ΚΕΦΑΛΑΙΟ 4 Ο ΕΞΙΣΩΣΕΙΣ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΚΕΦΑΛΑΙΟ 4 Ο ΕΞΙΣΩΣΕΙΣ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ"

Transcript

1 ΚΕΦΑΛΑΙΟ 4 Ο ΕΞΙΣΩΣΕΙΣ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ

2 Η ΕΞΙΣΩΣΗ αχ +βχ+γ=0, α ¹ 0 ΠΑΡΑΤΗΡΗΣΕΙΣ v Εξίσωση δευτέρου βαθμού καλείται η εξίσωση της μορφής : αχ + βχ + γ = 0, α ¹ 0 () v Για την επίλυση της εξίσωσης (), σημαντικό ρόλο παίζει η διακρίνουσα : Δ = β - 4αγ v Οι λύσεις της εξίσωσης () λέγονται και ρίζες αυτής. Υπολογίζονται με τη βοήθεια της διακρίνουσας σύμφωνα με τον πίνακα : Δ > 0 -β ± η () έχει δυο άνισες ρίζες τις : χ, = α Δ = 0 - β η () έχει μια διπλή ρίζα, την χ 0 = α Δ < 0 η () δεν έχει πραγματικές ρίζες Δ ΑΣΚΗΣΕΙΣ. Να προσδιοριστούν οι συντελεστές α, β, γ ώστε οι παρακάτω εξισώσεις να τίθενται στη μορφή αχ +βχ+γ=0. ι) χ -5χ+4=0 ιι) -χ +8=0 ιιι) χ -χ=λχ- ιν) χ =(χ+). Να βρεθεί η διακρίνουσα σε κάθε περίπτωση: ι) χ -5χ+=0 ιι) χ -χ+3=χ ιιι) χ -λχ =χ-λ 3. Να βρεθεί το πλήθος των ριζών σε καθεμία από τις παρακάτω εξισώσεις: ι ) χ +χ+4 = 0 ιι ) χ -4χ+3 =0 ιιι ) χ χ+ =0 ιν ) χ χ+ 5 + = 0 ν ) αχ -(4 α+)χ + =0 νι ) χ -χ+α + =0 4. Να λυθούν οι εξισώσεις: ι) χ +8 =0 ιι ) χ -8χ-9 =0 ιιι ) 3χ -7χ-5 =0 ιν ) -4χ -7χ+ =0 ν ) χ =χ +6 νι ) 3χ(χ-)=χ - Επιμέλεια : Κοσόγλου Ιορδάνη μαθηματικού

3 νιι ) χ -χ+80=0 νιιι) χ -3χ+6=0 ιχ) (χ-) +(χ+) =9 χ ) (χ-) -3(χ-)=0 χι ) χ -9λχ+4λ =0 5. Ομοίως οι εξισώσεις : ι ) 9χ -36 = 0 ιι ) 4χ +6χ=9χ -5χ ιιι ) (χ+ 4 )(χ- 4 ) = ιν ) 5χ - 5 χ+ =0 ν ) 9χ -3(+ )χ+ =0 νι ) χ +( 3 -)χ- 3 = 0 νιι ) χ +( 3-3)χ-6 3 = 0 ιχ ) χ -( 3 + )χ+ 6 = 0 6. Ομοίως οι εξισώσεις : ι ) χ = 0 ιι ) χ = 0 7. Να προσδιοριστεί ο λ ώστε η εξίσωση χ +χ-+3λ=0 να έχει: ι) δυο πραγματικές και άνισες ρίζες ιι) μια διπλή ρίζα ιιι) καμία πραγματική ρίζα 8. Για ποιες τιμές του κ η εξίσωση : -χ +9χ+χ -κ+9 = 0 έχει ρίζα το -. Για καθεμιά από τις τιμές του κ που θα βρείτε, λύστε την εξίσωση. 9. Για ποιες τιμές των κ, λ η εξίσωση : 5χ +(κ-)χ+λ+4 = 0, έχει διπλή ρίζα το 0 ; 0. Να αποδείξετε ότι οι εξισώσεις : χ +5χ+α = 0 και χ +αχ+α +4 α -5=0 έχουν το ίδιο πλήθος λύσεων ;. Να αποδείξετε ότι αν η εξίσωση : ( α+β)χ +4αχ-4β = 0, έχει διπλή ρίζα, τότε η εξίσωση : (α +β )χ -3χ+(α+β) = 0, έχει δυο άνισες ρίζες.. Να λυθεί για τις διάφορες τιμές του α η εξίσωση : (α-)χ + (+ α)χ + 3+4α = 0 3. Να λυθούν οι εξισώσεις : ι ) χ +(α-β)χ-4αβ =0 ιι ) 4χ -(α+4β)χ+αβ+β = 0 ιιι ) χ +3αχ- α =0 ιν ) χ -χ+-α 4 = 0 Επιμέλεια : Κοσόγλου Ιορδάνη μαθηματικού 3

4 4. Να αποδείξετε ότι για όλες τις τιμές του μ οι παρακάτω εξισώσεις είναι αδύνατες : ι ) (μ +)χ -μχ+ = 0 ιι ) 9χ + = 3μ(χ-μ) 5. Για ποιες τιμές του α οι παρακάτω εξισώσεις είναι αδύνατες ; ι ) χ(χ+α)+4 = 0 ιι ) χ +9 = 4αχ 6. Αν η εξίσωση : χ +χ+λ+ = 0, έχει διπλή ρίζα, να βρείτε : ι ) τον αριθμό λ ιι ) τη διπλή ρίζα 7. Για ποιες τιμές του α καθεμία από τις παρακάτω εξισώσεις έχει δυο ίσες ρίζες ; ι ) 4χ +4χ+α = 0 ιι ) χ +(α-4)χ+α +6α+3 = 0 8. Για ποιες τιμές του α η εξίσωση : χ(χ+) = α χ, έχει διπλή ρίζα ; Ποια είναι αυτή ; 9. Να αποδείξετε ότι αν η εξίσωση : 4χ -4χ+μ = 0, έχει ρίζα το, τότε θα έχει και άλλη ρίζα, η οποία να βρεθεί. 0. Αν χ=3 είναι η μια από τις δυο ρίζες της εξίσωσης χ +(λ+) χ+ λ =6 να προσδιοριστεί η άλλη.. Η μια κάθετη πλευρά ενός ορθογωνίου τριγώνου είναι εκατοστά μεγαλύτερη από την άλλη κάθετη. Αν η διάμεσος που αντιστοιχεί στην υποτείνουσα του τριγώνου είναι 4 εκατοστά, να βρεθεί το μήκος των κάθετων πλευρών του τριγώνου.. Η μια κάθετη πλευρά ενός ορθογωνίου είναι 7 μέτρα μικρότερη από την άλλη. Αν η διαγώνιος είναι 3 μέτρα, τότε πόσα μέτρα είναι καθεμία από τις κάθετες πλευρές του ορθογωνίου ; 3. Το μήκος μιας ορθογώνιας πισίνας είναι τριπλάσιο του πλάτους της και η πισίνα περιβάλλεται από έναν διάδρομο 4 μέτρων. Αν η συνολική έκταση που περιλαμβάνει την πισίνα και τον διάδρομο, είναι 595 τετραγωνικά να βρεθούν οι διαστάσεις της πισίνας. Επιμέλεια : Κοσόγλου Ιορδάνη μαθηματικού 4

5 4. Το εμβαδόν της σελίδας ενός βιβλίου είναι : 6 cm και η μια διάσταση της είναι τα 3 της άλλης. Να βρεθούν οι διαστάσεις της σελίδας. 5. Έστω οι θετικοί α, β, γ με α ¹ γ. Οι εξισώσεις αχ +βχ+γ=0 και γχ +βχ+α=0 έχουν μια κοινή ρίζα ρ. α) Να βρεθεί ο ρ β) Να δειχθεί ότι α+ γ= β 6. Να βρεθούν οι διαστάσεις ενός ορθογωνίου παραλληλογράμμου, αν ξέρουμε ότι η περίμετρος του είναι 8 μέτρα και μια εκ των διαγωνίων του 0 μέτρα. 7. Αν α, β, γ πλευρές τριγώνου, να εξεταστεί αν η εξίσωση : χ -(α-β)χ+γ =0 έχει πραγματικές ρίζες. Άθροισμα και γινόμενο ριζών ΠΑΡΑΤΗΡΗΣΕΙΣ v Έστω χ και χ, οι ρίζες της εξίσωσης αχ +βχ+γ = 0. Τότε συμβολίζουμε με S το άθροισμα των ριζών χ, χ και με P το γινόμενο τους. S = χ +χ = β γ - P = χ χ = α α v Η εξίσωση αχ +βχ+γ = 0, τότε γράφεται διαδοχικά : αχ +βχ+γ =0 Þ χ + α β χ + α γ = 0 Þ χ (- α β )χ + α γ = 0 Þ χ Sχ +P = 0 v Ισχύουν οι ταυτότητες : χ +χ = (χ +χ ) χ χ = S - P χ 3 +χ 3 = (χ +χ ) 3 3χ χ (χ +χ ) = S 3-3P S ΑΣΚΗΣΕΙΣ 8. Να συμπληρωθούν τα κενά στις παρακάτω προτάσεις. Η εξίσωση χ +4χ+λ=0 :. έχει μια διπλή ρίζα όταν λ=. έχει δυο πραγματικές ρίζες όταν λ Î(,.) Επιμέλεια : Κοσόγλου Ιορδάνη μαθηματικού 5

6 3. δεν έχει πραγματικές ρίζες όταν λ Î(,.) 4. αν έχει ρίζα το, τότε η άλλη ρίζα είναι η. 5. αν έχει ρίζες αντίστροφους αριθμούς, τότε λ= 9. Να υπολογιστεί το άθροισμα και το γινόμενο των ριζών των παρακάτω εξισώσεων: ι) χ -4χ+=0 ιι) -χ +=0 ιιι) χ =3χ ιν ) -5χ -7χ+5 =0 ν ) χ +5χ-3 = 0 νι ) χ -5χ- = Αν χ, χ είναι ρίζες της χ + βχ+ γ = 0, να συμπληρώσετε με το κατάλληλο σύμβολο ανισότητας τα παρακάτω κενά: α ) οι χ, χ είναι ετερόσημες όταν γ..0 β ) οι χ, χ είναι θετικές όταν β..0 και γ..0 γ ) οι χ, χ είναι αρνητικές όταν β..0 και γ.0 3. Να σχηματιστεί η εξίσωση ου βαθμού όταν: ι) S=κ+λ, Ρ=κλ ιι) S=λ, Ρ=λ ιιι) S= -, Ρ= 3 3 ιν ) S = -, P = + ν ) S =, P = - 3. Αν χ, χ οι ρίζες της χ +6χ-3 = 0, να υπολογίσετε τα παρακάτω : α ) χ +χ β ) χ χ γ ) χ +χ δ ) χ 3 +χ 3 ε ) + στ ) Αν χ, χ οι ρίζες της εξίσωσης : χ -3χ- = 0, να υπολογιστούν : α ) χ +χ β ) χ χ γ ) + δ ) χ +χ ε ) (χ -χ ) στ ) - ζ ) ( + η ) χ 3 3 +χ ) θ ) ( - ) Επιμέλεια : Κοσόγλου Ιορδάνη μαθηματικού 6

7 34. Αν χ, χ οι ρίζες της χ +αχ+β=0, β ¹ 0 να υπολογιστούν οι παραστάσεις: ι) χ + χ χ + χ ιι) χ 3 + χ 3 ιιι) χ Αν η μια ρίζα της αχ +βχ+γ = 0 είναι διπλάσια της άλλης, να αποδείξετε ότι : 9αγ = β 36. Για ποια τιμή του κ, το άθροισμα των τετραγώνων των ριζών της εξίσωσης : χ 8χ + κ = 0 είναι 34 ; 37. Για ποιες τιμές του λ, το άθροισμα των τετραγώνων των ριζών της εξίσωσης : χ -4λχ+λ- = 0, είναι ; 38. Να βρείτε τις τιμές του λ ώστε η εξίσωση : χ +4χ+3λ- = 0 να έχει ρίζες χ, χ, οι οποίες ικανοποιούν τις σχέσεις : α ) + = -4 β ) χ -χ +χ -χ = Να βρεθεί η εξίσωση που να έχει ρίζες : α ) τα τετράγωνα των ριζών της εξίσωσης : 5χ -χ- =0 β ) τους αντιστρόφους των τετραγώνων των ριζών της : χ -8χ+3 = 0 γ ) τους αριθμούς S+ S, P+ P, όπου S, P το άθροισμα και γινόμενο των ριζών της : χ +5χ+ = Αν χ, χ οι ρίζες της εξίσωσης : χ +5χ+6 = 0, να βρεθεί η εξίσωση με ρίζες : α ) +, + β ) + 4. Να βρεθεί η εξίσωση με ρίζες :, + α ) το άθροισμα και το γινόμενο των ριζών της χ -8χ+7 = 0 β ) τους αντιστρόφους των ριζών της χ -8χ+7 = 0, Επιμέλεια : Κοσόγλου Ιορδάνη μαθηματικού 7

8 γ ) τις αντίθετες των ριζών της χ -8χ+7 = 0, δ ) κατά μικρότερες από τις ρίζες της χ -8χ+7 = Αν α ¹ 0, και η εξίσωση : αχ +βχ+γ = 0 έχει ρίζες χ, χ, τότε : α ) να αποδείξετε ότι η εξίσωση : αχ +λβχ+λ γ = 0, έχει ρίζες τις λχ,λχ β ) να βρείτε την εξίσωση με ρίζες : -χ, -χ 43. Να συμπληρωθούν τα παρακάτω: Αν χ, χ ρίζες της αχ +βχ+γ=0, α ¹ 0 τότε:. Αν χ, χ αντίθετοι, ισχύει αβ=... Αν χ, χ αντίστροφοι, ισχύει α-γ=. b + g 3. Αν (χ -)( χ -)=0, ισχύει =. a b 4. Αν + =, =.. c c g 44. Αν χ, χ ρίζες της χ -αχ+β=0, να αποδείξετε ότι: ι) χ + χ =α -β ιι) οι χ, χ ρίζες της χ -(α -β) χ+ β =0 45. Για ποιο λ οι ρίζες της χ -3(λ-)-4λ=0 είναι: ι) αντίθετες; ιι) αντίστροφοι αριθμοί; 46. Δίνεται η εξίσωση λχ -μχ+ν=0, λν ¹ 0 με ρίζες χ, χ. Να σχηματίσετε την εξίσωση ου βαθμού που έχει ρίζες : ι) αντίθετες των χ, χ ιι) αντίστροφες των χ, χ ιιι) α χ, α χ ιν) τα τετράγωνα των χ, χ 47. Αν χ, χ οι ρίζες της χ -(λ+)χ+λ +=0, να προσδιοριστεί ο λîr ώστε χ (3 χ -5)=5 χ Να εξεταστεί αν είναι δυνατόν, οι αριθμοί α, β να είναι ρίζες της εξίσωσης : χ +(α-β)χ+αβ+=0. Επιμέλεια : Κοσόγλου Ιορδάνη μαθηματικού 8

9 49. Να βρεθεί η εξίσωση με ρίζες χ, χ οι οποίες επαληθεύουν τις σχέσεις : χ χ +χ +χ = και χ χ + 5(χ +χ ) = Για ποιες τιμές του λ η εξίσωση : χ +(λ+)χ + λ = 0, έχει ρίζες από τις οποίες η μια είναι τριπλάσια της άλλης ; 5. Για ποιες τιμές του λ και μ,η εξίσωση : χ -(λ+)χ+μ = 0, έχει διπλάσιες από τις ρίζες της εξίσωσης : χ -(μ+)χ+λ+ = 0. ΕΞΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΛΥΣΗ Β ΒΑΘΜΙΩΝ ΠΑΡΑΤΗΡΗΣΕΙΣ v Η εξίσωση : αχ 4 +βχ + γ = 0, α ¹ 0, καλείται διτετράγωνη. Λύνεται αν θέσω ψ = χ, αντικαταστήσω στην αρχική και βρώ το ψ. Μετά από την ψ = χ, βρίσκω το χ. v Η εξίσωση : (χ-χ ο ) + (ψ-ψ 0 ) = ρ, παριστάνει κύκλο κέντρου (χ ο,ψ ο ) και ακτίνας ρ. v Η εξίσωση : αχ+ βψ + γ = 0, παριστάνει ευθεία. v Γνωρίζουμε από τη Γεωμετρία οτι, οι σχετικές θέσεις μιας ευθείας και ενός κύκλου, είναι οι εξής : α ) ένα κοινό σημείο (εφαπτομένη) β ) δυο κοινά σημεία (τέμνουσα) γ ) κανένα κοινό σημείο v Η εξίσωση ψ = κχ, παριστάνει παραβολή. v Οι σχετικές θέσεις ευθείας και παραβολής είναι ίδιες με τις σχετικές θέσεις ευθείας κύκλου. ΑΣΚΗΣΕΙΣ 5. Να λυθούν οι εξισώσεις: ι) 3χ+ = ιι) + = ιιι) + = - 3 ( + ) + 3 Επιμέλεια : Κοσόγλου Ιορδάνη μαθηματικού 9

10 53. Ομοίως οι εξισώσεις: ι) χ 3-5χ +6χ=0 ιι) (χ -)(χ+3)(χ +4χ)=0 ιιι) χ = 3-4 ιν) χ - -3=0 ν) (χ+ ) +(χ+ )-=0 νι) χ 4 -χ +36=0 νιι ) χ 4-4χ - = 0 νιιι ) 4χ 4 +5χ = 0 ιχ ) χ 4 +5χ +3 =0 χ ) χ = 0 χι ) (χ-) = 0 χιι ) (- ) -7(- )+6 =0 χιιι ) χ-3 += Να λυθούν τα συστήματα και να ερμηνευτούν γεωμετρικά οι λύσεις τους: ι) ì í î y = c c + y = 0 ιι) ì í î c + y y - c = 6 = 0 ιιι) ì í î c + y = 8 cy = Να προσδιοριστεί για τις διάφορες τιμές του λîr, ο αριθμός των λύσεων ì y = c του συστήματος í και να δοθεί γεωμετρική ερμηνεία. c -y = l î 56. Δίνεται η ψ=χ-3λ και η παραβολή ψ=χ. Να προσδιοριστεί ο λîr, ώστε η ευθεία να έχει με την παραβολή : ι) ένα κοινό σημείο ιι) δυο κοινά σημεία ιιι) κανένα κοινό σημείο. 57. Αν ρ, ρ είναι οι ρίζες της ρ -5ρ+=0, να λυθεί το σύστημα: ì í î -y = r r + c -y = r + r 58. Να υπολογιστούν οι κάθετες πλευρές ενός ορθογωνίου τριγώνου του 4 οποίου ο λόγος των κάθετων πλευρών είναι και η υποτείνουσα 4 ε- 5 κατοστά. Επιμέλεια : Κοσόγλου Ιορδάνη μαθηματικού 0

Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε συνήθως έναν από τους παρακάτω τρόπους :

Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε συνήθως έναν από τους παρακάτω τρόπους : ΚΕΦΑΛΑΙΟ Ο ΣΥΝΑΡΤΗΣΕΙΣ. Σύνολα ΠΑΡΑΣΤΑΣΗ ΣΥΝΟΛΟΥ ΓΡΑΦΗ ΣΥΝΟΛΟΥ Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε συνήθως έναν από τους παρακάτω τρόπους : ) Παράσταση με αναγραφή των στοιχείων Όταν δίνονται

Διαβάστε περισσότερα

Εξισώσεις πρώτου βαθμού

Εξισώσεις πρώτου βαθμού Εξίσωση ου βαθμού με ένα άγνωστο 0ρισμός Εξισώσεις πρώτου βαθμού Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή αχ=β λέγεται εξίσωση ου βαθμού με ένα άγνωστο. Σε μια εξίσωση η μεταβλητή λέγεται άγνωστος.οι

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΛΥΣΗ ΤΗΣ ΕΞΙΣΩΣΗΣ α + β + γ = 0 α 0 Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΚΡΙΝΟΥΣΑΣ 1. Να λυθούν οι παρακάτω εξισώσεις ως προς ή y: α) - 4 = 0 β) 3 = 4 γ) + - 15 = 0 δ) 5-18 -

Διαβάστε περισσότερα

Επαναληπτικές ασκήσεις για τα Χριστούγεννα.

Επαναληπτικές ασκήσεις για τα Χριστούγεννα. Μαθηματικά B Γυμνασίου Επαναληπτικές ασκήσεις για τα Χριστούγεννα. Μέρος Α Άλγεβρα. 1. Να γίνουν οι πράξεις: α. Α=(-3)(-4)+3[(-3).4+(-6) ] β. Β=--8.3+7[7(-3)+(-)(-1)] 8 γ. Γ= 3 ( ) ( 8) 3 9 3 δ. Δ=(-3+9-)(3-9)+(9-0)(4:+).

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις :

ΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις : ΕΞΙΣΩΣΕΙΣ - ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ ). Να λυθούν οι εξισώσεις: α). + ( 3 ) 6 = 0 β). 4 ( 3 ) + 3 = 0 γ). + ( ) = 0 δ). 5 + 5 = 0 ε). 4( 3) + 5 + 6 6 = 0 στ).( + 3 ) ( 3 + ) ( 3 ) = 0 η). + (3 ) + (4 3 ) = 0

Διαβάστε περισσότερα

β=0 Η εξίσωση (λ-2)χ=2λ-4 για λ=2 είναι αδύνατη. Σ Λ Αν η εξίσωση αχ+β=0 έχει δύο διαφορετικές λύσεις τότε είναι αόριστη. Σ Λ

β=0 Η εξίσωση (λ-2)χ=2λ-4 για λ=2 είναι αδύνατη. Σ Λ Αν η εξίσωση αχ+β=0 έχει δύο διαφορετικές λύσεις τότε είναι αόριστη. Σ Λ 3. ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ 3. ΕΞΙΣΩΣΕΙΣ α 0 Η εξίσωση έχει μία μοναδική λύση την x= - αx+β=0 α=0 β 0 β=0 Η εξίσωση είναι αδύνατη, δηλαδή δεν έχει λύση. Η εξίσωση είναι αόριστη ή ταυτότητα, δηλαδή επαληθεύεται

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού 108 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθµό, να υπολογιστεί

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 1) Δίνεται η εξίσωση x 2-2(λ + 2) χ + 2λ 2-17 = 0. Να βρείτε το λ ώστε η εξίσωση να έχει μία ρίζα διπλή. Υπολογίστε τη ρίζα. Aσκήσεις στις εξισώσεις Β βαθμού Για να έχει η εξίσωση μία ρίζα διπλή πρέπει:

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ= = = = = = Α =ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ= = = = = = Α =ΛΥΚΕΙΟΥ ΑΓΕΒΡΑ Α ΥΚΕΙΟΥ ΤΟΙΧΕΙΑ ΘΕΩΡΙΑ - ΑΚΗΕΙ ΘΕΩΡΙΑ. Οι πράξεις και οι ιδιότητες τους Αν α, β, γ, δ πραγματικοί αριθμοί τότε ισχύουν οι ιδιότητες : α = β Û α + γ = β + γ Αν γ ¹ 0, α = β Û αγ = βγ αβ = 0 Û α

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2017

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2017 ΓΥΜΝΑΣΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΠΛΑΤΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 016-017 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 017 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: 1 / 5 / 017 ΤΑΞΗ: Β ΧΡΟΝΟΣ: ώρες ΒΑΘΜΟΣ: 100 0 Αριθμητικά :.... Ολογράφως:......

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

Εξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 8 /

Εξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 8 / Εξισώσεις Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7.. 8 8. 8 8 Kgllykos..gr 7 / 8 / 8 A ΛΥΚΕΙΟΥ κεφάλαιο 5 ασκήσεις και τεχνικές σε 6 σελίδες εκδόσεις Καλό πήξιμο Επιλεγμένες

Διαβάστε περισσότερα

ΓΕ.Λ ΕΞΑΠΛΑΤΑΝΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ : ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ. 1 ) Αν Α και Β είναι δύο ασυμβίβαστα ενδεχόμενα ενός δειγματικού χώρου

ΓΕ.Λ ΕΞΑΠΛΑΤΑΝΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ : ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ. 1 ) Αν Α και Β είναι δύο ασυμβίβαστα ενδεχόμενα ενός δειγματικού χώρου ΓΕΛ ΕΞΑΠΛΑΤΑΝΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ : 013-014 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Αν Α και Β είναι δύο ασυμβίβαστα ενδεχόμενα ενός δειγματικού χώρου Ω, τότε να αποδείξετε

Διαβάστε περισσότερα

3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.

3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος. . Δίνεται η εξίσωση λ + 4(λ ) = 0, με παράμετρο λ R α) Να βρείτε τη διακρίνουσα της εξίσωσης. β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε λ R. γ) Αν, είναι οι ρίζες της παραπάνω

Διαβάστε περισσότερα

Εξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 26 σελίδες. εκδόσεις. Καλό πήξιμο

Εξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 26 σελίδες. εκδόσεις. Καλό πήξιμο Εξισώσεις Κώστας Γλυκός A ΛΥΚΕΙΟΥ κεφάλαιο 3 445 ασκήσεις και τεχνικές σε 6 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 9 / 0 / 0 6 εκδόσεις Καλό

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΚΥΚΛΟΣ ΠΑΡΑΒΟΛΗ ΕΛΛΕΙΨΗ. Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ) (χ-χ 0

ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΚΥΚΛΟΣ ΠΑΡΑΒΟΛΗ ΕΛΛΕΙΨΗ. Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ) (χ-χ 0 ΤΟΙΧΕΙΑ ΘΕΩΡΙΑ ΚΥΚΟ Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ), y + y = r χ +ψ =ρ Κ(0,0) ρ x x y (χ-χ 0 ) +(ψ-ψ 0 ) =ρ Κ(χ 0,ψ 0 ) ρ (χ-χ 0 ) (χ -χ 0 )+(ψ-ψ 0 ) (ψ-ψ )=ρ Παρατήρηση : Η εξίσωση : χ +ψ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2

Διαβάστε περισσότερα

1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων:

1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 ο ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ. Nα λυθούν οι ανισώσεις α) 4 β) 4. Nα λυθούν οι ανισώσεις ( )( ) α) + > - (+) β). Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ( ) ( ) 8 4 8 και

Διαβάστε περισσότερα

5. Σε ορθογώνιο σύστημα αξόνων να σχεδιαστούν οι ευθείες που έχουν εξισώσεις τις: β. y = 4 δ. x = y

5. Σε ορθογώνιο σύστημα αξόνων να σχεδιαστούν οι ευθείες που έχουν εξισώσεις τις: β. y = 4 δ. x = y . Δύο φίλοι, ο Μάρκος και ο Βασίλης, έχουν άθροισμα ηλικιών 7 χρόνια, και ο Μάρκος είναι μεγαλύτερος από το Βασίλη. Μπορείτε να υπολογίσετε την ηλικία του καθενός; Να δικαιολογήσετε την απάντησή σας. β.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ . ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ : ΓΡΑΜΜΙΚΗ ΕΞΙΣΩΣΗ Η εξίσωση με και 0 ή 0 λέγεται γραμμική εξίσωση. Οι μεταβλητές είναι οι άγνωστοι της εξίσωσης αυτής. Οι αριθμοί λέγονται συντελεστές των αγνώστων

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α 1 1. α) Να γίνει γινόµενο το τριώνυµο λ -3λ+. β) Να βρεθεί το λ έτσι ώστε η εξίσωση λ(λχ-1)χ(3λ-)-λ i) να είναι αδύνατη ii) να είναι αόριστη iii) να έχει µία µόνο λύση

Διαβάστε περισσότερα

ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 3 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 3 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός 014 ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρόν φυλλάδιο είναι ένα τμήμα μιας προσωπικής

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος 013-014, Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΕΦΑΛΑΙΟ ο ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΧΡΗΣΙΜΕΣ ΓΝΩΣΕΙΣ Α Β ΛΥΚΕΙΟΥ ΤΑΥΤΟΤΗΤΕΣ. (a-β)(a+β)=a - b. (a ± b ) = a ± ab + b. (a ± b ) = a ± a b + ab ± b 4. (a+β+γ)

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΕΞΙΣΩΣΕΙΣ Α ΛΥΚΕΙΟΥ A)ΠΡΩΤΟΒΑΘΜΙΕΣ ΠΑΡΑΜΕΤΡΙΚΕΣ

ΦΥΛΛΑΔΙΟ ΕΞΙΣΩΣΕΙΣ Α ΛΥΚΕΙΟΥ A)ΠΡΩΤΟΒΑΘΜΙΕΣ ΠΑΡΑΜΕΤΡΙΚΕΣ ΦΥΛΛΑΔΙΟ ΕΞΙΣΩΣΕΙΣ Α ΛΥΚΕΙΟΥ A)ΠΡΩΤΟΒΑΘΜΙΕΣ ΠΑΡΑΜΕΤΡΙΚΕΣ )Να λύσετε τις εξισώσεις : α) χ+= β) 3-χ=4 γ) χ=-6 δ) 4-χ=8 ε) χ- 3 =0 στ) χ- 5 =- )α) Να λυθεί η εξίσωση : (λ-)χ=λ () Ι)Αν λ- 0 λ η () έχει λύση

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

5.ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ

5.ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ 5.ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ Για να επιλύσουμε μία παραμετρική εξίσωση ακολουθούμε τα παρακάτω βήματα: i) Βγάζω παρενθέσεις ii) Κάνω απαλοιφή παρανομαστών iii) Χωρίζω γνωστούς από αγνώστους (άγνωστος είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ 10 ΕΠΑΝΑΛΗΨΕΙΣ ΑΠΟ ΠΡΟΗΓΟΥΜΕΝΕΣ ΤΑΞΕΙΣ α ) Ταυτότητες 1. (a-β)(a+β)=a - b. (a ± b ) = a ± ab + b 3 3 3 3. (a ± b ) = a ± 3a b + 3ab

Διαβάστε περισσότερα

β = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ...

β = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ... Αµυραδάκη 0, Νίκαια (104903576) ΝΟΕΜΒΡΙΟΣ 01 ΘΕΜΑ 1 ο i) Αν Α( x 1, y 1 ) και Β(x, y ) δυο σηµεία του καρτεσιανού επιπέδου και (x, y) οι συντεταγµένες του µέσου Μ του ΑΒ, να αποδείξετε ότι : x 1 + x x

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

ΜΕΡΟΣ Α: Να απαντήσετε και στα δέκα (10) θέματα του μέρους Α. Κάθε θέμα βαθμολογείται με πέντε (5) μονάδες (5/100).

ΜΕΡΟΣ Α: Να απαντήσετε και στα δέκα (10) θέματα του μέρους Α. Κάθε θέμα βαθμολογείται με πέντε (5) μονάδες (5/100). ΑΝΙΤΕΙΟ ΓΥΜΝΑΣΙΟ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 017-018 ΜΑΘΗΜΑ: Μαθηματικά ΤΑΞΗ: Β ΜΕΡΟΣ Α: Να απαντήσετε και στα δέκα (10) θέματα του μέρους Α. Θέμα 1. Κάθε θέμα βαθμολογείται με πέντε (5) μονάδες (5/100). Να κάνετε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΟΥ ΒΑΘΜΟΥ Α. Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων 1. ΕΡΩΤΗΣΗ Ποια εξίσωση λέγεται εξίσωση ου βαθμού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Δίνεται η ευθεία (ε) με εξίσωση: 2x y1 0 καθώς και το σημείο Μ(3,0). α. Να βρείτε την εξίσωση μιας ευθείας (η) που περνά από το Μ και είναι κάθετη στην ευθεία (ε). β. Να

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β) ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0

Διαβάστε περισσότερα

Μελέτη της συνάρτησης ψ = α χ 2

Μελέτη της συνάρτησης ψ = α χ 2 Μελέτη της συνάρτησης ψ = α χ Η γραφική της παράσταση είναι μια καμπύλη που λέγεται παραβολή. Ανάλογα με το πρόσημο του α έχω και τα αντίστοιχα συμπεράσματα. αν α > 0 1) Η γραφική της παράσταση είναι πάνω

Διαβάστε περισσότερα

Επαναληπτικές ασκήσεις για το Πάσχα.

Επαναληπτικές ασκήσεις για το Πάσχα. Μαθηματικά B Γυμνασίου Επαναληπτικές ασκήσεις για το Πάσχα. Άλγεβρα. Κεφάλαιο 1 ο. 1. Να υπολογιστούν οι παρακάτω αριθμητικές παραστάσεις : 1 7 1 7 1 1 ) - 1 4 : ) -1 1 : 1 4 10 9 6. Να λυθούν οι εξισώσεις:

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Β ΓΥΜΝΑΣΙΟΥ 2013

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Β ΓΥΜΝΑΣΙΟΥ 2013 1. Τί ονομάζουμε απόλυτη τιμή ενός αριθμού α ; Ονομάζουμε απόλυτη τιμή ενός αριθμού α την απόστασή του από το 0 (μηδέν). ή Απόλυτη τιμή λέμε τον αριθμό χωρίς πρόσημο. 2.Πότε δύο αριθμοί λέγονται αντίθετοι;

Διαβάστε περισσότερα

4. Ανισώσεις. 4.1 Ανισώσεις 1 ου Βαθμού

4. Ανισώσεις. 4.1 Ανισώσεις 1 ου Βαθμού Ανισώσεις ου Βαθμού Ανισώσεις. Πρωτοάθμιες Ανισώσεις Επιλύονται όπως οι εξισώσεις με την διαφορά ότι, όταν πολλαπλασιάζω ή διαιρώ με αρνητικό αριθμό αλλάζει φορά η ανίσωση.. Υπενθύμιση α) χ χ, ή χ, ) χ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ Θέμα 1 ο α ) Ποια παράσταση καλείται μονώνυμο; Δώστε παράδειγμα. β ) Πότε δυο μονώνυμα είναι όμοια ; Δώστε παράδειγμα όμοιων μονωνύμων. γ ) Για ποιες τιμές των μεταβλητών

Διαβάστε περισσότερα

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΚΥΚΛΟΥ Τ.Ε.Ε - ΟΜΑΔΑ Α ΕΠΑ.Λ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια : Κοσόγλου Ιορδάνη μαθηματικού

ΜΑΘΗΜΑΤΙΚΑ Β ΚΥΚΛΟΥ Τ.Ε.Ε - ΟΜΑΔΑ Α ΕΠΑ.Λ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια : Κοσόγλου Ιορδάνη μαθηματικού ΜΑΘΗΜΑΤΙΚΑ Β ΚΥΚΛΟΥ Τ.Ε.Ε ΟΜΑΔΑ Α ΕΠΑ.Λ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια : Κοσόγλου Ιορδάνη μαθηματικού ΑΣΚΗΣΗ Το βάρος μαθητών σε κιλά είναι : 5, 5, 57, 5, 6, 5, 5, 5, 57, 5 Να υπολογίσετε : α ) τη μέση τιμή

Διαβάστε περισσότερα

1. Να λυθούν οι παρακάτω εξισώσεις : α. 3

1. Να λυθούν οι παρακάτω εξισώσεις : α. 3 . Να λυθούν οι παρακάτω εξισώσεις : α. 0 6 β. ( + ) + ( ) = ( + ) γ. ( + ) 4 = ( ) δ. ( 7) + = ε. ( ) + ( + 4)( 4) + 8 = ( + ) στ. ( 7) + = ζ. ( ) = ( )( 4) + 9. Ομοίως : α. ( + 5) (9 5) + 6 + 0 = 0 β.

Διαβάστε περισσότερα

2 είναι λύσεις της ανίσωσης 2x2 3x+1<0.

2 είναι λύσεις της ανίσωσης 2x2 3x+1<0. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΕΞΙΣΩΣΕΙΣ. α) Να βρείτε τις ρίζες της εξίσωσης x +0x=. x + 0x β) Να λύσετε την εξίσωση x. ίνεται η εξίσωση: x λx+(λ +λ )=0 (), λ R. α) Να προσδιορίσετε τον πραγµατικό αριθµό λ, ώστε η

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Υποδειγματικά Λυμένες Ασκήσεις Άλυτες Ασκήσεις ΛΑ Να βρείτε

Διαβάστε περισσότερα

1 ΘΕΩΡΙΑΣ...με απάντηση

1 ΘΕΩΡΙΑΣ...με απάντηση 1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.

Διαβάστε περισσότερα

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας . Δίνεται η εξίσωση, (). i) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει μία τουλάχιστον πραγματική ρίζα. ii) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει δύο ίσες πραγματικές ρίζες. iii) Να βρεθεί ο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

Εξισώσεις 2 ου βαθμού

Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Η εξίσωση της μορφής αχ 2 + βχ + γ = 0, α 0 λύνεται σύμφωνα με τον παρακάτω πίνακα. Δ = β 2 4αγ Η εξίσωση αχ 2 + βχ + γ = 0, α 0 αν Δ>0 αν Δ=0 αν Δ

Διαβάστε περισσότερα

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι _ ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ 1. Αν α + β + γ = αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P () = (α - β) + (β - γ) + γ - α είναι το µηδενικό πολυώνυµο.. Να δειχθεί ότι το πολυώνυµο P () = (κ - ) + (λ + 6) +

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΠΑΡΑΤΗΡΗΣΕΙΣ. 1. Η μέθοδος της μαθηματικής επαγωγής αποτελείται από δυο βήματα :

ΠΑΡΑΤΗΡΗΣΕΙΣ. 1. Η μέθοδος της μαθηματικής επαγωγής αποτελείται από δυο βήματα : ΠΑΡΑΤΗΡΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ 1. Η μέθοδος της μαθηματικής επαγωγής αποτελείται από δυο βήματα : Βήμα 1 ο : Δείχνουμε ότι η πρόταση Ρ( ν ) είναι αληθής για το μικρότερο φυσικό για τον οποίο ζητείται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)

ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii) ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ 1-13 1 Ποιοι αριθμοί ονομάζονται ομόσημοι και ποιοι ετερόσημοι; 1 Δίνονται οι αριθμοί: 1,,.1,,, 9, + 3, 3 3.1 Ποιοι από αυτούς είναι θετικοί και ποιοι αρνητικοί;.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΑΡΧΙΑ ΠΕΛΛΑΣ ΣΧΟΛΙΚΟ ΕΤΟΣ : ΔΙΕΥΘΥΝΣΗ Δ/ΒΜΙΑΣ ΕΚΠ/ΣΗΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΓΥΜΝΑΣΙΟ ΕΞΑΠΛΑΤΑΝΟΥ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΑΡΧΙΑ ΠΕΛΛΑΣ ΣΧΟΛΙΚΟ ΕΤΟΣ : ΔΙΕΥΘΥΝΣΗ Δ/ΒΜΙΑΣ ΕΚΠ/ΣΗΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΓΥΜΝΑΣΙΟ ΕΞΑΠΛΑΤΑΝΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΑΡΧΙΑ ΠΕΛΛΑΣ ΣΧΟΛΙΚΟ ΕΤΟΣ : 2008-2009 ΔΙΕΥΘΥΝΣΗ Δ/ΒΜΙΑΣ ΕΚΠ/ΣΗΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΓΥΜΝΑΣΙΟ ΕΞΑΠΛΑΤΑΝΟΥ Ονοματεπώνυμο μαθητή/τριας Εξεταζόμενο Μάθημα : ΜΑΘΗΜΑΤΙΚΑ Τάξη : Β

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛ. ΧΡΟΝΙΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Α ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛ. ΧΡΟΝΙΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Α ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛ. ΧΡΟΝΙΑ - ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Α ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΛΕΡΑ. Να λύσετε τα πιο κάτω συστήματα: α) χ+ψ=7 β)3κ+λ=4 γ) +y= δ)χ+ψ= χ-ψ=- 5κ=+3λ -y-y =7 4χψ=3.Να γίνουν οι πράξεις: α)

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Επιμέλεια: ιώργος Ράπτης ΘΕΤ ΣΤΗΝ ΕΩΕΤΡΙ ΛΥΚΕΙΟΥ ΘΕ 1 ο. Να αποδείξετε ότι το εμβαδό τραπεζίου με βάσεις 1, και ύψος υ δίνεται από τον τύπο: ( 1+ ) υ Ε= ονάδες 1 B. ν φν, λν και αν είναι: η γωνία, η πλευρά

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

Ασκήσεις Άλγεβρας. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. B ΓΥΜΝΑΣΙΟΥ Άλγεβρα 265 ασκήσεις και τεχνικές σε 24 σελίδες. εκδόσεις. Καλό πήξιμο

Ασκήσεις Άλγεβρας. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. B ΓΥΜΝΑΣΙΟΥ Άλγεβρα 265 ασκήσεις και τεχνικές σε 24 σελίδες. εκδόσεις. Καλό πήξιμο Ασκήσεις Άλγεβρας Κώστας Γλυκός B ΓΥΜΝΑΣΙΟΥ Άλγεβρα 65 ασκήσεις και τεχνικές σε 4 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 1 3 / 1 0 / 0 1 6

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

Κεφάλαιο 1ο. Μιγαδικοί Αριθμοί

Κεφάλαιο 1ο. Μιγαδικοί Αριθμοί Κεφάλαιο 1ο. Μιγαδικοί Αριθμοί 1η. Άσκηση Να αποδείξετε ότι Α) όπου Β) Αν με τότε Γ) όπου ν Δ) Αν με τότε Ε) αν για τους μιγαδικούς z, w ισχύει τότε 2η. Άσκηση Α) Εφαρμογή 1 σελίδα 93. Β) Να βρείτε τους

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις συµπλήρωσης 1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: Φυσική γλώσσα Μαθηµατική γλώσσα ύο αριθµοί x, y διαφέρουν κατά και έχουν γινόµενο x (x

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΕΞΙΣΩΣΕΙΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΕΞΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 Ο ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 4 Ο Εξισώσεις και Προβλήματα ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Εξίσωση με έναν άγνωστο λέγεται... 2. Λύση ή ρίζα της εξίσωσης λέγεται...... 3. Επίλυση εξίσωσης

Διαβάστε περισσότερα

Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.

Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ. Μ Ν Σ Υ Κ Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Σ. 1. Να γράψετε τους τύπους του εμβαδού των : (α) τετραγώνου (β) ορθογωνίου παραλληλογράμμου (γ) παραλληλογράμμου (δ) τριγώνου (ε) ορθογωνίου τριγώνου (στ) τραπεζίου.

Διαβάστε περισσότερα

7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι

7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήματος (α). x 1. Δίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΡΑΔΙΠΠΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ Ονοματεπώνυμο:... Τμήμα:... Αρ. Κατ.

ΓΥΜΝΑΣΙΟ ΑΡΑΔΙΠΠΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ Ονοματεπώνυμο:... Τμήμα:... Αρ. Κατ. ΓΥΜΝΑΣΙΟ ΑΡΑΔΙΠΠΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2014-2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: Μαθηματικά ΤΑΞΗ: Β ΗΜΕΡΟΜΗΝΙΑ: 12/06/2015 Βαθμός:. Ολογρ.:. Υπογραφή: ΔΙΑΡΚΕΙΑ: 2 Ώρες Ονοματεπώνυμο:....

Διαβάστε περισσότερα

Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς. 3.1 Εξισώσεις 1 ου Βαθμού. 3.2 Η εξίσωση x. 3.3 Εξισώσεις 2 ου Βαθμού. ρωτήσεις αντικειμενικού τύπουθέμα Α1-

Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς. 3.1 Εξισώσεις 1 ου Βαθμού. 3.2 Η εξίσωση x. 3.3 Εξισώσεις 2 ου Βαθμού. ρωτήσεις αντικειμενικού τύπουθέμα Α1- 3. Εξισώσεις ου Βαθμού 3. Η εξίσωση 3.3 Εξισώσεις ου Βαθμού Διδακτικό υλικό Άλγεβρας Α Λυκείου (Κεφάλαιο 3 ο ) Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς ρωτήσεις αντικειμενικού τύπουθέμα Α- Εξεταστέα ύλη

Διαβάστε περισσότερα

Γ Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1

Γ Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1 Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1 Εμβαδά Επίπεδων Σχημάτων & Πυθαγόρειο Θεώρημα Η συλλογή των ασκήσεων προέρχεται από μια ποικιλία πηγών, σημαντικότερες από τις οποίες είναι το Mathematica.gr, παλιότερα

Διαβάστε περισσότερα

Κεφ 3 ο. - Συναρτήσεις.

Κεφ 3 ο. - Συναρτήσεις. Μαθηματικά B Γυμνασίου Κεφ 3 ο. - Συναρτήσεις. Μέρος Α. Θεωρία. 1. Τι λέμε συνάρτηση; 2. Με τι αντιστοιχούμε κάθε σημείο Μ στο επίπεδο; 3. Πως λέγεται ο άξονας χ χ και πως ο άξονας ψ ψ; 4. Τι είναι το

Διαβάστε περισσότερα

ΑΝΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ

ΑΝΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Αν έχω τριώνυμο της μορφής :,. Υπολογίζω την Διακρίνουσα 4 Αν Δ> τότε η εξίσωση έχει άνισες ρίζες έστω Ομόσημο του α Ετερόσημο του α, τότε: Ομόσημο του α Αν Δ= τότε η εξίσωση έχει διπλή

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ

ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Τι ονομάζουμε εξίσωση ου βαθμού; o Εξίσωση ου βαθμού με ένα άγνωστο ονομάζουμε κάθε εξίσωση που γράφεται ή μπορεί να γραφεί στη μορφή με α π.χ 5 6 Τι ονομάζουμε εξίσωση ου βαθμού ελλιπούς

Διαβάστε περισσότερα

Α ΛYKEIOY ΆΛΓΕΒΡΑ Άλγεβρα. Μίλτος Παπαγρηγοράκης Χανιά

Α ΛYKEIOY ΆΛΓΕΒΡΑ Άλγεβρα. Μίλτος Παπαγρηγοράκης Χανιά Άλγεβρα Α ΛYKEIOY ΆΛΓΕΒΡΑ 09-00 Μίλτος Παπαγρηγοράκης Χανιά Ταξη: Α Γενικού Λυκείου Άλγεβρα Έκδοση 907 Η συλλογή αυτή διανέμεται δωρεάν σε ψηφιακή μορφή μέσω διαδικτύου προορίζεται για σχολική χρήση και

Διαβάστε περισσότερα

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και ΘΕΜΑ ο Δίνεται η συνάρτηση f με τύπο : f( ) α. Να βρείτε το πεδίο ορισμού της. β. Να βρείτε τα σημεία τομής της με τους άξονες αν υπάρχουν. γ. Αν α, β ρίζες της εξίσωσης: ΘΕΜΑ ο f ( ), να δείξετε ότι αβ+=0.

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης Τάξη Δ Εν. 1: Διανύσματα

Ασκήσεις Επανάληψης Τάξη Δ Εν. 1: Διανύσματα Ασκήσεις Επανάληψης Τάξη Δ 016-017 Εν. 1: Διανύσματα 1. Να ονομάσετε τα στοιχεία ενός διανύσματος.. Δίνεται το παραλληλόγραμμο ΑΒΓΔ, όπως φαίνεται στο σχήμα. Να χαρακτηρίσετε ΣΩΣΤΟ ή ΛΑΘΟΣ τις πιο κάτω

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΧ. ΧΡ Ενότητα 2: Αξιοσημείωτες Ταυτότητες 1. Να βρείτε τα αναπτύγματα: (α) 2

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΧ. ΧΡ Ενότητα 2: Αξιοσημείωτες Ταυτότητες 1. Να βρείτε τα αναπτύγματα: (α) 2 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΧ. ΧΡ. 015-016 Ενότητα : Αξιοσημείωτες Ταυτότητες 1. Να βρείτε τα αναπτύγματα: (α) χ - 4 = (β) 3χ + = (γ) 3 χ + = (δ) 3 χ - 3 = (ε) χ - ψχ + ψ = (στ) 4χ - 3ψ = (ζ) αβ-γαβ+γ = (η) (x-3ω

Διαβάστε περισσότερα

1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ 1 1.4 ΠΥΘΑΟΡΕΙΟ ΘΕΩΡΗΜΑ ΘΕΩΡΙΑ 1. Πυθαγόρειο θεώρηµα : Σε κάθε ορθογώνιο τρίγωνο το τετράγωνο της υποτείνουσας είναι ίσο µε το άθροισµα των τετραγώνων των καθέτων πλευρών. γ α α = β + γ β. Αντίστροφο Πυθαγορείου

Διαβάστε περισσότερα

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω. ΘΕΜΑ ΘΕΜΑ Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν: α β = 4 και αβ + αβ = 0 α) Να αποδείξετε ότι: α + β = 5. (Μονάδες 0) β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 3. Δίνεται ο πίνακας: 3 3 3 ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ ο. Ένα κουτί περιέχει άσπρες, μαύρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 5, οι μαύρες είναι 9, ενώ οι κόκκινες και οι πράσινες μαζί είναι 6. Επιλέγουμε

Διαβάστε περισσότερα

Ανισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /

Ανισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 / Ανισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 1 0 / 0 1 6 εκδόσεις τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΓΥΜΝΑΣΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΠΛΑΤΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 6/6/2014 Αριθμητικά.. ΤΑΞΗ: Β ΧΡΟΝΟΣ: 2 ώρες Ολογράφως: ΥΠ. ΚΑΘΗΓΗΤΗ:......

Διαβάστε περισσότερα

Άσκηση 4η Να βρεθεί ο τριψήφιος αριθμός που τα ψηφία του είναι ανάλογα των αριθμών 1, 2, 3 κατά σειρά και διαιρείται από το 9. Άσκηση 7η.

Άσκηση 4η Να βρεθεί ο τριψήφιος αριθμός που τα ψηφία του είναι ανάλογα των αριθμών 1, 2, 3 κατά σειρά και διαιρείται από το 9. Άσκηση 7η. Άσκηση 1η Αν η εξίσωση είναι αόριστη, τότε: α) Να δειχθεί ότι η εξίσωση είναι αδύνατη β) Να λυθεί η ανίσωση γ) Αν ισχύει ότι να βρεθεί ο αριθμός Α Άσκηση 2η Αν η εξίσωση έχει λύση μεγαλύτερη του και η

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ ΘΕΜΑ 1 Ο Δίνεται η συνάρτηση f ( x) x ( 1) x 3 με 0 Γ1. Να λυθεί η εξίσωση f ( x) 0 για λ = -1 Γ. Για λ=3, να λυθεί η ανίσωση f ( x) 0 Γ3. Να αποδείξετε ότι στην

Διαβάστε περισσότερα

f (x) = x 3 - x και g (x) = x 2-1.

f (x) = x 3 - x και g (x) = x 2-1. ΠΑΡΑ ΕΙΓΜΑΤΑ ΕΡΩΤΗΣΕΩΝ ΑΠΟ ΤΗ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ: «Συναρτήσεις» Ερωτήσεις ανάπτυξης. Σε µια κοινότητα όλοι οι καταναλωτές νερού πληρώνουν: 500 δρχ. πάγιο κάθε µήνα, ανεξαρτήτως αν καταναλώνουν ή όχι νερό

Διαβάστε περισσότερα

( ) = 2. f x α(x x )(x x ) f x α(x ρ) x1,2. 1, x

( ) = 2. f x α(x x )(x x ) f x α(x ρ) x1,2. 1, x ΜΟΡΦΕΣ ΤΡΙΩΝΥΜΟΥ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ Τριώνυµο λέγεται ένα πολυώνυµο της µορφής : f x = αx + βx+ γ, όπου α, β, γ R µε α. ( ) ιακρίνουσα και ρίζες του τριωνύµου f( x) = αx + βx+ γ λέγεται η διακρίνουσα και

Διαβάστε περισσότερα

Γ Ρ Α Π Τ Ε Σ Π Ρ Ο Α Γ Ω Γ Ι Κ Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ

Γ Ρ Α Π Τ Ε Σ Π Ρ Ο Α Γ Ω Γ Ι Κ Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ ΛΑΝΙΤΕΙΟ ΓΥΜΝΑΣΙΟ ΛΕΜΕΣΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2014-2015 Γ Ρ Α Π Τ Ε Σ Π Ρ Ο Α Γ Ω Γ Ι Κ Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ ΘΕΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: 08/06/2015 ΤΑΞΗ: Β ΧΡΟΝΟΣ: 2 ώρες (10:30 12:30) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΜΗΜΑ:..

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ

ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Τι ονομάζουμε εξίσωση ου βαθμού; o Εξίσωση ου βαθμού με ένα άγνωστο ονομάζουμε κάθε εξίσωση που γράφεται ή μπορεί να γραφεί στη μορφή με α π.χ 5 6 Τι ονομάζουμε εξίσωση ου βαθμού ελλιπούς

Διαβάστε περισσότερα