Physics by Chris Simopoulos

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Physics by Chris Simopoulos"

Transcript

1 ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ Χαρακτηριστικά μεγέθη της αλής αρμονικής ταλάντωσης είναι: Α) Αομάκρυνση (x ή y): ονομάζεται η αόσταση του σώματος κάθε χρονική στιγμή αό την θέση ισορροίας (x= ή y=) Β) Το λάτος της ταλάντωσης: ονομάζεται η μέγιστη αόσταση του σώματος αό την θέση ισορροίας (x=±α, ή y=±α) Γ) Περίοδος : ονομάζεται ο χρόνος ου ααιτείται για να εκτελέσει το σώμα μια λήρη ταλάντωση δηλαδή να εράσει διαδοχικά δύο φορές αό τη θέση ισορροίας και να καταλήξει στη θέση ου ξεκίνησε την ταλάντωσή του. Δ) Συχνότητα : ονομάζεται ο αριθμός των λήρων ταλαντώσεων ου εκτελεί το σώμα στη μονάδα του χρόνου Ε) Φάση : ονομάζεται η γωνία η οοία αντιστοιχεί στην αόσταση του σώματος κάθε χρονική στιγμή αό την θέση ισορροίας (x=). Εειδή όλα τα αραάνω αναφέρονται αναλυτικά στην θεωρία θα μελετήσουμε ιδιαίτερα τα μεγέθη ου έχουν ιδιαίτερη σημασία. Όως γνωρίζουμε κάθε αλή αρμονική ταλάντωση μορούμε να την αντιστοιχήσουμε σε μια λήρη κυκλική κίνηση. Για το λόγο αυτό στα σχήματα θα χρησιμοοιήσουμε το τριγωνομετρικό κύκλο για την λήρη ανααράσταση της κίνησης μιας αλής αρμονικής ταλάντωσης και την κατανόηση των εννοιών. Φάση ονομάζουμε την γωνία ου καθορίζει την αομάκρυνση του σώματος ή του συστήματος σωμάτων αό την θέση ισορροίας κάθε χρονική στιγμή t. Για αράδειγμα όταν το σώμα έχει φάση rad σημαίνει ότι βρίσκεται στη θέση ου ξεκίνησε την ταλάντωσή του και έχει εκτελέσει μία λήρη ταλάντωση. Παρατηρείστε το διλανό σχήμα όου φαίνεται ότι κάοια τυχαία χρονική στιγμή t το σώμα έχει φάση φ. Αυτή αντιστοιχεί στη αομάκρυνση x 1 του σώματος αό τη θέση ισορροίας. ΣΥΜΠΕΡΑΣΜΑ: Κάθε φάση αντιστοιχεί σε μία αομάκρυνση. Θα λέμε ότι δυο ταλαντώσεις βρίσκονται σε φάση όταν διαφέρουν κατά ακέραιο ολλαλάσιο της εριόδου Τ δηλαδή Δφ=κ όου κ=,1,,3... Αρχική φάση ονομάζουμε την αρχική γωνία, αό την θέση ισορροίας, αό την οοία ξεκινά το σώμα ή το σύστημα σωμάτων την ταλάντωσή του την χρονική στιγμή t= δηλαδή μόλις αρχίζει την κίνησή του και η οοία αντιστοιχεί σε μια συγκεκριμένη αομάκρυνση. x y + - y φ Τυχαία χρονική στιγμή t x 1 x

2 Το σώμα (ή το σύστημα) ου ταλαντώνεται έχει αρχική φάση όταν: Ι) Την χρονική στιγμή t= έχει αομάκρυνση x διάφορη του μηδενός (x ) δηλαδή ξεκινά την ταλάντωσή του αό οοιαδήοτε θέση εκτός του μηδενός ή αό τη θέση x= έχοντας αρνητική ταχύτητα. ΙΙ) Την χρονική στιγμή t με t κτ όου κ=1,,3... και Τ η ερίοδος ταλάντωσης, η αομάκρυνση του σώματος (ή του συστήματος) είναι μηδέν (x=) δηλαδή κάοια χρονική στιγμή t βρίσκεται στη θέση x=. Αυτό σημαίνει ότι ξεκινήσει την ταλάντωσή του αό μια θέση διάφορη της θέσης ισορροίας του. ΙΙΙ) Η εξίσωση της αομάκρυνσης ου δίνεται αό το ρόβλημα είναι διαφορετικής μορφής αό την γνωστή εξίσωση φάση στο αράδειγμα είναι /). x =. ημ (.χ x =. συν οότε θα έχω x =. ημ ( + ) άρα η αρχική ΙV) Την χρονική στιγμή t= η ταχύτητα του σώματος (ή του συστήματος) έχει τιμή μικρότερη αό τη μέγιστη τιμή της. μηδενός. V) Την χρονική στιγμή t= η ειτάχυνση του σώματος (ή του συστήματος) έχει τιμή διάφορη του Τέλος διαφορά φάσης μεταξύ δύο μεγεθών ονομάζεται η γωνία ου αντιστοιχεί στο χρόνο ου ααιτείται για να άρει το ένα μέγεθος κάοια αντίστοιχη τιμή ενός άλλου μεγέθους. Για αράδειγμα αν τη χρονική στιγμή t 1 η ταχύτητα είναι μηδέν για να άρει η αομάκρυνση την ίδια τιμή (δηλ. μηδέν) ερνά κάοιος χρόνος Δt. Αυτός ο χρόνος αντιστοιχεί σε κάοια γωνία η οοία ονομάζεται διαφορά φάσης. Η αντιστοιχία αυτή δίνεται αό την αλή μέθοδο των τριών για τα μεγέθη χρόνος-φάση. Σε χρονικό διάστηματ secαντιστοιχεί διαφορά φάσης }. Δ ϕ = Σε χρονικό διάστημα Δt secαντιστοιχεί διαφορά φάσης Δφ Δt (1) ή αλλιώς Δ ϕ = ϕ t t ( t t ) t 1 ϕ Δ = ω 1 ω = ω 1 Δϕ = Για να υολογίσουμε τη φάση ρέει να γνωρίζουμε τις τριγωνομετρικές σχέσεις ου ροκύτουν αό εξίσωση ημιτόνων, συνημιτόνων και εφατομένης. Συγκεκριμένα: α) Εάν ημφ = α όου α ένας αριθμός ϕ = k + θ Βρίσκω το τόξο θ ου έχει ημίτονο τον αριθμό α οότε έχω ημϕ = ημθ ϕ = k + θ x y + - y φ Χρονική στιγμή t= x x

3 Θέτοντας κ= υολογίζω τις τιμές της γωνίας φ ου αντιστοιχούν στην κίνηση του σώματος κατά την ρώτη λήρη ταλάντωση. Για αράδειγμα β) Εάν συνφ=α 1 ημφ = ημφ = ημ3 ϕ = k ϑ Κατά τον ίδιο τρόο θα έχω συνϕ = συνϑ ϕ = k + ϑ Για αράδειγμα γ) Εάν εφφ=α συνφ = 3 συνφ = συν3 ϕ = k + ϑ Όμοια όως ροηγούμενα εφϕ = εφϑ ϕ = k ϑ Για αράδειγμα ΠΑΡΑΤΗΡΗΣΗ: εφφ = 3 εφφ = εφ3 3 φ = κ + ημφ = ημ φ = κ + φ = κ + συνφ = συν φ = κ - φ = κ + εφφ = εφ φ = κ - Θα ρέει να αναφέρουμε τη σημασία της σταθεράς κ στα ροβλήματα των ταλαντώσεων. Η σταθερά κ δηλώνει σε οια ταλάντωση βρίσκεται το σώμα κατά την κίνησή του και όχι όσες λήρεις ταλαντώσεις έχει διαγράψει το σώμα. Αυτό σημαίνει ότι η σταθερά κ αλλάζει κάθε φορά ου το σώμα ερνά αό την θέση ισορροίας (η οοία αντιστοιχεί στη θέση των τριγωνομετρικό κύκλο) κινούμενο άντα ρος τον θετικό ημιάξονα (η οοία αντιστοιχεί στη θέση των 9 στο τριγωνομετρικό κύκλο). Με βάση τις σχέσεις της ταλάντωσης και τις γραφικές αραστάσεις αυτών θα έχουμε τις αρακάτω διαφορές φάσεις μεταξύ των μεγεθών της αομάκρυνσης, της ταχύτητας, της ειτάχυνσης και της δύναμης : Αό τη σύγκριση των διαγραμμάτων της αομάκρυνσης σε συνάρτηση με το χρόνο και της ταχύτητα σε συνάρτηση με το χρόνο αρατηρούμε ότι η αομάκρυνση x υστερεί της ταχύτητας υ κατά γωνία / rad. υ(m/sec) στο

4 Αό τη σύγκριση των διαγραμμάτων της ταχύτητας σε συνάρτηση με το χρόνο και της ειτάχυνσης σε συνάρτηση με το χρόνο αρατηρούμε ότι η ταχύτητα υ υστερεί της ειτάχυνσης α κατά γωνία / rad. Αό τη σύγκριση των διαγραμμάτων της αομάκρυνσης σε συνάρτηση με το χρόνο και της ειτάχυνσης σε συνάρτηση με το χρόνο αρατηρούμε ότι η αομάκρυνση x υστερεί της ειτάχυνσης α κατά γωνία rad. Αό τη σύγκριση των διαγραμμάτων της ταχύτητας σε συνάρτηση με το χρόνο και της δύναμης εαναφοράς σε συνάρτηση με το χρόνο αρατηρούμε ότι η ταχύτητα υ υστερεί της δύναμης εαναφοράς F ε κατά γωνία / rad. Αό τη σύγκριση των διαγραμμάτων της αομάκρυνσης σε συνάρτηση με το χρόνο και της δύναμης εαναφοράς σε συνάρτηση με το χρόνο αρατηρούμε ότι η αομάκρυνση x υστερεί της δύναμης εαναφοράς F ε κατά γωνία rad. Σχέσεις μεταξύ μεγεθών: Στις ασκήσεις των ταλαντώσεων αρκετές φορές θα χρειαστεί να γνωρίζουμε σχέσεις μεταξύ διαφόρων μεγεθών. Ο τρόος εργασίας στις εριτώσεις αυτές είναι ίδιος και οι σχέσεις αυτές αοδεικνύονται τις ερισσότερες φορές με τη χρήση τριγωνομετρικών σχέσεων. Έτσι: 1. Αόδειξη της σχέσης ου συνδέει την αομάκρυνση με την ταχύτητα: x = ημ ω φ ημ ω φ (1) x. ( t + ) ( t + ) = υ = (). ω υ. ω. συν( + φ ) συν ( + φ ) = Αό την τριγωνομετρία γνωρίζουμε ότι ισχύει ημ φ + συν φ = 1 οότε αντικαθιστώντας τις σχέσεις (1) και () σε αυτή έχουμε υ(m/sec) α(m/sec ) υ(m/sec) α(m/sec ) F(Nt) F(Nt)

5 x υ ημ ( + φ ) + συν ( + φ ) = 1 + Α ω Α υ = ω Α ω x υ = ± ω x υ = ± ω x = 1 υ + ω x = ω Α. Με τον ίδιο ακριβώς τρόο ροκύτει και η σχέση μεταξύ ταχύτητας και ειτάχυνσης α = ± ω. υ υ 3. Προσέξτε ιδιαίτερα την σχέση ου συνδέει την αομάκρυνση με την ειτάχυνση διότι είναι ολύ αλή και χρησιμοοιείται σε ολλές εριτώσεις ασκήσεων. α = ω.. ημ( + ϕ ) α = ω.x 4. Η εξίσωση της δύναμης είναι ίσως η βασικότερη εξίσωση των ταλαντώσεων. Αό την εξίσωση αυτή καθορίζεται αν ένα σώμα εκτελεί αλή αρμονική ταλάντωση, οια είναι η συνισταμένη δύναμη ου ενεργεί στο σώμα ου ταλαντώνεται κάθε χρονική στιγμή κλ. Η συνισταμένη δύναμη εκφράζεται σε συνάρτηση με την αομάκρυνση ή σε συνάρτηση με το χρόνο αό τις σχέσεις Σ F F = D.x ή = ε ΣF = Fε = m. ω.. ημ( + φ ) Εκτός των τριών γραφικών αραστάσεων αομάκρυνσης, ταχύτητας και ειτάχυνσης ου αναφέρει το σχολικό βιβλίο μορούμε να σχεδιάσουμε και τη γραφική αράσταση της δύναμης σε συνάρτηση με το χρόνο καθώς είσης και τη γραφική αράσταση της δύναμης σε συνάρτηση με την αομάκρυνση. Η γραφική αράσταση της δύναμης σε συνάρτηση με το χρόνο είναι ίδια με τη γραφική αράσταση της ειτάχυνσης σε συνάρτηση με το χρόνο διότι η δύναμη είναι ανάλογη της ειτάχυνσης έτσι δεν χρειάζεται να την σχεδιάσουμε. F = m. α Η γραφική αράσταση της δύναμης σε συνάρτηση με την αομάκρυνση είναι εξίσωση ρώτου βαθμού αφού σχεδιάζεται όως φαίνεται στο διλανό διάγραμμα. ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ F = D. x και Εειδή στην φυσική δεν μας ενδιαφέρει ο λετομερής σχεδιασμός μιας γραφικής αράστασης θα αναφέρουμε ένα εύκολο τρόο για τον σχεδιασμό μιας γραφικής αράστασης με αρχική φάση όως αυτές ου αναφέρει το σχολικό βιβλίο. Εάν για αράδειγμα μας ζητηθεί η γραφική αράσταση της αομάκρυνσης με βάση την εξίσωση x =.ημ( + ) τότε σχεδιάζω την κλασσική γραφική αράσταση της αομάκρυνσης με -x 1 / - F (Nt) -D.x 1 D.x 1 x 1 x (m)

6 το χρόνο χωρίς αρχική φάση και μετατοίζω τον άξονα της αομάκρυνσης ρος τα δεξιά. Η μετατόιση γίνεται με τον εξής τρόο: χωρίζω τα τεταρτημόριο ( ) σε τρία ίσα μέρη αό τα οοία το καθένα 4 αντιστοιχεί σε γωνία ( ) rad και μεταφέρω τον άξονα κατά το αντίστοιχο τμήμα. Τέλος για να υολογίσω τη τιμή ου αρχίζει η γραφική αράσταση θέτω στην εξίσωση της αομάκρυνσης t= και έχω 1 x =.ημ( ω + ) x =.ημ x =. x = Όμοια εργάζομαι για οοιαδήοτε άλλη γωνία. Εάν δε η εξίσωση έχει αρνητική αρχική φάση η μετατόιση του άξονα γίνεται με τον ίδιο ακριβώς τρόο ρος τα αριστερά. Δηλαδή η γραφική αράσταση της εξίσωσης x =. ημ( ) θα είναι όως δείχνει το διλανό σχήμα. Ο τρόος εργασίας στις ασκήσεις είναι αυτός ου αναφέρουμε στη συνέχεια. α. Σχεδιάζω το σχεδιάγραμμα ταλάντωσης του σώματος και τοοθετώ άντα τη χρονική στιγμή t= για να γνωρίζω το τεταρτημόριο αό το οοίο αρχίζει τη ταλάντωση το σώμα. β. Γράφω τις χρονικές εξισώσεις ου μας ενδιαφέρουν. γ. Ελέγχω τις ειδικές συνθήκες αν υάρχουν. δ. Αντικαθιστώ τις τιμές του ροβλήματος στις εξισώσεις. ε. Λύνω το σύστημα των εξισώσεων ου ροκύτει ελέγχοντας τις δεκτές τιμές των γωνιών με το σχεδιάγραμμα της ταλάντωσης. Ιδιαίτερη ροσοχή ααιτείται στα ιο κάτω θέματα. 1. Ααραίτητη ροϋόθεση για τη λύση των ασκήσεων είναι ο σχεδιασμός του διαγράμματος ου ακολουθεί για να καταλαβαίνουμε την αρχική θέση εκκίνησης του ταλαντευόμενου σώματος αλλά και την θέση του κάθε χρονική στιγμή. Το διάγραμμα μορεί να σχεδιαστεί ή με τη μορφή τριγωνομετρικού κύκλου, οότε η λύση τότε είναι ερισσότερο μαθηματική και λιγότερο φυσική, ή αλό σχεδιάγραμμα του σχολικού βιβλίου στο οοίο φαίνεται κάθε χρονική στιγμή η θέση του κινητού και η φορά κίνησής του και το οοίο αναφέρεται στο σχολικό βιβλίο. κύκλου. Προσέξτε την λήρη αντιστοιχία μεταξύ του διαγράμματος του σχολικού και του τριγωνομετρικού - ο ο 3 τεταρτημόριο τεταρτημόριο υ< υ< υ > υ > ο ο 4 τεταρτημόριο 1 τεταρτημόριο Θετική φορά κίνησης x -/ - y y y 1 υ> υ< υ< - υ> x

7 . Όταν η εξίσωση της αομάκρυνσης και της ειτάχυνσης εκφράζεται με συνημίτονο (συν) ή εξίσωση της ταχύτητας με ημίτονο (ημ) τη μετατρέω σε εξίσωση ημίτονου (ημ) ή συνημιτόνου (συν) αντίστοιχα για να καθορίσω την αρχική φάση της ταλάντωσης. Οι σχέσεις ου χρησιμοοιώ είναι οι εξής: ημ( + + ϕ ) συν( + ϕ ) = ημ( ϕ ) 3. Όταν δίνεται η αόσταση x των δύο ακραίων θέσεων της ταλάντωσης ενός σώματος τότε το λάτος της ταλάντωσης δίνεται αό τη σχέση x= => = x. 4. Όταν ένα σώμα ου εκτελεί γραμμική αρμονική ταλάντωση ερνά αό την θέση ισορροίας του με ταχύτητα υ αυτή δηλώνει ταυτόχρονα και την μέγιστη ταχύτητα ταλαντώσεως. 5. Η φορά λαμβάνεται υόψη άντα στο σχήμα και καθορίζεται σαν θετική η φορά εκείνη ρος το άκρο της οοίας κατευθύνεται το σώμα για ρώτη φορά εκτός αν αναφέρεται αό την εκφώνηση κάτι άλλο.. Εάν το σώμα ξεκινά αό ακραία θέση αυτή καθορίζεται άντα η θέση, του +Α εκτός αν το ρόβλημα καθορίζει διαφορετική και η αρχική του φάση είναι / δηλαδή x =. ημ ( + ) 7. Εάν το σώμα ξεκινά αό τη θέση ισορροίας κινούμενο ρος την αρνητική κατεύθυνση τότε έχει αρχική φάση δηλαδή x =. ημ ( + ) 8. Κάθε μετατόιση μεταξύ του Α και της θέσης ισορροίας (Θ ΙΣ) ορίζεται σαν αρνητική όως και κάθε ταχύτητα αντίθετη της θετικής φοράς δηλαδή στην εξίσωση της αομάκρυνσης τοοθετούμε την αομάκρυνση x με αρνητικό ρόσημο x =. ημ ( + ϕ ) 9. Κάθε φορά ου το σώμα ερνά αό τη θέση ισορροίας κινούμενο ρος το θετικό άκρο +Α αλλάζει η σταθερά κ στις τριγωνομετρικές σχέσεις ημίτονου, συνημίτονου και εφατομένης διότι το σώμα αρχίζει τότε να κινείται σε μια νέα τροχιά (νέος κύκλος) ανεξάρτητα αό την θέση ου ξεκίνησε την ταλάντωσή του έτσι για αράδειγμα εάν το σώμα αρχίζει την ταλάντωσή του αό την θέση x=-α/ τότε στην σχέση της αομάκρυνσης θα είναι κ= αό τη θέση x= Α/ μέχρι την θέση x= και κ=1 αό την θέση x= και μετά. 1. Για να υολογίσετε το χρόνο ου ααιτείται για τη μετακίνηση ενός σώματος αό τη θέση x 1 στη θέση x αρκεί να τοοθετήσω τις τιμές αυτές στην εξίσωση της αομάκρυνσης και να ροσέξω να - - υ< υ< υ> υ> υ< υ< - t= υ> υ> Θετική φορά t= Θετική φορά t= κ= κ=1 Θετική φορά

8 αορρίψω τις σωστές τιμές των χρόνων με βάση τη φορά κίνησης του σώματος και το τεταρτημόριο στο οοίο βρίσκεται το σώμα τις αντίστοιχες χρονικές στιγμές. Προσέξτε το αρακάτω λυμένο αράδειγμα για τη κατανόηση της αρατήρησης. ΠΡΟΣΟΧΗ: Στο τέταρτο τεταρτημόριο η γωνία δεν γράφεται οτέ με αρνητικό ρόσημο (.χ. -/4 rad). Πάντα την γράφουμε σαν γωνία ολόκληρου κύκλου δηλαδή -/4=7/4 rad.

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία Παραδείγματα Ασκήσεις...

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία Παραδείγματα Ασκήσεις... ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία... 16 Παραδείγματα... 6 Ασκήσεις... 33 ΕΝΟΤΗΤΑ : ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ... 39 Θεωρία... 39 Ερωτήσεις...

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ ΘΕΩΡΙΑ Να διαβάσετε τις σελίδες 8-1 του σχολικού βιβλίου. Να ροσέξετε ιδιαίτερα τα σχήµατα 1.1, 1.3 και 1.4 καθώς και τους ορισµούς της αρχικής φάσης και της φάσης της ταλάντωσης.

Διαβάστε περισσότερα

σώμα από τη θέση ισορροπίας του με οριζόντια ταχύτητα μέτρου 4 m/s και με φορά προς τα δεξιά.

σώμα από τη θέση ισορροπίας του με οριζόντια ταχύτητα μέτρου 4 m/s και με φορά προς τα δεξιά. ΕΙΣΑΓΩΓΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕ ΕΛΑΤΗΡΙΑ. Ένα σώμα μάζας m = kg βρίσκεται άνω σε λείο δάεδο και είναι δεμένο στο ένα άκρο οριζόντιου ελατηρίου σταθεράς k = N/m, το άλλο άκρο του οοίου είναι στερεωμένο σε κατακόρυφο

Διαβάστε περισσότερα

Α=5 m ω=314 rad/sec=100π rad/sec

Α=5 m ω=314 rad/sec=100π rad/sec ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΠΡΩΤΟΥ ΚΕΦΑΛΑΙΟΥ 1. Ασκήσεις με τα χαρακτηριστικά της κίνησης. Μικρές ασκήσεις ου αναφέρονται στους ορισμούς της εριόδου, της συχνότητας, του λάτους και της ενέργειας της ταλάντωσης.

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2015

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2015 ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΣΕΠΤΕΜΒΡΙΟΥ 0 ΟΝΟΜΑΤΕΠΩΝΥΜΟ. ΘΕΜΑ Α Στις αρακάτω ροτάσεις να ειλέξετε την σωστή αάντηση A. Σε μια αλή αρμονική ταλάντωση η αομάκρυνση και η ειτάχυνση την ίδια χρονική

Διαβάστε περισσότερα

1. Ένα σώμα εκτελεί ταυτόχρονα δύο απλές αρμονικές ταλαντώσεις ίδιας διεύθυνσης και ίδιας συχνότητας,

1. Ένα σώμα εκτελεί ταυτόχρονα δύο απλές αρμονικές ταλαντώσεις ίδιας διεύθυνσης και ίδιας συχνότητας, ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ ΜΕ ΤΗΝ ΙΔΙΑ ΚΥΚΛΙΚΗ ΣΥΧΝΟΤΗΤΑ. Ένα σώμα εκτελεί ταυτόχρονα δύο αλές αρμονικές ταλαντώσεις ίδιας διεύθυνσης και ίδιας συχνότητας, οι οοίες εξελίσσονται γύρω αό την ίδια θέση ισορροίας.

Διαβάστε περισσότερα

Φσζική Γ Λσκείοσ. Θεηικής & Τετμολογικής Καηεύθσμζης. Μηταμικές Ταλαμηώζεις Οι απαμηήζεις. Καλοκαίρι Διδάζκωμ: Καραδημηηρίοσ Μιτάλης

Φσζική Γ Λσκείοσ. Θεηικής & Τετμολογικής Καηεύθσμζης. Μηταμικές Ταλαμηώζεις Οι απαμηήζεις. Καλοκαίρι Διδάζκωμ: Καραδημηηρίοσ Μιτάλης Φσζική Γ Λσκείοσ Θεηικής & Τετμολογικής Καηεύθσμζης Μηταμικές Ταλαμηώζεις Οι ααμηήζεις Καλοκαίρι - Διδάζκωμ: Καραδημηηρίοσ Μιτάλης http://perifysikhs.wordpress.com Πηγή: Study4exams.gr Οι Ααμτήσεις στις

Διαβάστε περισσότερα

Φίλε μαθητή, Το βιβλίο αυτό, ου κρατάς στα χέρια σου ροέκυψε τελικά μέσα αό την εμειρία και διδακτική διαδικασία ολλών χρόνων στον Εκαιδευτικό Όμιλο Άλφα. Είναι το αοτέλεσμα συγγραφής ολλών καθηγητών μας

Διαβάστε περισσότερα

Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις

Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις 6 Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις 1. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Περιοδική συνάρτηση Μια συνάρτηση f με εδίο ορισμού Α λέγεται εριοδική, όταν υάρχει T τέτοιος ώστε για κάθε x A να

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΠΥΚΝΩΤΗΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Πυκνωτή ονομάζουμε ένα σύστημα δυο αγωγών οι οοίοι βρίσκονται σε μικρή αόσταση μεταξύ τους και φέρουν ίσα και αντίθετα ηλεκτρικά φορτία. Χαρακτηριστικό μέγεθος των υκνωτών

Διαβάστε περισσότερα

ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ

ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Περιοδικό ΕΥΚΛΕΙΔΗΣ Β E.M.E. (τεύχος 4) ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Κώστα Βακαλόουλου ΕΙΣΑΓΩΓΗ Αν κάοιος θέλει να άψει να φοβάται το κεφάλαιο της Τριγωνομετρίας, ρέει ν αοφασίσει να διαβάσει ροσεκτικά τους

Διαβάστε περισσότερα

Tριγωνομετρικές εξισώσεις

Tριγωνομετρικές εξισώσεις Tριγωνομετρικές εξισώσεις Εχουμε μάθει να λύνουμε εξισώσεις ρώτου βαθμού και δευτέρου βαθμού ου είναι ισότητες ου εριέχουν έναν άγνωστο και ροσαθούμε να βρούμε για οιά (ή οιές) τιμές αυτού του αγνώστου

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ

ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ 1. Τι ονομάζουμε εριοδική συνάρτηση Μια συνάρτηση ƒ με εδίο ορισμού το Α λέγεται εριοδική όταν υάρχει ραγματικός αριθμός Τ, Τ > 0 τέτοιος ώστε για κάθε χ Α να ισχύει α) χ+τ Α, χ -

Διαβάστε περισσότερα

Ένα σώμα εκτελεί ταυτόχρονα τρεις (3) απλές αρμονικές ταλαντώσεις, που έχουν ίδια διεύθυνση, ίδια θέση ισορροπίας και εξισώσεις:

Ένα σώμα εκτελεί ταυτόχρονα τρεις (3) απλές αρμονικές ταλαντώσεις, που έχουν ίδια διεύθυνση, ίδια θέση ισορροπίας και εξισώσεις: Εφαρμογή: ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ Ένα σώμα εκτελεί ταυτόχρονα τρεις () αλές αρμονικές ταλαντώσεις, ου έχουν ίδια διεύθυνση, ίδια θέση ισορροίας και εξισώσεις: x1 ( t) = 0.1 ηµ 99 t (S.I.) ( ) ηµ ( ) x t =

Διαβάστε περισσότερα

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης 1o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ 1 (β) (γ) 3 (δ) 4 (α) 5 α (Σ), β (Λ), γ (Λ), δ (Λ), ε (Λ) ΘΕΜΑ 1ο ΘΕΜΑ ο 1 (α, στ) Το έργο W της

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 Η ηµιτονοειδής συνάρτηση

ΚΕΦΑΛΑΙΟ 9 Η ηµιτονοειδής συνάρτηση 8 ΚΕΦΑΛΑΙΟ 9 Η ηµιτονοειδής συνάρτηση 9. Γενικά για την ηµιτονοειδή συνάρτηση Η συνάρτηση αυτή χρησιµοοιείται ολύ στην Ηλεκτρολογία αλλά και σε άλλες Τεχνικές Ειστήµες. Οι λόγοι είναι οι ακόλουθοι: α Με

Διαβάστε περισσότερα

Ταλαντώσεις ερωτήσεις κρίσεως

Ταλαντώσεις ερωτήσεις κρίσεως Ταλαντώσεις (Γενικές ερωτήσεις κρίσεως) 1. Σώµα εκτελεί γ.α.τ. Τη στιγµή t = 0 είναι x = 0 και υ > 0. Στη διάρκεια µιας εριόδου (Τ) η ταχύτητα του σώµατος αλλάζει φορά: α) δύο φορές, β) τρεις φορές, γ)

Διαβάστε περισσότερα

Ερωτήσεις κρίσεως στις µηχανικές ταλαντώσεις

Ερωτήσεις κρίσεως στις µηχανικές ταλαντώσεις Κεφάλαιο 7 ο Ερωτήεις κρίσεως, για καλύτερη κατανόηση της θεωρίας 1 Ερωτήσεις κρίσεως στις µηχανικές ταλαντώσεις Αό τις ακόλουθες ερωτήσεις να σηµειώσετε το γράµµα ου αντιστοιχεί στη σωστή αάντηση. 1.

Διαβάστε περισσότερα

4. η εξίσωση της δύναμης του ελατηρίου σε συνάρτηση με το χρόνο και να γίνει η αντίστοιχη γραφική παράσταση F

4. η εξίσωση της δύναμης του ελατηρίου σε συνάρτηση με το χρόνο και να γίνει η αντίστοιχη γραφική παράσταση F ΠΡΟΒΛΗΜΑ Σώμα μάζας m kg είναι στερεωμένο στο άνω άκρο κατακόρυφου ατηρίου σταθεράς k N, το άλλο άκρο του οοίου είναι m στερεωμένο στο δάεδο, όως φαίνεται στο σχμα. Αρχικά το σώμα ισορροεί. Αομακρύνουμε

Διαβάστε περισσότερα

Ασκήσεις σε τρέχοντα µηχανικά κύµατα

Ασκήσεις σε τρέχοντα µηχανικά κύµατα Ασκήσεις σε τρέχοντα µηχανικά κύµατα 1. Η ηγή διαταραχής Π αρχίζει τη χρονική στιγµή µηδέν να εκτελεί α.α.τ. λάτους Α=1 cm και συχνότητας f=, Hz. Το κύµα ου δηµιουργεί διαδίδεται κατά µήκος γραµµικού οµογενούς

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ Πρόσημο τριγωνομετρικών αριθμών Το ρόσημο των τριγωνομετρικών αριθμών μιας γωνίας (ή τόξου) καθ αό το τεταρτημόριο στο οοίο βρίσκεται

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΑ 5 ΚΑΙ 1 (ΚΡΟΥΣΕΙΣ - ΤΑΛΑΝΤΩΣΕΙΣ) ΚΥΡΙΑΚΗ 15 ΝΟΕΜΒΡΙΟΥ 2015

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΑ 5 ΚΑΙ 1 (ΚΡΟΥΣΕΙΣ - ΤΑΛΑΝΤΩΣΕΙΣ) ΚΥΡΙΑΚΗ 15 ΝΟΕΜΒΡΙΟΥ 2015 ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΑ 5 ΚΑΙ (ΚΡΟΥΣΕΙΣ - ΤΑΛΑΝΤΩΣΕΙΣ) ΚΥΡΙΑΚΗ 5 ΝΟΕΜΒΡΙΟΥ 05 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α β Α δ Α α Α4 δ Α5. α Σωστό β Λάθος γ Λάθος δ Λάθος ε Λάθος ΘΕΜΑ Β Β. Σωστό

Διαβάστε περισσότερα

3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ 1. Ορισµός Έστω µία συνάρτηση f µε εδίο ορισµού Α και A Θα λέµε ότι η f είναι εριοδική όταν υάρχει ραγµατικός αριθµός Τ > 0 έτσι ώστε για κάθε Α να ισχύει : i)

Διαβάστε περισσότερα

σκήσεις στις Μηχανικές Ταλαντώσεις

σκήσεις στις Μηχανικές Ταλαντώσεις σκήσεις στις Μηχανικές Ταλαντώσεις 1. Ένα σώμα εκτελεί αλή αρμονική ταλάντωση. Να υολογίσετε την αρχική φάση της ταλάντωσης αν α. Για t 0 = 0, το σώμα βρίσκεται στην θέση x = + A. β. Για t 0 = 0, το σώμα

Διαβάστε περισσότερα

ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. εφχ = εφθ χ = κ + θ χ = κ π + θ ( τύποι λύσεων σε ακτίνια )

ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. εφχ = εφθ χ = κ + θ χ = κ π + θ ( τύποι λύσεων σε ακτίνια ) ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ηµχ = ηµθ χ = 0 0 κ + θ ή χ = 0 0 κ + 80 0 - θ ( τύοι λύσεων σε µοίρες ) χ = κ + θ ή χ = κ + - θ ( τύοι λύσεων σε ακτίνια ) κ ακέραιος συνχ = συνθ χ = 0 0 κ ± θ ( τύοι λύσεων

Διαβάστε περισσότερα

Αναγωγή στο 1ο τεταρτημόριο

Αναγωγή στο 1ο τεταρτημόριο ΑΛΓΕΒΡΑ ΒΛ ΤΡΙΓΩΝΟΜΕΤΡΙΑ - ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 1-1. -175663 Βασικές Τριγωνομετρικές ταυτότητες Αν 0

Διαβάστε περισσότερα

Τα σώματα του σχήματος έχουν μάζες m = 1 kg και Μ = 2 kg και συνδέονται με νήμα.

Τα σώματα του σχήματος έχουν μάζες m = 1 kg και Μ = 2 kg και συνδέονται με νήμα. Ταλάντωση μετά αό κόψιμο του νήματος. Σώματα δεμένα με νήμα σε κατακόρυο ελατήριο. Τα σώματα του σχήματος έχουν μάζες = g και Μ = g και συνδέονται με νήμα. Το σώμα μάζας αέχει αό το δάεδο αόσταση H = 7

Διαβάστε περισσότερα

1. Τριγωνομετρικοί αριθμοί οξείας γωνίας

1. Τριγωνομετρικοί αριθμοί οξείας γωνίας v.5 «Αυτό το ρόβλημα, τούτ η μεγάλη συμφορά για να λυθεί χρειάζεται, δίχως αμφιβολία, όως κοιτάζω α τη δική σου την λευρά, να δεις κι εσύ α τη δική μου τη γωνία».. Τριγωνομετρικοί αριθμοί οξείας γωνίας

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ

ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ Ταλάντωση με την βοήθεια σταθερής ς.. Σε σώμα μάζας = kg ηρεμεί σε λείο οριζόντιο είεδο δεμένο στο ένα άκρο οριζοντίου ελατηρίου σταθερά k = N/, όως στο σχήμα. Ασκούμε σταθερή μέτρου = N έτσι ώστε το ελατήριο

Διαβάστε περισσότερα

Δύο κύματα στο ίδιο γραμμικό ελαστικό μέσον.

Δύο κύματα στο ίδιο γραμμικό ελαστικό μέσον. Δύο κύματα στο ίδιο γραμμικό ελαστικό μέσον. Σε δύο σημεία Ο 1 και Ο, τα οοία αέχουν αόσταση (Ο 1 Ο )=d=4m, ενός άειρου γραμμικού ελαστικού μέσου, υάρχουν δυο ηγές κύματος, οι οοίες αρχίζουν να ταλαντώνονται

Διαβάστε περισσότερα

Θέµα 1 ο Ι Α Γ Ω Ν Ι Σ Μ Α ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ *** ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Στις ερωτήσεις 1-5 να επιλέξετε την σωστή απάντηση :

Θέµα 1 ο Ι Α Γ Ω Ν Ι Σ Μ Α ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ *** ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Στις ερωτήσεις 1-5 να επιλέξετε την σωστή απάντηση : Ι Α Γ Ω Ν Ι Σ Μ Α ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ *** ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµα ο Στις ερωτήσεις - 5 να ειλέξετε την σωστή αάντηση :. Η ερίοδος µιας γραµµικής αρµονικής ταλάντωσης α. εξαρτάται άντα αό τη

Διαβάστε περισσότερα

Απλη αρμονική ταλάντωση - δύναμη μεταβλητού μέτρου - πλαστική κρούση - αλλαγή της σταθεράς επαναφοράς.

Απλη αρμονική ταλάντωση - δύναμη μεταβλητού μέτρου - πλαστική κρούση - αλλαγή της σταθεράς επαναφοράς. Αλη αρμονική ταλάντωση - δύναμη μεταβλητού μέτρο - λαστική κρούση - αλλαγή της σταθεράς εαναφοράς. Σώμα Σ μάζας = g είναι δεμένο στο δεξιό άκρο οριζόντιο ιδανικού ελατηρίο σταθεράς = 5N / το οοίο το άλλο

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΡΟΥΣΕΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΤΡΙΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2016

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΡΟΥΣΕΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΤΡΙΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2016 ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΡΟΥΣΕΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΤΡΙΤΗ ΣΕΠΤΕΜΒΡΙΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α β Α β Α β Α γ Α5. α Λάθος β Σωστό γ Σωστό δ Λάθος ε Λάθος ΘΕΜΑ Β Β. Σωστό το γ Αν υ είναι

Διαβάστε περισσότερα

π 5 = 6 δηλ. μας δίνει την αρχή του κύματος (το σημείο Ο), το μέσο που διαδίδεται ( η έκφραση οµογενές

π 5 = 6 δηλ. μας δίνει την αρχή του κύματος (το σημείο Ο), το μέσο που διαδίδεται ( η έκφραση οµογενές Στην άσκηση για µηχανικό κύµα ο ακοοθεί, γίνεται ανατική εεξεργασία 7 ερωτηµάτων ΑΣΚΗΣΗ Αρµονικό κύµα διαδίδεται κατά µήκος γραµµικού οµογενούς εαστικού µέσο κατά τη διεύθνση το θετικού ηµιάξονα Ox. Η

Διαβάστε περισσότερα

Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις

Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις. Ονομασίες Ορισμοί Ο τριγωνομετρικός κύκλος έχει ακτίνα R. Αρχή μέτρησης των τόξων (γωνιών) είναι το Α, είτε κατά τη θετική φορά (αριστερόστροφα)

Διαβάστε περισσότερα

Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία. Μάκος Σπύρος. Πανούσης Γιώργος. Παπαθανάση Κέλλυ. Ραμαντάνης Βαγγέλης.

Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία. Μάκος Σπύρος. Πανούσης Γιώργος. Παπαθανάση Κέλλυ. Ραμαντάνης Βαγγέλης. Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία Μάκος Σύρος Πανούσης Γιώργος Πααθανάση Κέλλυ Ραμαντάνης Βαγγέλης Σαμάνης Νίκος Τόλης Ευάγγελος -1-01 18808Δίνεται η εξίσωση x y 7 Γραμμικά

Διαβάστε περισσότερα

β. Το πλάτος της σύνθετης ταλάντωσης είναι : Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν φ) (φ = π rad) Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν π) Α = [Α 1 ² + Α 2

β. Το πλάτος της σύνθετης ταλάντωσης είναι : Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν φ) (φ = π rad) Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν π) Α = [Α 1 ² + Α 2 1) Ένα κινητό εκτελεί συγχρόνως δύο απλές αρμονικές ταλαντώσεις που γίνονται στην ίδια διεύθυνση και γύρω από την θέση ισορροπίας με εξισώσεις : x 1 = 3 ημ [(2 π) t] και x 2 = 4 ημ [(2 π) t + φ], (S.I.).

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΚΥΜΑΤΑ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΚΥΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΚΥΜΑΤΑ 010-11 ΘΕΜΑ 1 ο : 1) Κατά τη διάδοση ενός κύματος σ ένα ελαστικό μέσον i) μεταφέρεται ύλη. ii) μεταφέρεται ενέργεια και ύλη. iii) όλα τα σημεία του ελαστικού μέσου έχουν την ίδια

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ η εξεταστική ερίοδος 05-6 - Σελίδα ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ημερομηνία: 7-0-05 Διάρκεια: ώρες Ύλη: Κρούσεις - Ταλαντώσεις Καθηγητής: Ονοματεώνυμο:

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ 1, 23/03/2018 ΘΕΜΑ Α

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ 1, 23/03/2018 ΘΕΜΑ Α Λύσεις των θεμάτων ροσομοίωσης //8 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ //8 ΘΕΜΑ Α Α. Μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα κλειστο διάστημα a β όταν είναι συνεχής σε κάθε σημείο του a β και ειλέον:

Διαβάστε περισσότερα

Γ ΩΝΙΕΣ Π ΟΥ Σ ΥΝΔΕΟΝΤΑΙ Μ ΕΤΑΞΥ Τ ΟΥΣ

Γ ΩΝΙΕΣ Π ΟΥ Σ ΥΝΔΕΟΝΤΑΙ Μ ΕΤΑΞΥ Τ ΟΥΣ Γ ΩΝΙΕΣ Π ΟΥ Σ ΥΝΔΕΟΝΤΑΙ Μ ΕΤΑΞΥ Τ ΟΥΣ Γωνίες με την ίδια τελική λευρά Γωνίες με άθροισμα 180 - Γωνίες με διαφορά 180 - Γωνίες αντίθετες Γωνίες με άθροισμα 90 - Γωνίες με διαφορά 90 Γωνίες με την ίδια

Διαβάστε περισσότερα

ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ -ΑΡΜΟΝΙΚΟ ΚΥΜΑ-ΣΤΑΣΙΜΟ

ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ -ΑΡΜΟΝΙΚΟ ΚΥΜΑ-ΣΤΑΣΙΜΟ ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ -ΑΡΜΟΝΙΚΟ ΚΥΜΑ-ΣΤΑΣΙΜΟ Το σηµείο Ο γραµµικού ελαστικού µέσου το οοίο ταυτίζεται µε τον άξονα χ Οχ, εκτελεί ταυτόχρονα δύο Α.Α.Τ ου γίνονται στην ίδια διεύθυνση, κάθετα στον άξονα χ

Διαβάστε περισσότερα

Μια εναλλακτική θεμελίωση των κυμάτων

Μια εναλλακτική θεμελίωση των κυμάτων Μια εναλλακτική θεμελίωση των κυμάτων Τα κύµατα δεν είναι η συνέχεια των ταλαντώσεων, όως για διδακτικούς λόγους κάνουµε 1. Η διάδοση ενός αλµού. Έστω ότι έχουµε ένα ελαστικό µέσο,.χ. µια τεντωµένη οριζόντια

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ. Διάρκεια εξέτασης: 7.200sec ΟΝΟΜΑΤΕΠΩΝΥΜΟ/ΤΜΗΜΑ:

ΔΙΑΓΩΝΙΣΜΑ. Διάρκεια εξέτασης: 7.200sec ΟΝΟΜΑΤΕΠΩΝΥΜΟ/ΤΜΗΜΑ: ΙΟΥΛΙΟΣ 07 ΔΙΑΓΩΝΙΣΜΑ (εξεταστέα ύλη: κρούσεις, ταλαντώσεις) ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Διάρκεια εξέτασης: 7.00sec ΟΝΟΜΑΤΕΠΩΝΥΜΟ/ΤΜΗΜΑ: ΘΕΜΑ Α Α. Η ερίοδος μιας αλής αρμονικής ταλάντωσης είναι Τ. Στο αρακάτω διάγραμμα

Διαβάστε περισσότερα

κινητού και να βρούµε ποιο από τα δυο προηγείται, πρέπει να ακολουθήσουµε τα εξής βήµατα:

κινητού και να βρούµε ποιο από τα δυο προηγείται, πρέπει να ακολουθήσουµε τα εξής βήµατα: Ποιο µέγεθος ροηγείται ανάµεσα σε δυο µεγέθη ου αρουσιάζουν διαφορά φάσης µεταξύ τους Προκειµένου να καθορίσουµε τη διαφορά φάσης ανάµεσα σε δύο φυσικά µεγέθη ενός κινητού και να βρούµε οιο αό τα δυο ροηγείται,

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΡΟΥΣΕΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΕΜΠΤΗ 10 ΣΕΠΤΕΜΒΡΙΟΥ 2015

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΡΟΥΣΕΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΕΜΠΤΗ 10 ΣΕΠΤΕΜΒΡΙΟΥ 2015 ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΡΟΥΣΕΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΕΜΠΤΗ 0 ΣΕΠΤΕΜΒΡΙΟΥ 05 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α γ Α β Α δ Α4 β Α5. α Λάθος β Σωστό γ Λάθος δ Σωστό ε Λάθος ΘΕΜΑ Β Β. Σωστό το β Αό

Διαβάστε περισσότερα

Ημερομηνία: Πέμπτη 29 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Πέμπτη 29 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 8//06 ΕΩΣ 0/0/06 ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ημερομηνία: Πέμτη 9 Δεκεμβρίου 06 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A. Να αοδείξετε ότι ημ ω συν ω Α. Να δώσετε τον ορισμό της εριοδικής

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ η εξεταστική ερίοδος 05 Σελίδα ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ημερομηνία: 700 Διάρκεια: ώρες Ύλη: Ταλαντώσεις Καθηγητής: Ονοματεώνυμο: ΘΕΜΑ Α Στις ημιτελείς

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» 2 o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» 2 o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Αα. γ. Αβ. α. Αα. β. Αβ. β. Α3α. β. Α3β. α. Α4α. β. Α4β. δ. Α5. α. Σωστό β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ

Διαβάστε περισσότερα

1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος

1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος 1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η αόσταση του σώµατος αό το έδαφος (σε cm), δίνεται αό την συνάρτηση f(t)=1ηµ t +13, όου t ο χρόνος σε ώρες. α) Να βρείτε την ερίοδο της ταλάντωσης.

Διαβάστε περισσότερα

3.4 Οι τριγωνομετρικές συναρτήσεις

3.4 Οι τριγωνομετρικές συναρτήσεις 3.4 Οι τριγωνομετρικές συναρτήσεις Περιοδικές συναρτήσεις Ορισμός Μια συνάρτηση f με εδίο ορισμού το Α λέγεται εριοδική, όταν υάρχει ραγματικός αριθμός Τ>0 τέτοιος ώστε για κάθε Α να ισχύει: ( T)A και

Διαβάστε περισσότερα

α. έχει δυναµική ενέργεια E 2 β. έχει κινητική ενέργεια E 4 γ. έχει κινητική ενέργεια ίση µε τη δυναµική δ. έχει κινητική ενέργεια 3E 4.

α. έχει δυναµική ενέργεια E 2 β. έχει κινητική ενέργεια E 4 γ. έχει κινητική ενέργεια ίση µε τη δυναµική δ. έχει κινητική ενέργεια 3E 4. Φυσική κκαττεεύύθυυννσηηςς ΘΕΜΑ ο Να γράψετε τον αριθµό καθεµιάς αό τις αρακάτω ροτάσεις -5 και δίλα το γράµµα ου αντιστοιχεί στη σωστή αάντηση.. Kατά τη διάρκεια µιας εριόδου µιας γραµµικής αρµονικής

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Ο μαθητής ου έχει μελετήσει το κεφάλαιο αυτό θα ρέει: Να γνωρίζει την έννοια της εριοδικής συνάρτησης,και να μορεί να σχεδιάζει τις γραφικές αραστάσεις των συναρτήσεων y= αημ(ωx), y=ασυν(ωx). Να μορεί

Διαβάστε περισσότερα

Απόδειξη Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f (x) 0.

Απόδειξη Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f (x) 0. Αόδειξη Αοδεικνύουμε το θεώρημα στην ερίτωση ου είναι f () 0. Έστω, με. Θα δείξουμε ότι f( ) f( ). 1 1 1 Πράγματι, στο διάστημα [, ] η f ικανοοιεί τις ροϋοθέσεις του Θ.Μ.Τ. δηλαδή 1 είναι συνεχής στο 1,.

Διαβάστε περισσότερα

3.1 Τριγωνομετρικοί αριθμοί γωνίας

3.1 Τριγωνομετρικοί αριθμοί γωνίας . Τριγωνομετρικοί αριθμοί γωνίας Τριγωνομετρικοί αριθμοί οξείας γωνίας αέναντι κάθετη λευρά ημβ υοτείνουσα ημγ ΑB ροσκε ίμενη κάθετη λευρά συνβ υοτείνουσα συνγ αέναντι κάθετη λευρά εφβ ροσκε ίμενη κάθετη

Διαβάστε περισσότερα

Πώς ; ΣΤ)""Τριγωνομετρία. Ι. Πίνακας βασικών τριγωνοµετρικών γωνιών. π 4 rad 60 ο ή. π 6 rad 45 ο ή εν ορ-ζεται. ΙΙ. Τύποι της Τριγωνοµετρίας.

Πώς ; ΣΤ)Τριγωνομετρία. Ι. Πίνακας βασικών τριγωνοµετρικών γωνιών. π 4 rad 60 ο ή. π 6 rad 45 ο ή εν ορ-ζεται. ΙΙ. Τύποι της Τριγωνοµετρίας. ΣΤ)""Τριγωνομετρία. Ι. Πίνακας βασικών τριγωνοµετρικών γωνιών. Γωνία Τριγωνοµετρικός αριθµός o ή rad o ή 6 rad 45 ο ή 4 rad 6 ο ή rad 9 ο ή rad ημ (ημίτονο) συν (συνημίτονο) εφ (εφατομένη) +εν ορ-ζεται

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΟΛΩΝ ΤΩΝ ΘΕΜΑΤΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΘΕΜΑΤΑ 16968, 1765, 17656, 17663, 17664, 17681, 1769, 17699, 17704, 1775, 17736, 17739, 17741 ΘΕΜΑΤΑ 4 17837, 17838,

Διαβάστε περισσότερα

Τετάρτη 10 Δεκεμβρίου 2014 ΔΗΜΟΣΙΕΥΣΗ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Β B1.

Τετάρτη 10 Δεκεμβρίου 2014 ΔΗΜΟΣΙΕΥΣΗ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Β B1. ΘΕΜΑ B. Τετάρτη 0 εκεμβρίου 04 ΗΜΟΣΙΕΥΣΗ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ (Α) () Α ΘΙΤ Α Τα δύο σώματα Α και, του διλανού σήματος, είναι τοοθετημένα το ένα άνω στο άλλο και εκτελούν αλή αρμονική ταλάντωση κυκλικής

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» 2 o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» 2 o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ 7: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Αα. γ. Αβ. α. Αα. β. Αβ. β. Α3α. β. Α3β. α. Α4α. β. Α4β. δ. Α5.

Διαβάστε περισσότερα

F = y n cos xˆx + sin xŷ. W OABO = F d r. ds + sin(x)dy ds. dy ds = 1 π. ) n 1 cos(s) + sin(s)ds. dy ds = 0. ds = 1 &

F = y n cos xˆx + sin xŷ. W OABO = F d r. ds + sin(x)dy ds. dy ds = 1 π. ) n 1 cos(s) + sin(s)ds. dy ds = 0. ds = 1 & Μηχανική Ι Εργασία #4 Μουζλάνοβ Γεώργιος Αριθμός Μητρώου:478 3 Οκτωβρίου 6 Άσκηση Αό τα δεδομένα της άσκησης έχουμε τα εξής: F = y n cos ˆ + sin ŷ Το έργο στην κλειστή διαδρομή O A B O είναι το κλειστό

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 3ο Κεφάλαιο - Τριγωνομετρία - Βασικές τριγωνομετρικές ταυτότητες. , να βρεθούν

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 3ο Κεφάλαιο - Τριγωνομετρία - Βασικές τριγωνομετρικές ταυτότητες. , να βρεθούν ΠΑΝΤΕΛΗΣ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ B Λυκείου Κ Ε Φ Α Λ Α Ι Ο 3ο - Φ Υ Λ Λ Ο Νο ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ ΑΣΚΗΣΕΙΣ. Αν 3 και < x < 3, να βρεθούν οι ΠΡΟΣΟΧΗ : Βασικές Τριγωνομετρικές Ταυτότητες

Διαβάστε περισσότερα

Μια φθίνουσα ταλάντωση, στην οποία η μείωση του πλάτους δεν είναι εκθετική.

Μια φθίνουσα ταλάντωση, στην οποία η μείωση του πλάτους δεν είναι εκθετική. Μια φθίνουσα ταλάντωση, στην οοία η μείωση του λάτους δεν είναι εκθετική. Το ένα άκρο οριζόντιου ελατηρίου σταθεράς =100N/, το οοίο έχει το φυσικό του μήκος, είναι ακλόνητα στερεωμένο σε ακλόνητο σημείο.

Διαβάστε περισσότερα

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανελλαδικών εξετάσεων στη Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης - ο 1

Διαβάστε περισσότερα

Ελευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου

Ελευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου Ελευθέριος Πρωτοαάς Εκφωνήσεις και λύσεις των ασκήσεων της Τράεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου Δεκέμβριος 04 Περιεχόµενα o Θέμα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα 6950 8 6954 9

Διαβάστε περισσότερα

Φυσική Γ Θετ. και Τεχν/κης Κατ/σης

Φυσική Γ Θετ. και Τεχν/κης Κατ/σης Φυσική Γ Θετ. και Τεχν/κης Κατ/σης 07-08 Φυσική Γ Θετ. και Τεχν/κης Κατ/σης 07-08 ΣΥΝΘΕΣΗ Α ΤΥΠΟΥ Ασκήσεις - Ερωτήσεις σχολικού: 5,, 4, 5, 45. ΣΥΝΘΕΣΗ Β ΤΥΠΟΥ Ασκήσεις - Ερωτήσεις σχολικού: 6, 6, Σύνθεση

Διαβάστε περισσότερα

(Μονάδες 15) (Μονάδες 12)

(Μονάδες 15) (Μονάδες 12) ΑΛΓΕΒΡΑ Β Λυκε ί ου τ ράε ζ αθε μάτ ων( 1ηέ κδοση) θέ μαδε ύτ ε ροκαιτ έ τ αρτ ο Κόμβ οςατ σι οούλου01415 δης Ει μέ λε ι α:εμμανουήλκ.σκαλί Αντ ώνηςκ.αοστ όλου Άσκηση 1 α) Να κατασκευάσετε ένα γραμμικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ ΟΡΙΑ - ΣΥΝΕΧΕΙΑ 1 Να υολογίσετε τα όρια: 9 i) ii) ( ) 9 iii) 1 1 1 iv) 7 10 5 15 t t t 1 v) vi) t (t )(t ) 1 1 9 i) (ημ συν) ) 1 7 συν vii) 1 ημ viii) 1 5 i) ii) ημ 6 1 009, άν

Διαβάστε περισσότερα

ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ. 1.53 Α. Υλικό σηµείο 1 εκτελεί Α.Α.Τ. Τη χρονική στιγµή t = 0 το υλικό σηµείο

ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ. 1.53 Α. Υλικό σηµείο 1 εκτελεί Α.Α.Τ. Τη χρονική στιγµή t = 0 το υλικό σηµείο ΣΥΝΘΕΣΗ ΛΝΩΣΕΩΝ.5. Υλικό σηµείο εκτελεί... η χρονική στιγµή t = 0 το υλικό σηµείο βρίσκεται στη θέση µε αοµάκρυνση x = +, ενώ ο ρυθµός µεταβο- λής της κινητικής του ενέργειας τη στιγµή αυτή είναι θετικός.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΤΑΛΑΝΤΩΣΕΩΝ

ΑΣΚΗΣΕΙΣ ΤΑΛΑΝΤΩΣΕΩΝ ΑΣΚΗΣΕΙΣ ΤΑΛΑΝΤΩΣΕΩΝ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ. Ένα σώμα μάζας = kg εκτελεί αλή αρμονική ταλάντωση σε οριζόντια διεύθυνση. Στη θέση με αομάκρυνση x = + το μέτρο της ταχύτητας του είναι u = 4 /, ενώ στη θέση

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΟΡΙΑ. ,δηλαδή ορίζεται τουλάχιστον σ ένα από τα σύνολα (α, x. lim. lim g(x) , λ σταθερά lim g(x) (ισχύει και για περισσότερες από 2

ΒΑΣΙΚΑ ΟΡΙΑ. ,δηλαδή ορίζεται τουλάχιστον σ ένα από τα σύνολα (α, x. lim. lim g(x) , λ σταθερά lim g(x) (ισχύει και για περισσότερες από 2 ΒΑΣΙΚΑ ΟΡΙΑ Έστω μια συνάρτηση f η οοία ορίζεται όσο κοντά θέλουμε στο,δηλαδή ορίζεται τουλάχιστον σ ένα αό τα σύνολα (α, ) (,β) ή (α, ) ή (,β). Όταν οι τιμές της f()ροσεγγίζουν όσο θέλουμε τον ραγματικό

Διαβάστε περισσότερα

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Προτεινόμενα θέματα Πανελλαδικών εξετάσεων στη Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης - ο ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας αό τις αρακάτω ερωτήσεις 1-4 και δίλα το γράμμα ου

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΡΟΥΣΕΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΡΙΑΚΗ 20 ΝΟΕΜΒΡΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΡΟΥΣΕΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΡΙΑΚΗ 20 ΝΟΕΜΒΡΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΡΟΥΣΕΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΡΙΑΚΗ 0 ΝΟΕΜΒΡΙΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α β Α δ Α α Α4 β Α5. α Σωστό β Σωστό γ Λάθος δ Σωστό ε Σωστό ΘΕΜΑ Β Β. Σωστό το α Αν υ

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ. Μάθημα: ΦΥΣΙΚΗ

ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ. Μάθημα: ΦΥΣΙΚΗ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ Μάθημα: ΦΥΣΙΚΗ Ημερομηνία και ώρα εξέτασης: 6

Διαβάστε περισσότερα

Ράβδος σε σκαλοπάτι. = Fημθ και Fy

Ράβδος σε σκαλοπάτι. = Fημθ και Fy Ράβδος σε σκαλοάτι Ράβδος μήκους ύψους ακουμά σε σκαλοάτι όως φαίνεται στο σχήμα. Το κάτω άκρο της είναι σε εαφή με λείο κατακόρυφο εμόδιο το οοίο μορεί να κρατείται σταερό σε οοιαδήοτε έση. Μεταξύ ράβδου

Διαβάστε περισσότερα

Τριγωνομετρικοί αριθμοί οξείας γωνίας. Τριγωνομετρικοί αριθμοί γωνίας. Τριγωνομετρικοί αριθμοί οποιασδήποτε γωνίας. . Τότε ορίζουμε: ί ά ά.

Τριγωνομετρικοί αριθμοί οξείας γωνίας. Τριγωνομετρικοί αριθμοί γωνίας. Τριγωνομετρικοί αριθμοί οποιασδήποτε γωνίας. . Τότε ορίζουμε: ί ά ά. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ Τριγωνομετρικοί αριθμοί οξείας γωνίας Αό το Γυμνάσιο ξέρουμε ότι σε κάθε ορθογώνιο τρίγωνο ΑΒΓ ισχύει: ημβ = = έάά ί Γ συνβ = = ίάά ί β α εφβ = = έάά ίάά Τριγωνομετρικοί

Διαβάστε περισσότερα

Μηχανικές Ταλαντώσεις

Μηχανικές Ταλαντώσεις Μηχανικές Ταλαντώσεις . Περιοδικά φαινόµενα - Γραµµική αρµονική ταλάντωση Περιοδικά ονοµάζονται τα φαινόµενα ου εαναλαµβάνονται µε τον ίδιο τρόο σε ίσα χρονικά διαστήµατα. Π.χ. οµαλή κυκλική κίνηση, χτύοι

Διαβάστε περισσότερα

ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΤΡΕΧΟΝΤΑ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ

ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΤΡΕΧΟΝΤΑ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ: ΚΥΜΑΤΑ ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΤΡΕΧΟΝΤΑ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ. Αν γνωρίζουμε την εξίσωση της αομάκρυνσης ενός αρμονικού κύματος μορούμε να βρούμε την εξίσωσης της ταχύτητας

Διαβάστε περισσότερα

Γ ΚΥΚΛΟΣ ΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ

Γ ΚΥΚΛΟΣ ΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ Προτεινόµενα Θέµατα Γ Λυκείου Νοέµβριος 00 Φυσική κατεύθυνσης ΘΕΜΑ Α Στις ροτάσεις αό -4 να βρείτε την σωστή αάντηση.. Μία αό τις αρακάτω σχέσεις εριγράφει την συχνότητα της αµείωτης ηλεκτρικής ταλάντωσης

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ

ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ Ταλάντωση με την βοήθεια σταθερής δύναμης. 1. Σε σώμα μάζας m = kg ου ηρεμεί σε λείο οριζόντιο είεδο δεμένο στο ένα άκρο οριζόντιου ελατηρίου σταθερά k = N/m, όως στο σχήμα ασκούμε σταθερή δύναμη μέτρου

Διαβάστε περισσότερα

Τριγωνοµετρικές εξισώσεις - Εσωτερικό γινόµενο διανυσµάτων

Τριγωνοµετρικές εξισώσεις - Εσωτερικό γινόµενο διανυσµάτων 1 Τριγωνοµετρικές εξισώσεις - Εσωτερικό γινόµενο διανυσµάτων ρ. Παναγιώτης Λ. Θεοδωρόουλος ρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr ΠΡΟΛΟΓΟΣ Στην εργασία αυτή εισηµαίνονται και αναλύονται

Διαβάστε περισσότερα

ΜΔΕ Άσκηση 6 Α. Τόγκας

ΜΔΕ Άσκηση 6 Α. Τόγκας Πρόβλημα 15. Για κάθε μια αό τις ακόλουθες αρχικές τιμές θερμοκρασίας i) να βρεθεί η λύση στην μορφή μια σειράς Fourier της εξίσωσης της θερμότητας με εριοδικές συνοριακές συνθήκες u t = u x x < x

Διαβάστε περισσότερα

1.1 Τριγωνομετρικές Συναρτήσεις

1.1 Τριγωνομετρικές Συναρτήσεις 11 Τριγωνομετρικές Συναρτήσεις Ποια συνάρτηση ονομάζουμε εριοδική; ΑΠΑΝΤΗΣΗ Μια συνάρτηση f με εδίο ορισμού το σύνολο Α λέγεται εριοδική, όταν υάρχει ραγματικός αριθμός Τ > 0 τέτοιος, ώστε για κάθε x A

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 ου ΚΕΦΑΛΑΙΟΥ (Γ ΟΜΑ ΑΣ) Ασκήσεις σχολικού βιβλίου σελίδας

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 ου ΚΕΦΑΛΑΙΟΥ (Γ ΟΜΑ ΑΣ) Ασκήσεις σχολικού βιβλίου σελίδας 1 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ου ΚΕΦΑΛΑΙΟΥ (Γ ΟΜΑ ΑΣ) Ασκήσεις σχολικού βιβλίου σελίδας 1 1 1. Σε τρίγωνο ΑΒΓ το ύψος του Α είναι ίσο µε το µισό της λευράς ΒΓ. να αοδείξετε ότι ισχύει εφβ + εφγ εφβ εφγ και σφβ +

Διαβάστε περισσότερα

0e, όπου Λ θετική σταθερά και Α0 το αρχικό

0e, όπου Λ θετική σταθερά και Α0 το αρχικό ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 06-07 ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΠΡΟΣ. Γ ΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: /0/06 ΕΞΕΤΑΣΤΕΑ ΥΗ: ΚΡΟΥΣΕΙΣ-Α.Α.Τ.-ΦΘΙΝΟΥΣΕΣ-ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ-ΣΥΝΘΕΣΗ Α ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

γραπτή εξέταση στη ΦΥΣΙΚΗ Γ' κατεύθυνσης

γραπτή εξέταση στη ΦΥΣΙΚΗ Γ' κατεύθυνσης γρατή εξέταση στη ΦΥΣΙΗ Γ' κατεύθυνσης Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ημερομηνία: /04/0 Ύλη: Ονοματεώνυμο: αθηγητές: Όλη η ύλη Αθανασιάδης Φοίβος, Ατρείδης Γιώργος, όζυβα Χρύσα Θ Ε Μ Α ο Στις αρακάτω ερωτήσεις

Διαβάστε περισσότερα

1.2 Βασικές Τριγωνομετρικές Εξισώσεις

1.2 Βασικές Τριγωνομετρικές Εξισώσεις 1. Βασικές Τριγωνομετρικές Εξισώσεις 1 η Μορφ Ασκσεων: Μας ζητούν να λύσουμε μια εξίσωση της μορφς: = α, α 0 = α, α 0 εφx = α, α 0 σφx = α, α 0 1. Να λυθούν οι εξ ισώσεις: i. ημ x =, ii. ημ x= 0, iii.

Διαβάστε περισσότερα

5 Ταλαντώσεις. Ταλαντώσεις - κυμάνσεις. Ταλάντωση ορισμός Σύστημα μάζας ελατηρίου Απλό εκκρεμές Φυσικό εκκρεμές Βηματισμός

5 Ταλαντώσεις. Ταλαντώσεις - κυμάνσεις. Ταλάντωση ορισμός Σύστημα μάζας ελατηρίου Απλό εκκρεμές Φυσικό εκκρεμές Βηματισμός 5 Ταλαντώσεις Ταλάντωση ορισμός Σύστημα μάζας ελατηρίου Αλό εκκρεμές Φυσικό εκκρεμές Βηματισμός Μαρία Κατσικίνη aii@auh.gr uer.auh.gr/aii Ταλαντώσεις - κυμάνσεις Ταλάντωση είναι μια εριοδική κίνηση, δηλαδή

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (26/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (26/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρας Β τάξης Γενικού Λυκείου o Θέμα Εκφωνήσεις Λύσεις των θεμάτων Έκδοση 1 η (6/11/014) Οι ααντήσεις και οι λύσεις είναι αοτέλεσμα συλλογικής δουλειάς των Ειμελητών των φακέλων του

Διαβάστε περισσότερα

ΤΟ ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟ ΣΩΜΑ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΝΗΜΑΤΟΣ

ΤΟ ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟ ΣΩΜΑ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΝΗΜΑΤΟΣ ΤΟ ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟ ΣΩΜΑ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΝΗΜΑΤΟΣ. Σώμα μάζας m = kg, είναι δεμένο στο άκρο οριζόντιου ελατηρίου με το άλλο άκρο του σε ακλόνητο τοίχο) και αό την άλλη άκρη είναι δεμένο με νήμα τεταμένο με

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 Στασίνου 6, Γραφ., Στρόβολος, Λευκωσία Τηλ. 57-78 Φαξ: 57-79 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 7 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ Παρασκευή, 9/5/7 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΑΠΟ ΤΗΝ ΜΕΡΟΣ Α ln( x). Να υολογίσετε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ. Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ

ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ. Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ Σχολικό βιβλίο: Ααντήσεις Λύσεις Κεφάλαιο ο: Συστήματα Γραμμικά συστήματα Α ΟΜΑΔΑΣ Έχουμε: y i 6 + y + y y Άρα, η λύση του συστήματος

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 2 η (2/12/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 2 η (2/12/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρας Β τάξης Γενικού Λυκείου o Θέμα Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (/1/014) Οι ααντήσεις και οι λύσεις είναι αοτέλεσμα συλλογικής δουλειάς των Ειμελητών των φακέλων του Λυκείου

Διαβάστε περισσότερα

y = π 2 π 2 π 4 1 f 1.0

y = π 2 π 2 π 4 1 f 1.0 Στην άσκηση για στάσιµο κύµα ου ακοουθεί, γίνεται αναυτική εεξεργασία 11 ερωτηµάτων ΑΣΚΗΣΗ Σε γραµµικό οµογενές εαστικό µέσο ου ταυτίζεται µε τον άξονα, διαδίδονται µε αντίθετες ταχύτητες µέτρου 8 m /

Διαβάστε περισσότερα

1.3. Ασκήσεις σχ. βιβλίου σελίδας A ΟΜΑ ΑΣ. 1. i) f(x) = 5 ii) f(x) = x 4 iii) f(x) = x 9

1.3. Ασκήσεις σχ. βιβλίου σελίδας A ΟΜΑ ΑΣ. 1. i) f(x) = 5 ii) f(x) = x 4 iii) f(x) = x 9 . Ασκήσεις σχ. βιβλίου σελίδας 5 8 A ΟΜΑ ΑΣ (Να βρείτε τις αραγώγους των συναρτήσεων στις ασκήσεις 8). f() 5 f() 4 i f() 9 f () ( 5) 0 f () ( 4 ) 4 i f () ( 9 ) 9 8.. f() f() i f() 5 f () f () ( ) 4 i

Διαβάστε περισσότερα

Λύσεις θεμάτων προσομοίωσης-1 ο /2017 ΛΥΣΕΙΣ

Λύσεις θεμάτων προσομοίωσης-1 ο /2017 ΛΥΣΕΙΣ Λύσεις θεμάτων ροσομοίωσης- ο /7 ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΣΑΒΒΑΤΟ, ΜΑΡΤΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ

Διαβάστε περισσότερα

Εργασία 1 η & Λύσεις 2009/10 Θεματική Ενότητα ΦΥΕ14 " ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ "

Εργασία 1 η & Λύσεις 2009/10 Θεματική Ενότητα ΦΥΕ14  ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Άσκηση Εργασία η & Λύσεις 9/ Θεματική Ενότητα ΦΥΕ4 Παράδοση 6//9 Αν υοθέσουμε ως στο τρισορθογώνιο σύστημα αξόνων yz ο άξονας των z συμίτει με τη διεύθυνση της κατακόρυφου, να γράψετε αναλυτικά (με την

Διαβάστε περισσότερα

Μερικές Διαφορικές Εξισώσεις

Μερικές Διαφορικές Εξισώσεις Πανειστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 17-18, Διδάσκων: Α.Τόγκας 3ο φύλλο ροβλημάτων Ονοματεώνυμο - ΑΜ: ΜΔΕ 3ο φύλλο ροβλημάτων Α. Τόγκας

Διαβάστε περισσότερα

i) A/4 ii) 3A/4 iii) A/2 iv) A/3

i) A/4 ii) 3A/4 iii) A/2 iv) A/3 ΟΜΙΛΟΣ ΦΡΟΝΤΙΣΤΗΡΙΩΝ ΕΚΚΕΝΤΡΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ ΕΝΟΤΗΤΑ Γ ΘΕΤΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΚΕΦΑΛΑΙΟ Ο ΑΡΜΟΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ 0 ΝΟΕΜΒΡΙΟΥ 0 ΣΕΙΡΑ Α ΚΥΚΛΟΣ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΧΕΙΜΕΡΙΝΗ ΠΕΡΙΟΔΟΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΚΟΡΙΝΘΟΥ 55, ΚΑΝΑΚΑΡΗ 0 ΤΗΛ. 60 65.360, 60 64.009, ΘΕΜΑ. a. γ 3. δ 4. γ 5. (α) Σωστό (β) Λάθος ΑΠΑΝΤΗΣΕΙΣ ΤΡΙΤΗ 07 ΙΟΥΝΙΟΥ 005 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ (γ) Σωστό (δ) Σωστό (ε) Σωστό ΘΕΜΑ. (Σωστό το β)

Διαβάστε περισσότερα

1 η δεκάδα θεµάτων επανάληψης

1 η δεκάδα θεµάτων επανάληψης 1 1 η δεκάδα θεµάτων εανάληψης 1. ίνεται το ολυώνυµο Ρ(x) = x 3 x 2 4x + 4 Να αοδείξετε ότι ο αριθµός ρ = 1 είναι ρίζα του ολυωνύµου i Να βρείτε το ηλίκο της διαίρεσης του ολυωνύµου Ρ(x) µε το ολυώνυµο

Διαβάστε περισσότερα