωστό, ε. Σωστό.

A3. Σχολικό βιβλίο σελίδα 73 Α4. α. Λάθος, β. Σωστό, γ. Λάθος, δ. Σωστό, ε. Σωστό. ~σελίδα αό ~ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α A. Σχολικό βιβλίο σελίδα 5 A. α. Ψ β. Θεωρούμε τη συνάρτηση

Διαβάστε περισσότερα

Απαντήσεις Θεμάτων Πανελλαδικών Εξετάσεων Ημερησίων Γενικών Λυκείων (Νέο & Παλιό Σύστημα)

Απαντήσεις Θεμάτων Πανελλαδικών Εξετάσεων Ημερησίων Γενικών Λυκείων (Νέο & Παλιό Σύστημα) 8 Μαΐου 6 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Ααντήσεις Θεμάτων Πανελλαδικών Εξετάσεων Ημερησίων Γενικών Λυκείων (Νέο & Παλιό Σύστημα) Μαθηματικά Ομάδας

Διαβάστε περισσότερα

AΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 2018

AΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 2018 AΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 8 ΘΕΜΑ Α: Α. Αόδειξη σελ.44 (σχολικό) Α. Ορισμός σελ. 5 (σχολικό) Α3. Η αράγωγος της f μορεί να είναι η Τ και η αράγωγος της g η H. Α4.

Διαβάστε περισσότερα

( ) 11.4 11.7. Μέτρηση κύκλου. α 180. Μήκος τόξου µ ο : Μήκος τόξου α rad : l = αr. Σχέση µοιρών ακτινίων : Εµβαδόν κυκλικού δίσκου : Ε = πr 2

( ) 11.4 11.7. Μέτρηση κύκλου. α 180. Μήκος τόξου µ ο : Μήκος τόξου α rad : l = αr. Σχέση µοιρών ακτινίων : Εµβαδόν κυκλικού δίσκου : Ε = πr 2 1 11. 11.7 Μέτρηση κύκλυ ΘΩΡΙ Μήκς τόξυ µ : µ 180 Μήκς τόξυ α rad : αr Σχέση µιρών ακτινίων : α π µ 180 µβαδόν κυκλικύ δίσκυ : ( ) µβαδόν κυκλικύ τµέα µ : µ µβαδόν κυκλικύ τµέα α rad : ( ) 1 αr µβαδόν

Διαβάστε περισσότερα

ΠΛΗΡ/ΚΗΣ: τηλ -8856 ΕΠΑ.Λ.: τηλ -694 Κ.Ε.Κ. ERGOWAY: τηλ -647 Αό το 975 στο Μαρούσι ERGOWAY ΠΛΗΡΟΦΟΡΙΚΗ: τηλ -647 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΛΑ Β ) ΤΕΤΑΡΤΗ 8

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής

Ερωτήσεις πολλαπλής επιλογής Ερωτήσεις πολλαπλής επιλογής. * Το θεώρηµα µέσης τιµής του διαφορικού λογισµού για κάθε α, β R και τη συνάρτηση f () = e εξασφαλίζει την ύπαρξη ενός αριθµού κ R, ώστε να ισχύει Α. e α-β = e κ (α - β) Β.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. και g(x) =, x ΙR * τότε

ΑΠΑΝΤΗΣΕΙΣ. και g(x) =, x ΙR * τότε ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Σχολικό βιβλίο θεωρία

Διαβάστε περισσότερα

ΘΕΜΑ Α. Α1. Θεωρία Θεώρημα σελ. 145 σχολικού βιβλίου. Α2. Θεωρία Ορισμός σελ. 15 σχολικού βιβλίου

ΘΕΜΑ Α. Α1. Θεωρία Θεώρημα σελ. 145 σχολικού βιβλίου. Α2. Θεωρία Ορισμός σελ. 15 σχολικού βιβλίου Σελίδα αό ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 8 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Φροντιστήρια Ρούλα Μακρή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΠΡΟΒΛΗΜΑΤΑ ΕΥΡΕΣΗΣ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΠΡΟΒΛΗΜΑΤΑ ΕΥΡΕΣΗΣ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόουλου ΠΡΟΒΛΗΜΑΤΑ ΕΥΡΕΣΗΣ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ Α. ΕΙΣΑΓΩΓΗ Ολοκληρώνοντας το 1 ο κεφάλαιο στα Μαθηματικά της Γενικής Παιδείας

Διαβάστε περισσότερα

1o. Θ Ε Μ Α Β Ε. Γ Κ Ο Ρ Α. βρίσκεται ολόκληρη μέσα στο τετράγωνο ΑΒΓΔ.

1o. Θ Ε Μ Α Β Ε. Γ Κ Ο Ρ Α. βρίσκεται ολόκληρη μέσα στο τετράγωνο ΑΒΓΔ. o. Θ Ε Μ Α Β Ε. Γ Κ Ο Ρ Α Δίνεται τετράγωνο με κορυφές τα σημεία Α,, Β,, Γ, και Δ, και μία συνεχής στο, συνάρτηση της οποίας η γραφική παράσταση βρίσκεται ολόκληρη μέσα στο τετράγωνο ΑΒΓΔ. B. Nα βρείτε

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 MAΪΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 MAΪΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ Γκύζη -Αθήνα Τηλ :.6.5.777 ΘΕΜΑ Α ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 8 MAΪΟΥ 6 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ A. Θεωρία σχολικού βιβλίου σελίδα 6-6

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ Κεφάλαιο ο: ΙΑΦΟΡΙΚΟ ΟΓΙΜΟ ο ΜΕΡΟ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Αν η συνάρτηση f είναι παραγωγίσιµη στο R και f (α) f (β), α, β R, α < β, τότε ισχύει f () για κάθε (α, β).. * Αν η συνάρτηση f

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 36 Κεφάλαιο 3ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ. Σ 4. Λ. Λ 3. Λ 4. Λ 3. Σ 4. Σ 43. Σ 4. Λ 5. Σ 44. Σ 5. Σ 6. Σ 45. Λ 6.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΑΣΥΜΠΤΩΤΕΣ DE L HOSPITAL Θεωρία Σχόλια Μέθοδοι Ασκήσεις

ΜΑΘΗΜΑ ΑΣΥΜΠΤΩΤΕΣ DE L HOSPITAL Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ ΜΑΘΗΜΑ 35.9 ΑΣΥΜΠΤΩΤΕΣ DE L HOSPITAL Θεωρία Σχόλια Μέθοδοι Ασκήσεις. ος κανόνας d L Hospital f ( 0 g( 0 f ( g ( εφόσον υπάρχουν. ος κανόνας d L Hospital f ( ± g( ± f ( g ( εφόσον υπάρχουν ΣΧΟΛΙΑ.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΣΥΝΕΠΕΙΕΣ ΤΟΥ Θ.Μ.Τ Μονοτονία συνάρτησης Ασκήσεις Εξισώσεις Θεωρητικές Συνέχεια του µαθήµατος 31. e 3 = 0. e + e 3, x R.

ΜΑΘΗΜΑ ΣΥΝΕΠΕΙΕΣ ΤΟΥ Θ.Μ.Τ Μονοτονία συνάρτησης Ασκήσεις Εξισώσεις Θεωρητικές Συνέχεια του µαθήµατος 31. e 3 = 0. e + e 3, x R. ΜΑΘΗΜΑ.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ Θ.Μ.Τ Μονοτονία συνάρτησης Ασκήσεις Εξισώσεις Θεωρητικές Συνέχεια του µαθήµατος ΑΣΚΗΣΕΙΣ. Να λύσετε την εξίσωση Η εξίσωση γράφεται e + e e 0 Προφανής ρίζα Θεωρούµε τη συνάρτηση f()

Διαβάστε περισσότερα

(Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α. Α1. Βλέπε απόδειξη Σελ. 262, σχολικού βιβλίου. Α2. Βλέπε ορισμό Σελ. 141, σχολικού βιβλίου

(Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α. Α1. Βλέπε απόδειξη Σελ. 262, σχολικού βιβλίου. Α2. Βλέπε ορισμό Σελ. 141, σχολικού βιβλίου ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 ΜΑΪΟΥ 16 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) (Ενδεικτικές Ααντήσεις)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 49 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 5 η ΕΚΑ Α

ΜΑΘΗΜΑ 49 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 5 η ΕΚΑ Α 4. ΜΑΘΗΜΑ 49 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 5 η ΕΚΑ Α Έστω συνάρτηση f συνεχής στ R κι ( ) είξτε ότι 3 g() ( 3 ) f (t)dt i Υπάρχει έν τυλάχιστν ξ (3, ) ώστε Θέτυµε h() f (t)dt Η g() γράφετι g() g() f (t)dt (t )dt, R

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΘΕΜΑ Α ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ A. Έστω f μια συνάρτηση αραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο του o, στο οοίο όμως η f είναι συνεχής.

Διαβάστε περισσότερα

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Ααντήσεις ΘΕΜΑ ο Α. Σχολικό βιβλίο, σελίδα 6. B. Σχολικό βιβλίο, σελίδες 97 και

Διαβάστε περισσότερα

( y) ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΘΕΜΑ Α Α1. Σχολικό βιβλίο, σελίδα 135

( y) ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΘΕΜΑ Α Α1. Σχολικό βιβλίο, σελίδα 135 ΘΕΜΑ Α Α. Σχολικό βιβλίο, σελίδα 5 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ 07 Α. α. Ψ β. Δίνεται αντιαράδειγμα στο σχολικό βιβλίο σελίδα 99, αράγραφος: «Παράγωγος και συνέχεια». Α.

Διαβάστε περισσότερα

Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις

Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις 6 Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις 1. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Περιοδική συνάρτηση Μια συνάρτηση f με εδίο ορισμού Α λέγεται εριοδική, όταν υάρχει T τέτοιος ώστε για κάθε x A να

Διαβάστε περισσότερα

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 8Α ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ A ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Πότε μια συνάρτηση λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού o της ; Απάντηση : ( ΟΜΟΓ, 6 ΟΜΟΓ, 9 Β, ΟΜΟΓ, 5 Έστω μια συνάρτηση και ένα σημείο του πεδίου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ ΟΡΙΑ - ΣΥΝΕΧΕΙΑ 1 Να υολογίσετε τα όρια: 9 i) ii) ( ) 9 iii) 1 1 1 iv) 7 10 5 15 t t t 1 v) vi) t (t )(t ) 1 1 9 i) (ημ συν) ) 1 7 συν vii) 1 ημ viii) 1 5 i) ii) ημ 6 1 009, άν

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α.1 βλ. σχολικό βιβλίο σελ Α.2 βλ. σχολικό βιβλίο σελ. 246 Α.3 βλ. σχολικό βιβλίο σελ. 222 Α.4 α Λ, β Σ, γ Σ, δ Λ, ε Σ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α.1 βλ. σχολικό βιβλίο σελ Α.2 βλ. σχολικό βιβλίο σελ. 246 Α.3 βλ. σχολικό βιβλίο σελ. 222 Α.4 α Λ, β Σ, γ Σ, δ Λ, ε Σ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 7 ΜΑΪΟΥ 3 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. βλ. σχολικό βιβλίο

Διαβάστε περισσότερα

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 8Α ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ A ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Πότε μια συνάρτηση λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού o της ; Απάντηση : ( ΟΜΟΓ, 6 ΟΜΟΓ, 9 Β, ΟΜΟΓ, 5 Έστω μια συνάρτηση και ένα σημείο του πεδίου

Διαβάστε περισσότερα

και g(x) =, x ΙR * τότε

και g(x) =, x ΙR * τότε ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Σχολικό

Διαβάστε περισσότερα

2.8. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i)

2.8. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i) 1.8 Ασκήσεις σχολικού βιβλίου σελίδας 77 79 A Οµάδας 1.i) Να βρείτε τα διαστήµατα στα οποία η συνάρτηση () 5 5 4 + είναι κυρτή ή κοίλη και να προσδιορίσετε (αν υπάρχουν) τα σηµεία καµπής της γραφικής της

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

6 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 51.

6 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 51. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 6 η ΕΚΑ Α 5. ίνεται η συνάρτηση ln, αν > 0 f () 0, αν 0 Να αποδείξετε ότι η f είναι συνεχής στο 0 i Να µελετήσετε την f ως προς την µονοτονία και τα ακρότατα και να βρείτε το σύνολο τιµών

Διαβάστε περισσότερα

Πανελλαδικές Εξετάσεις 2017

Πανελλαδικές Εξετάσεις 2017 Πανελλαδικές Εξετάσεις 7 Μαθηματικά Προσανατολισμού 9/6/7 ΘΕΜΑ Α Προτεινόμενες λύσεις Α. Έστω, Δ, με

Διαβάστε περισσότερα

1. Πότε µία γωνία λέγεται εγγεγραµµένη; Απάντηση Όταν η κορυφή της είναι σηµείο του κύκλου και οι πλευρές της είναι τέµνουσες του κύκλου

1. Πότε µία γωνία λέγεται εγγεγραµµένη; Απάντηση Όταν η κορυφή της είναι σηµείο του κύκλου και οι πλευρές της είναι τέµνουσες του κύκλου 6. 6.4 σκήσεις σχλικύ βιβλίυ σελίδας 9 30 Ερωτήσεις Κατανόησης. Πότε µία γωνία λέγεται εγγεγραµµένη; πάντηση Όταν η κρυφή της είναι σηµεί τυ κύκλυ και ι πλευρές της είναι τέµνυσες τυ κύκλυ. ν φ και ω είναι

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 9 ΜΑΪΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ A. Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα. Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις

Διαβάστε περισσότερα

[f(x)] [f(x)] [f (x)] (x 2 + 2) x 2-2 x 2.

[f(x)] [f(x)] [f (x)] (x 2 + 2) x 2-2 x 2. 99 ΘΕΜΑΤΑ. α) ίνεται η συνάρτηση f ορισµένη και δύο φορές αραγωγίσιµη στο διάστηµα µε τιµές στο (, + ). Να δειχθεί ότι η συνάρτηση g µε g() = lnf(),, έχει την ιδιότητα «g (), για κάθε» αν και µόνο αν ισχύει

Διαβάστε περισσότερα

Είναι φ =180 ο 120 ο = 60 ο άρα ω = 50 ο + 60 ο = 110 ο. ˆ ΑΓ, να υπολογίσετε την γωνία φ. ˆ ΑΓ = 110 ο άρα ω =70 ο, οπότε. Είναι

Είναι φ =180 ο 120 ο = 60 ο άρα ω = 50 ο + 60 ο = 110 ο. ˆ ΑΓ, να υπολογίσετε την γωνία φ. ˆ ΑΓ = 110 ο άρα ω =70 ο, οπότε. Είναι 4.6 4.8 σκήσεις σχλικύ βιβλίυ σελίδας 87 88 ρωτήσεις Κατανόησης. Να υπλγίσετε την γωνία ω στ παρακάτω σχήµα πάντηση ω ίναι φ =8 = 6 άρα ω = 5 + 6 = 5 φ. ν = και x διχτόµς της γωνίας πάντηση ω φ ω 55 x

Διαβάστε περισσότερα

4. ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

4. ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Ι ΤΡΙΓΩΝΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Περιοδική συνάρτηση Μια συνάρτηση f με εδίο ορισμού το Α ονομάζεται εριοδική, όταν υάρχει ραγματικός αριθμός Τ > 0 τέτοιος ώστε: για κάθε A να ισχύει T A και T A, ισχύει f

Διαβάστε περισσότερα

Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) f(x) = 1 x. ii) f(x) = 2ln(x 2) 1 = (, 1] 1 x

Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) f(x) = 1 x. ii) f(x) = 2ln(x 2) 1 = (, 1] 1 x . Ασκήσεις σχολικού βιβλίου σελίδας 56 57 A µάδας. Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) () = ii) () = ln( ) iii) () = e + iv) () = ( ), i)

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου Θέμα Εαναλητικό Διαγώνισμα Άλγεβρας Β Λυκείου Α. Αν α>0 με α, τότε για οοιουσδήοτε θ, θ,θ>0 και κ ισχύει log ( θ θ ) = log θ + log θ (7 μονάδες) α α α Β. Να χαρακτηρίσετε τις ροτάσεις ου ακολουθούν, γράφοντας

Διαβάστε περισσότερα

lim f x lim g x. ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α

lim f x lim g x. ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 16 ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Α1. Έστω µια συνάρτηση f αραγωγίσιµη σε ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο οοίο όµως η

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ Χαρακτηριστικά μεγέθη της αλής αρμονικής ταλάντωσης είναι: Α) Αομάκρυνση (x ή y): ονομάζεται η αόσταση του σώματος κάθε χρονική στιγμή αό την θέση ισορροίας (x= ή y=) Β) Το λάτος της

Διαβάστε περισσότερα

Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟ ΟΓΙΜΟ ο ΜΕΡΟ Ερωτήσεις του τύπου «ωστό - άθος». * Αν µια συνάρτηση f είναι συνεχής στο διάστηµα [α, β], παραγωγίσιµη στο διάστηµα (α, β) και f (α) = f (β), τότε υπάρχει τουλάχιστον

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 7 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Ααντήσεις Ειμέλεια: Ομάδα Μαθηματικών http://www.othisi.gr ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 7 Παρασκευή, 9 Ιουνίου 7 Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Διαβάστε περισσότερα