Η ομάδα Galois τής F(t)/F και το Υπόσωμα σταθερών Στοιχείων τής F(t)/F

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Η ομάδα Galois τής F(t)/F και το Υπόσωμα σταθερών Στοιχείων τής F(t)/F"

Transcript

1 Η ομάδα Galois τής F(t)/F και το Υπόσωμα σταθερών Στοιχείων τής F(t)/F Νίκος Μαρμαρίδης 23 Ιανουαρίου 2017 Π Έστω ότι F είναι ένα σώμα, ότι F [t] είναι ο πολυωνυμικός δακτύλιος στη μεταβλητή t και ότι F (t) είναι το σώμα των ρητών συναρτήσεων στη μεταβλητή t. Θα αποδείξουμε ότι η ομάδα Galois Gal F (F (t)) τής επέκτασης F(t)/F αποτελείται ακριβώς από τις απεικονίσεις σ : F (t) F (t), f(t) σ ( ) f(t) := f(σ(t)) g(σ(t)), όπου σ(t) = at+b ct+d με a, b, c, d F και ad bc 0. Κατόπιν, θα αποδείξουμε ότι στην περίπτωση που το σώμα F είναι χαρακτηριστικής μηδέν, τότε το υπόσωμα F (t) Gal F (F (t)) των σταθερών στοιχείων τής Gal F (F (t)) ισούται με F. 1 Προαπαιτούμενα Για την κατανόηση των επόμενων είναι απαραίτητη μια στοιχειώδης γνώση τής Θεωρίας Galois. Στο τέλος τής παρούσας σημείωσης παραθέτουμε σχετική βιβλιογραφία. 1.1 Το Σώμα Κλασμάτων Έστω D μια ακέραια περιοχή και Q το σώμα κλασμάτων της. Θα παριστάνουμε τα στοιχεία τού Q ως «κλάσματα» a b, όπου a, b D, b 0. Έστω ι : D Q η κανονική εμφύτευση ι : D Q, a ι(a) := a 1 Ως γνωστόν, το σώμα κλασμάτων Q τής D χαρακτηρίζεται από την εξής καθολική ιδιότητα: Αν K είναι ένα σώμα και αν ϕ : D K είναι ένας ομομορφισμός δακτυλίων1, τότε υπάρχει ένας μοναδικός ομομορφισμός ψ : Q K, ο οποίος συμπληρώνει το διάγραμμα 1Δεχόμαστε ότι οι όλοι οι θεωρούμενοι δακτύλιοι R διαθέτουν μοναδιαίο στοιχείο 1 R και ότι όλοι οι ομομορφισμοί δακτυλίων ϕ : R S απεικονίζουν το 1 R στο 1 S. 1

2 D K ϕ ι Q στο μεταθετικό διάγραμμα D ι Q K ϕ ψ Ο μοναδικός ομομορφισμός ψ : Q K ορίζεται ως ψ( a b ) := ϕ(a)ϕ(b) Το Λήμμα Gauss Έστω ότι D είναι μια περιοχή μονοσήμαντης παραγοντοποίησης και ότι Q είναι το αντίστοιχο σώμα κλασμάτων της. Το επόμενο αποτελεί γενίκευση τού γνωστού Λήμματος Gauss, βλ. [12], το οποίο ισχύει για D = Z και Q = Q. Θεώρημα 1.2.1: Το Λήμμα Gauss Έστω f(x) ένα πολυώνυμο τού D[x]. Αν το f(x) παραγοντοποιείται σε ένα γινόμενο δύο μη σταθερών πολυωνύμων τού Q[x], τότε παραγοντοποιείται σε ένα γινόμενο δύο μη σταθερών πολυωνύμων τού D[x]. Για μια απόδειξη βλ. [6] και [9]. 2 Η Ομάδα Gal F (E) Όταν E είναι ένα σώμα και F είναι ένα υπόσωμά του, τότε ονομάζουμε το E μια επέκταση τού σώματος F και συνήθως αυτό το δηλώνουμε γράφοντας E/F. Συχνά επίσης γράφουμε F E, για να δηλώσουμε ότι το F είναι ένα υπόσωμα τού E. Θεωρούμε την ομάδα Aut(E) = {σ : E E σ αυτομορφισμός2 τού E} των αυτομορφισμών τού σώματος E και κατόπιν σχηματίζουμε το υποσύνολο: Gal F (E) := {σ Aut(E) σ(a) = a, a F } Με άλλα λόγια το G F (E) αποτελείται από τους αυτομορφισμούς τού E που διατηρούν σταθερό κάθε στοιχείο τού υποσώματος F. 2δλδ. ομομορφισμός, «1 1» και «επί» Ν. Μ 2

3 Είναι εύκολη η διαπίστωση ότι το G F (E) είναι μια υποομάδα τής Aut(E), η οποία ονομάζεται η ομάδα Galois τής επέκτασης E/F. Μπορούμε να εκτελέσουμε και την αντίστροφη διαδικασία. Θεωρούμε μια υποομάδα H τής ομάδας Aut(E) και σχηματίζουμε το σύνολο E H := {α E h(α) = α, h H} Είναι επίσης εύκολη η διαπίστωση ότι το E H είναι ένα υπόσωμα τού E, το οποίο ονομάζεται το υπόσωμα των σταθερών στοιχείων τής H. Είναι φανερό ότι για οποιαδήποτε επέκταση σωμάτων E/F ισχύει F E G F (E), χωρίς ωστόσο να ισχύει απαραίτητα η ισότητα F = E G F (E). Για παράδειγμα, η ομάδα Galois G Q (Q( 3 2)) τής επέκτασης Q( 3 2)/Q ισούται με την τετριμμένη ομάδα G = {Id Q( 3 2)) } και ως εκ τούτου, το σώμα σταθερών στοιχείων Q( 3 2) G ισούται με το Q( 3 2). Στην περίπτωση που ισχύει η ισότητα F = E G F (E), τότε λέμε ότι η επέκταση E/F ικανοποιεί τη τη συνθήκη Galois. 2.1 Η Ομάδα G F (F(t)) Έστω F (t) το σώμα κλασμάτων (ρητών συναρτήσεων) τού πολυωνυμικού δακτυλίου F [t], όπου F είναι ένα σώμα. Θα προσδιορίσουμε την ομάδα Galois G F (F (t)) τής επέκτασης F (t)/f. Έστω y = u(t) v(t) οποιοδήποτε στοιχείο από το σύνολο F (t)\f. Χωρίς περιορισμό τής γενικότητας, μπορούμε να δεχθούμε ότι τα u(t) και v(t) είναι σχετικώς πρώτα πολυώνυμα τού k[t]. Θεωρούμε την αλυσίδα σωμάτων F < F (y) F (t) Έστω m = max{ u(t), v(t)} ο μέγιστος των βαθμών των u και v. Πρόταση 2.1.1: Η Επέκταση F (t)/f (y), y / F, είναι πεπερασμένη Ο βαθμός [F (t) : F (y)] ισούται με m και το y είναι υπερβατικό υπεράνω τού F. Απόδειξη. Έστω το πολυώνυμο p(x) = yv(x) u(x) τού πολυωνυμικού δακτυλίου F (y)[x]. Είναι p(t) = yv(t) u(t) = 0. Ισχυριζόμαστε ότι το p(x) είναι 0. Αν ήταν το p(x) = 0, τότε θα ήταν yv(x) = u(x). Αφού v(x) = i v ix i 0, v i F, i, υπάρχει κάποιο v j 0. Έστω ότι u(x) = s u sx s 0, u s F, s. Τότε η ισότητα yv(x) = u(x) θα έδινε yv j = u j και ως εκ τούτου θα ήταν y = u j vj 1 F, το οποίο αντίκειται στην υπόθεση ότι y / F. Ως εκ τούτου, p(x) 0. Παρατηρούμε ότι p = m 1, αφού διαφορετικά δεν μπορεί να ισχύει ότι p(t) = 0. 3 Ν. Μ

4 Επομένως, η F (t)/f (y) είναι μια αλγεβρική επέκταση βαθμού m. Επιπλέον το y είναι υπερβατικό υπεράνω τού F, αφού διαφορετικά το t θα ήταν αλγεβρικό υπεράνω τού F, το οποίο είναι άτοπο. Ισχυριζόμαστε ότι το p(x) είναι ένα ανάγωγο πολυώνυμο τού F (y)[x]. Σύμφωνα με το Λήμμα Gauss, βλ. Θεώρημα για D = F [y] και Q = F (y), αρκεί να δείξουμε ότι το p(x) δεν παραγοντοποιείται στον F [y][x] ως γινόμενο δύο πολυώνυμων που και τα δυο τους έχουν βαθμό3 < m. Έστω ότι p(x) = r(x)q(x), r(x), q(x) F [y][x] = F [y, X], ( ). Επειδή ο βαθμός τού p(x) ως προς y ισούται με 1 ή το r(x) ή το q(x) ανήκει στον πολυωνυμικό δακτύλιο F [X] F [y, X]. Χωρίς περιορισμό τής γενικότητας μπορούμε να υποθέσουμε ότι το r(x) ανήκει στον F [X]. Τότε για το q(x) F [y, X], έχουμε q(x) = q 1 (X) + yq 2 (X), q 1 (X), q 2 (X) F [X], διότι ο βαθμός τού p(x) ως πολυώνυμο τού y ισούται με 1. Έτσι προκύπτει: p(x) =yv(x) u(x) = r(x)q(x) = r(x)(q 1 (X) + yq 2 (X)) = r(x)q 1 (X) + yr(x)q 2 (X) και συνεπώς yv(x) = yr(x)q 2 (X), u(x) = r(x)q 1 (X). Επομένως, το r(x) είναι ένας κοινός διαιρέτης των u(x) και v(x) στον πολυωνυμικό δακτύλιο F [X]. Αλλά από την υπόθεση τα πολυώνυμα u(x) και v(x) είναι σχετικώς πρώτα και ως εκ τούτου, το r(x) είναι ένα αντιστρέψιμο στοιχείο τού F [X], δηλαδή είναι r(x) = 0. Έτσι από την ( ) προκύπτει ότι p(x) = q(x) και ότι το p(x) είναι ένα ανάγωγο πολυώνυμο τού F (y)[x]. Άρα, το ελάχιστο πολυώνυμο τού t υπεράνω τού F (y) είναι τής μορφής λp(x), λ F (y) και [F (t) : F (y)] = m. Θα υπολογίσουμε τώρα την ομάδα Galois G F (F (t)) τής επέκτασης F (t)/f. Κατ αρχάς παρατηρούμε ότι αν ένας αυτομορφισμός σ τού F (t) ανήκει στην ομάδα Galois G F (F (t)), τότε ο σ προσδιορίζεται πλήρως από την τιμή σ(t). Κατ αρχάς για μια πολυωνυμική έκφραση f(t) = n i=0 a it i F [t], a i F, i είναι n n σ(f(t)) = σ( a i t i ) = a i σ(t) i = f(σ(t)) i=0 και για μια ρητή έκφραση f(t) είναι ( ) f(t) σ = σ(f(t) 1 ) = σ(f(t))σ( 1 ) = σ(f(t))σ() 1 = f(σ(t))g(σ(t)) 1 = f(σ(t)) g(σ(t)) Επομένως, κάθε στοιχείο σ G F (F (t)) προσδιορίζεται πλήρως από την τιμή σ(t) Συμβολίζουμε με L το εξής υποσύνολο τού σώματος F (t): { } at + b L := ad cb 0 ct + d 3 ως προς X i=0 Ν. Μ 4

5 Θεώρημα 2.1.2: Χαρακτηρισμός των Στοιχείων τής G F (F (t)) Η αντιστοιχία χ : G F (F (t)) L, σ χ(σ) := σ(t) είναι μια αμφιρριπτική («1 1» και «επί») απεικόνιση. Απόδειξη. Κατ αρχάς θα δείξουμε ότι η χ είναι όντως μια απεικόνιση, δηλαδή ότι η εικόνα σ(t) ανήκει στο L. Έστω ότι σ(t) = f(t) F (t). Παρατηρούμε ότι σ(f (t)) = F (σ(t)) και επειδή ο σ είναι ένας αυτομορφισμός, έχουμε F (σ(t)) = F (t). Ως εκ τούτου, το σ(t) δεν είναι στοιχείο τού F και τώρα μπορούμε να υποθέσουμε χωρίς περιορισμό τής γενικότητας ότι τα πολυώνυμα f(t) και τού F [t] είναι σχετικώς πρώτα. Από την Πρόταση 2.1.1, γνωρίζουμε ότι [F (t) : F (σ(t))] = [ F (t) : F ( )] f(t) = m = max{ f(t), } και αφού F (σ(t)) = F (t), διαπιστώνουμε ότι m = 1 και ότι ως εκ τούτου, τα πολυώνυμα f(t) και είναι τής μορφής f(t) = at+b, = ct+d. Αφού σ(t) = f(t) κ, κ F, συμπεραίνουμε ότι τα στοιχεία f(t) = at + b, = ct + d τού F διανυσματικού χώρου είναι ( F γραμμικώς ) ανεξάρτητα. Αυτό συμβαίνει ακριβώς a b τότε όταν ο πίνακας M = είναι αντιστρέψιμος, το οποίο ισχύει ακριβώς c d τότε όταν η ορίζουσα det M = ad cb είναι 0. Συνεπώς, το σ(t) ανήκει στο L και η αντιστοιχία χ είναι μια καλά ορισμένη απεικόνιση. Σύμφωνα με αυτά που είπαμε πριν από τη διατύπωση τού θεωρήματος, η χ είναι μια ενριπτική («1 1») απεικόνιση, αφού από σ(t) = χ(σ) = χ(τ) = τ(t), σ, τ G F (E), έπεται ότι σ = τ. Υπολείπεται η απόδειξη ότι η χ είναι μια επιρριπτική («επί») απεικόνιση. Για κάθε u(t) L, θεωρούμε τον ομομορφισμό εκτίμησης ev u(t) : F [t] F (t), p(t) ev u(t) (p(t)) := p(u(t)) Επειδή το F (t) είναι το σώμα κλασμάτων τού πολυωνυμικού δακτυλίου F [t] και σύμφωνα με όσα είπαμε στην Ενότητα 1.1, υπάρχει ένας (μοναδικός) ομομορφισμός σωμάτων ψ : F (t) F (t), ο οποίος συμπληρώνει το διάγραμμα F [t] ι F (t) F (t) ev u(t) στο μεταθετικό διάγραμμα 5 Ν. Μ

6 F [t] ι F (t) F (t) ev u(t) ψ (Σημειώστε ότι ταυτίζουμε τον δακτύλιο F [t] με την εικόνα του ι(f [t]), δηλαδή ταυτίζουμε τα στοιχεία p(t) F [t] με τα στοιχεία p(t) 1 F (t) και ότι ως εκ τούτου, ο μονομορφισμός ι : F [t] F (t), p(t) p(t) 1 αποτελεί την κανονική εμφύτευση.) Ο ψ είναι μονομορφισμός, αφού πρόκειται για ομομορφισμό σωμάτων. Για κάθε κ F, είναι ψ(κ) = ψ ι(κ) = ev u(t) (κ) = κ. Με άλλα λόγια ο ψ διατηρεί τα στοιχεία τού F σταθερά. Επομένως, ψ(f (t)) = F (ψ(t)) = F (u(t)). Tώρα είναι [F (t) : F (u(t))] = 1, διότι το u(t) ανήκει στο σύνολο L και γι αυτό F (t) = F (u(t)). Συνεπώς, ο μονομορφισμός ψ είναι επιμορφισμός και έτσι τελικά προκύπτει ότι ο ψ ανήκει στην ομάδα Galois G F (F (t)). Επιπλέον, είναι ψ(t) = ψ ι(t) = ev u(t) (t) = u(t). Άρα, για κάθε u(t) L υπάρχει ψ G F (F (t)) με χ(ψ) = ψ(t) = u(t) και η χ : G F (F (t)) L είναι μια επιρριπτική απεικόνιση. 2.2 Η Επέκταση F (t)/f με charf = 0 ικανοποιεί τη Συνθήκη Galois Θεώρημα 2.2.1: charf = 0, F (t) G F (F (t)) = F Αν charf = 0, τότε το σώμα σταθερών στοιχείων τής ομάδας Galois G F (F (t)) τής επέκτασης F (t)/f ισούται με F. Απόδειξη. Όταν H είναι μια υποομάδα τής G F (F (t)), τότε F (t) G F (F (t)) F (t) H. Συνεπώς για να αποδείξουμε τον ισχυρισμό το θεωρήματος, αρκεί να βρούμε μια υποομάδα τής G F (F (t)) με F H = F. Θεωρούμε τη ρητή συνάρτηση u(t) = t+1 F F (t), η οποία προφανώς ανήκει στο σύνολο L που ορίσαμε στην προηγούμενη ενότητα. Από το Θεώρημα 2.1.2, γνωρίζουμε ότι υπάρχει σ G F (F (t)) με σ(t) = t+1 F. Σχηματίζουμε την κυκλική υποομάδα σ τής G F (F (t)). Θα δείξουμε ότι F σ = F. Όταν f(t) F σ, τότε n N, είναι f(t) = σn ( ) f(t) = f(σn (t)) g(σ n (t)) = f(t + n1 F ) g(t + n1 F ), (*) Αφού 0, το σύνολο των θέσεων μηδενισμού τού g είναι πεπερασμένο. Επειδή το F είναι ένα άπειρο σώμα χαρακτηριστικής 0, υπάρχει κάποιο ρ1 F F, ρ N με g(ρ1 F ) 0. Θεωρούμε το σύνολο M = {m N g(ρ1 F + m1 F ) = 0}. Το M είναι πεπερασμένο και το σύνολο {ρ1 F + n1 F n N \ M} Ν. Μ 6

7 είναι άπειρο, διότι η απεικόνιση N\M F, n F, ρ1 F +n1 F είναι «1 1», αφού το F είναι ένα σώμα με charf = 0. Λόγω τής (*), έχουμε: f(ρ1 F ) g(ρ1 F ) = f(ρ1 F + n1 F ) g(ρ1 F + n1 F ), n N \ M Ή ισοδύναμα f(ρ1 F )g(ρ1 F + n1 F ) g(ρ1 F )f(ρ1 F + n1 F ) = 0, n N \ M Ως εκ τούτου, το πολυώνυμο p(t) = f(ρ1 F )g(ρ1 F + t) g(ρ1 F )f(ρ1 F + t) ισούται με το μηδενικό πολυώνυμο, αφού κάθε στοιχείο τού F τής μορφής n1 F n N\M είναι θέση μηδενισμού του. Άρα, f(ρ1 F )g(ρ1 F +t) = g(ρ1 F )f(ρ1 F +t) ή ισοδύναμα f(ρ1 F ) g(ρ1 F ) = f(ρ1 F +t) g(ρ1 F +t). Αλλά, f(ρ1 F ) g(ρ1 F ) = f(ρ1 F + t) g(ρ1 F + t) = f(σρ (t)) g(σ ρ (t)) = σρ ( ) f(t) = f(t) Συνεπώς, όταν f(t) F (t) σ, τότε f(t) F, δηλαδή F (t) σ = F και ως εκ τούτου, F (t) G F (F (t)) = F. Πόρισμα 2.2.2: Μια επέκταση που ικανοποιεί τη Συνθήκη Galois χωρίς να είναι αλγεβρική Η επέκταση F (t)/f με charf = 0 ικανοποιεί τη συνθήκη Galois, αλλά δεν αλγεβρική. Απόδειξη. Ως γνωστόν, η F (t)/f είναι μια υπερβατική επέκταση και από το προηγούμενο θεώρημα διαπιστώσαμε ότι ικανοποιεί τη συνθήκη Galois. Το παραπάνω πόρισμα έχει τη σημασία του, αφού η θεωρία Galois αναπτύσσεται κυρίως για επεκτάσεις E/F που ικανοποιούν τη συνθήκη Galois και έχουν βαθμό [E : F ] < ή γενικότερα είναι αλγεβρικές. Είναι πολύ φυσικό λοιπόν να αναρωτηθεί κανείς για το αν υπάρχουν μη αλγεβρικές επεκτάσεις, οι οποίες να ικανοποιούν τη συνθήκη Galois. Σύμφωνα με το παραπάνω πόρισμα, μια ακριβώς τέτοια περίπτωση είναι η επέκταση F (t)/f με charf = 0. Αναφορές [1] E. Artin. Galois Theory. Notre Dame Mathematical Lectures, Number 2, Dover Publications, ed Revised, Ν. Μ

8 [2] A. Baker. An Introduction to Galois Theory, January 23, ajb/dvi-ps/galois.pdf [3] E. Conrad. Expository Papers kconrad/blurbs/ [4] D. S. Dummit and R. M. Foote. Abstract algebra. Wiley, Hoboken, NJ, 3rd ed edition, [5] M. Holz. Repetitorium Algebra. Binomi, Μετάφραση: Ν. Μαρμαρίδης. Εκδόσεις Συμμετρία, [6] T. W. Hungerford. Abstract algebra: an introduction. Springer (Graduate Texts in Mathematics 73), [7] N. Jacobson. Basic Algebra I. W.H. Freemann and Company, [8] C. Karpfinger and E. Meyberg. Algebra: Gruppen - Ringe - Körper. Spektrum Akademischer Verlag, Heidelberg, [9] J. S. Milne. Fileds and Galois theory, August 31, [10] P. Morandi. Field and Galois theory (Graduate Texts in Mathematics, 167) Springer-Verlag, New York, [11] D. Winter. The stucture of fields, GTM volume 16. Springer-Verlag, New York, [12] J. J. Rotman. Galois Theory, Universitext. Springer-Verlag, New York, Μετάφραση: Ν. Μαρμαρίδης Θεωρία Galois, Πανεπιστημιακά Μαθηματικά Κείμενα 1. Leaderbooks, Ν. Μ 8

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

1.3 Ιδεώδη και Περιοχές κυρίων Ιδεωδών 1.3. Ι Π Ι. Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι:

1.3 Ιδεώδη και Περιοχές κυρίων Ιδεωδών 1.3. Ι Π Ι. Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι: 13 Ι Π Ι Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι: n N {0}, ( ) + n = = n + ( ) και ( ) + ( ) = (**) Ονομάζουμε επικεφαλής συντελεστή ενός μη μηδενικού πολυωνύμου f, τον συντελεστή f(i)

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Ιδεώδη και Περιοχές κυρίων Ιδεωδών Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών 13 Ι Π Ι Για το σύμβολο δεχόμαστε ότι n N {0},

Διαβάστε περισσότερα

Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z).

Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z). Παράρτηµα Α 11.1 Εισαγωγή Οπως έχει αναφερθεί ήδη προοδευτικά στο δεύτερο µέρος του παρόντος συγγράµµατος χρησιµοποιούνται ϐασικές έννοιες άλγεβρας. Θεωρούµε ότι οι έννοιες αυτές είναι ήδη γνωστές από

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιμοποιώντας τανυστικά γινόμενα και εφαρμόζοντας το θεώρημα των Wedderbur-Art ( 33) θα αποδείξουμε δύο θεμελιώδη θεωρήματα που αφορούν κεντρικές απλές άλγεβρες *

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι ΚΕΦΑΛΑΙΟ : Ημιαπλοί Δακτύλιοι Είδαμε στο κύριο θεώρημα του προηγούμενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισμα απλών προτύπων Εδώ θα χαρακτηρίσουμε όλους

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιμοποιώντας τανυστικά γινόμενα και εφαρμόζοντας το θεώρημα των Wedderbur-rt ( 33) θα αποδείξουμε δύο θεμελιώδη θεωρήματα που αφορούν κεντρικές απλές άλγεβρες θεώρημα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z) ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάλαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύλιο Θα περιοριστούμε στα πλέον απαραίτητα για αυτά που ακολουθούν στα άλλα κεφάλαια Η κατευθυντήρια

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Στο κεφάλαιο αυτό μελετάμε δακτυλίους του Art χρησιμοποιώντας το ριζικό του Jacobso. Ως εφαρμογή αποδεικνύουμε ότι κάθε δακτύλιος του Art είναι και της Noether. 4.1. Δακτύλιοι

Διαβάστε περισσότερα

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο Αλγεβρικές Δομές ΙΙ 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο C(R) = {a R/ax = xa, για κάθε x R} είναι υποδακτύλιος του R, και λέγεται κέντρο του δακτυλίου R. Ά σ κ η σ η 1.2

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας

Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας Δώδεκα Αποδείξεις του Θεμελιώδους Θεωρήματος της Άλγεβρας Mία εκδοχή της αρχικής απόδειξης του Gauss f ( z) = T ( z) + iu ( z) T = r cos φ + Ar 1 cos(( 1) φ + α) + + L cosλ U = r si φ + Ar 1 si(( 1) φ

Διαβάστε περισσότερα

Ενότητα: Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Ενότητα: Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών 12 Ο Δ Π Μ δακτύλιο με τις πράξεις τού R και

Διαβάστε περισσότερα

Απλές επεκτάσεις και Αλγεβρικές Θήκες

Απλές επεκτάσεις και Αλγεβρικές Θήκες Κεφάλαιο 7 Απλές επεκτάσεις και Αλγεβρικές Θήκες Στο κεφάλαιο αυτό εξετάζουµε τις απλές επεκτάσεις σωµάτων και τις συγκρίνουµε µε τις επεκτάσεις Galois. Επίσης εξετάζουµε τις αλγεβρικά κλειστές επεκτάσεις

Διαβάστε περισσότερα

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο. Κεφάλαιο Πρότυπα Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο Ορισμοί και Παραδείγματα Παραδοχές Στo βιβλίο αυτό θα κάνουμε τις εξής παραδοχές Χρησιμοποιούμε προσθετικό συμβολισμό

Διαβάστε περισσότερα

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή ) Θεωρία Galos Πρόχειρες σημειώσεις 0- (εκδοχή -7-0) Περιεχόμενα 0 Υπενθυμίσεις και συμπληρώματα Ανάγωγα πολυώνυμα Ανάγωγα πολυώνυμα και σώματα Χαρακτηριστική σώματος Απλές ρίζες πολυωνύμων Ασκήσεις 0 Επεκτάσεις

Διαβάστε περισσότερα

Το Θεώρημα CHEVALLEY-WARNING

Το Θεώρημα CHEVALLEY-WARNING Το Θεώρημα CHEVALLEY-WARNING Ανθή Ζερβού Διδάσκων: Ιωάννης Αντωνιάδης 3/02/2015 1 ΠΕΠΕΡΑΣΜΕΝΑ ΣΩΜΑΤΑ Ορισμός. Εστω Κ σώμα. Χαρακτηριστική του Κ, συμβολίζεται ch(k), είναι ο ελάχιστος φυσικός αριθμός n

Διαβάστε περισσότερα

irr Q,b (x) = x 3 2, irr Q,ω (x) = x 2 + x + 1 irr (Q(ω),b) (x) = irr (Q,b) (x) = x 3 2,

irr Q,b (x) = x 3 2, irr Q,ω (x) = x 2 + x + 1 irr (Q(ω),b) (x) = irr (Q,b) (x) = x 3 2, Θεωρία Galois Θεοδώρα Θεοχαρη-Αποστολιδη Χαρά Χαραλαμπους Οι σημειωσεις αυτες θα συμπληρωνονται κατα τη διαρκεια των μαθηματων. 13 Δεκεμβρίου 2014 Περιεχόμενα 3 Μεταθέσεις και ομάδες Galois 41 3.1 Οι ρίζες

Διαβάστε περισσότερα

G 1 = G/H. I 3 = {f R : f(1) = 2f(2) ή f(1) = 3f(2)}. I 5 = {f R : f(1) = 0}.

G 1 = G/H. I 3 = {f R : f(1) = 2f(2) ή f(1) = 3f(2)}. I 5 = {f R : f(1) = 0}. Αλγεβρα ΙΙ, Εαρινο Εξαμηνο 2017 18 Ασκησεις που συζητηθηκαν στο φροντιστηριο Φροντιστήριο 1. 1. Δίνεται η ομάδα G = Z 4 Z 8, το στοιχείο a = (1, 2) της G, και η υποομάδα H =< a > της G. Εστω G 1 = G/H.

Διαβάστε περισσότερα

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών Κεφάλαιο 1 Προκαταρκτικές Έννοιες 1.1 Δακτύλιοι,

Διαβάστε περισσότερα

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι.

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι. Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη Τσουκνίδας Ι. 2 Περιεχόμενα 1 Εισαγωγή στα πεπερασμένα σώματα 5 1.1 Μάθημα 1..................................... 5 1.1.1

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Bursde a b Θα αποδείξουμε εδώ ότι κάθε ομάδα τάξης pq ( p, q πρώτοι) είναι επιλύσιμη Το θεώρημα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιμοποίησε τη νέα

Διαβάστε περισσότερα

Ε Μέχρι 18 Μαΐου 2015.

Ε Μέχρι 18 Μαΐου 2015. Ε Μέχρι 18 Μαΐου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες άρα

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Αʹ. Στοιχεία από την Άλγεβρα

ΠΑΡΑΡΤΗΜΑ Αʹ. Στοιχεία από την Άλγεβρα ΠΑΡΑΡΤΗΜΑ Αʹ Στοιχεία από την Άλγεβρα Στο Παράρτημα αυτό, το οποίο παρατίθεται για να συμβάλει στην αυτοδυναμία του βιβλίου, ο αναγνώστης θα μπορεί να προστρέχει για αρωγή σε έννοιες και αποτελέσματα που

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Θεωρία Sylow. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Θεωρία Sylow. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Θεωρία Sylow Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 2 Θεωρία Sylow 21 Τα Θεωρήματα Sylow Ορισμός 211 Μια ομάδα (G, ) τάξης p α, όπου

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Το Θεώρημα Jordan Hölder. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Το Θεώρημα Jordan Hölder. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Το Θεώρημα Jordan Hölder Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 3 Το Θεώρημα Jordan Hölder 31 Προκαταρκτικές Έννοιες 311 Υποορθόθετες

Διαβάστε περισσότερα

s G 1 ). = R, Z 2 Z 3 = Z6. s, t G) s t = st. 1. H = G 4. [G : H] = a G ah = Ha.

s G 1 ). = R, Z 2 Z 3 = Z6. s, t G) s t = st. 1. H = G 4. [G : H] = a G ah = Ha. Αλγεβρα ΙΙ Εαρινο Εξαμηνο 2017 18 Διάλεξη 1 Ενότητα 1. Ομάδες-Πηλίκο: Κρατήσαμε σταθερή μια ομάδα G με ταυτοτικό το ι και μια υποομάδα H της G. Συμβολίσαμε με G 1 το G/H (το σύνολο των αριστερών συμπλόκων

Διαβάστε περισσότερα

a pn 1 = 1 a pn = a a pn a = 0,

a pn 1 = 1 a pn = a a pn a = 0, Θεωρία Galois Θεοδώρα Θεοχαρη-Αποστολιδη Χαρά Χαραλαμπους Οι σημειωσεις αυτες θα συμπληρωνονται κατα τη διαρκεια των μαθηματων. 14 Ιανουαρίου 2015 Θ. Θεοχάρη-Αποστολίδη, Χ. Χαραλάμπους, Θεωρία Galois 60

Διαβάστε περισσότερα

L = F +. Είναι, 1 F, άρα και 1 L. Επεκτείνουµε τις πράξεις του F έτσι ώστε

L = F +. Είναι, 1 F, άρα και 1 L. Επεκτείνουµε τις πράξεις του F έτσι ώστε ΕΠΕΚΤΑΣΕΙΣ ΣΩΜΑΤΟΣ Προκαταρκτικά Σώµα = Αντιµεταθετικό σώµα, χαρακτηριστικής µηδενός Τα σώµατα αυτά καλούνται και αριθµητικά σώµατα Θα τα συµβολίζουµε µε τα γράµµατα F, F, L κλπ Έστω ότι κάποια ανάγκη

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Ευθέα Γινόμενα Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Ευθέα Γινόμενα Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Ευθέα Γινόμενα Ομάδων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 3 Ευθέα Γινόμενα Ομάδων Για την περαιτέρω ανάπτυξη τής θεωρίας θα χρειαστούμε

Διαβάστε περισσότερα

Νίκος Μαρμαρίδης. Σημειώσεις στη. Θεωρία Δακτυλίων

Νίκος Μαρμαρίδης. Σημειώσεις στη. Θεωρία Δακτυλίων Νίκος Μαρμαρίδης Σημειώσεις στη Θεωρία Δακτυλίων Ιωάννινα 2014 Περιεχόμενα 1 Αρχικές Έννοιες Δακτυλίων 1 1.1 Δακτύλιοι................................... 1 1.2 Ομομορφισμοί Δακτυλίων..........................

Διαβάστε περισσότερα

a b b < a > < b > < a >.

a b b < a > < b > < a >. Θεωρια Δακτυλιων και Modules Εαρινο Εξαμηνο 2016 17 Διάλεξη 1 Ενότητα 1. Επανάληψη: Προσθετικές ομάδες, δακτύλιοι, αντιμεταθετικοί δακτύλιοι, δακτύλιοι με μοναδιαίο στοιχείο, παραδείγματα. Συμφωνήσαμε

Διαβάστε περισσότερα

Βασική Άλγεβρα. Ασκήσεις (εκδοχή )

Βασική Άλγεβρα. Ασκήσεις (εκδοχή ) Βασική Άλγεβρα Ασκήσεις 05-6 (εκδοχή 8--05) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόμενα σελίδα Ασκήσεις Διαιρετότητα στους ακέραιους, ισοτιμίες Ασκήσεις Ακέραιοι odulo, Θεώρημα του Euler

Διαβάστε περισσότερα

Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη

Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη Κεφάλαιο 0 Μεταθετικοί ακτύλιοι, Ιδεώδη Το κεφάλαιο αυτό έχει προπαρασκευαστικό χαρακτήρα Θα καθιερώσουµε συµβολισµούς και θα υπενθυµίσουµε ορισµούς και στοιχειώδεις προτάσεις για δακτύλιους και ιδεώδη

Διαβάστε περισσότερα

Στο κεφάλαιο αυτό εφαρµόζουµε τη Θεωρία Galois, όπως αυτή αναπτύχθηκε στα δύο προηγούµενα κεφάλαια, στην περίπτωση των πεπερασµένων σωµάτων.

Στο κεφάλαιο αυτό εφαρµόζουµε τη Θεωρία Galois, όπως αυτή αναπτύχθηκε στα δύο προηγούµενα κεφάλαια, στην περίπτωση των πεπερασµένων σωµάτων. Κεφάλαιο 4 Πεπερασµένα σώµατα Στο κεφάλαιο αυτό εφαρµόζουµε τη Θεωρία Galois, όπως αυτή αναπτύχθηκε στα δύο προηγούµενα κεφάλαια, στην περίπτωση των πεπερασµένων σωµάτων. 4.1 Βασικές Εννοιες Εστω F ένα

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Ομομορφισμοί και Πηλικοδάκτυλιοι Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών 14 Ο Π Ιδιαιτέρως, αν τα f(x), g(x) είναι σχετικώς

Διαβάστε περισσότερα

Βασική Άλγεβρα. Ασκήσεις (εκδοχή )

Βασική Άλγεβρα. Ασκήσεις (εκδοχή ) Βασική Άλγεβρα Ασκήσεις 0-4 (εκδοχή 5--04) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόµενα σελίδα Ασκήσεις ιαιρετότητα στους ακέραιους, ισοτιµίες Ασκήσεις Ακέραιοι odulo, Θεώρηµα του Euler 7

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους

Διαβάστε περισσότερα

Ε Μέχρι 31 Μαρτίου 2015.

Ε Μέχρι 31 Μαρτίου 2015. Ε Μέχρι 31 Μαρτίου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες

Διαβάστε περισσότερα

Κεφάλαιο 8. Το γενικό πολυώνυµο και το αντίστροφο πρόβληµα. 8.1 Το γενικό πολυώνυµο

Κεφάλαιο 8. Το γενικό πολυώνυµο και το αντίστροφο πρόβληµα. 8.1 Το γενικό πολυώνυµο Κεφάλαιο 8 Το γενικό πολυώνυµο και το αντίστροφο πρόβληµα Σε αυτό το κεφάλαιο αρχικά αποδεικνύουµε ότι υπάρχει επέκταση σωµάτων µε οµάδα Galois την S n. Για το σκοπό αυτό εξετάζουµε τα συµµετρικά πολυώνυµα.

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 17 Ιανουαρίου 2014

Α Δ Ι. Παρασκευή 17 Ιανουαρίου 2014 Α Δ Ι Α - Φ 10 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 17 Ιανουαρίου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι Χρησιμοποιώντας το θεώρημα του Weddebu για ημιαπλούς δακτυλίους, αναπτύσσουμε εδώ τις πρώτες προτάσεις από τη θεωρία των αναπαραστάσεων και αρακτήρων πεπερασμένων

Διαβάστε περισσότερα

a = a a Z n. a = a mod n.

a = a a Z n. a = a mod n. Αλγεβρα Ι Χειμερινο Εξαμηνο 2017 18 Διάλεξη 1 Ενότητα 1. Πράξεις: Πράξεις στο σύνολο S, ο πίνακας της πράξης, αντιμεταθετικές πράξεις. Προσεταιριστικές πράξεις, το στοιχείο a 1 a 2 a n. Η πράξη «σύνθεση

Διαβάστε περισσότερα

2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΛΓΕΒΡΙΚΕΣ ΔΟΜΕΣ

2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΛΓΕΒΡΙΚΕΣ ΔΟΜΕΣ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΛΓΕΒΡΙΚΕΣ ΔΟΜΕΣ Η θεωρία αριθμών και οι αλγεβρικές δομές τα τελευταία χρόνια χρησιμοποιούνται όλο και περισσότερο στην κρυπτολογία. Αριθμο-θεωρητικοί αλγόριθμοι χρησιμοποιούνται σήμερα

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i)

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i) 6 Δακτύλιοι και Πρότυπα 016-17 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Περιοχές κυρίων ιδεωδών. 1. Θεωρούμε το δακτύλιο [ i]. a. Βρείτε ένα d [ i] με ( a, b) d, όπου a (4 i) (1 i), b 16 1 i.

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

= s 2m 1 + s 1 m 2 s 1 s 2

= s 2m 1 + s 1 m 2 s 1 s 2 ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 203 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ Οι σηµειώσεις αυτές είναι ϐασισµένες στις διαλέξεις του µαθήµατος. Καταγράϕηκαν αρχικά ηλεκτρονικά από τη κ.

Διαβάστε περισσότερα

Αλγεβρικες οµες ΙΙ. ιδάσκουσα : Χ. Χαραλάµπους. Θέµατα προηγουµένων ετών

Αλγεβρικες οµες ΙΙ. ιδάσκουσα : Χ. Χαραλάµπους. Θέµατα προηγουµένων ετών Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων Τµηµα Μαθηµατικων Αλγεβρικες οµες ΙΙ ιδάσκουσα : Θέµατα προηγουµένων ετών 1 Θέµατα Πολλαπλής Επιλογής Στις ερωτήσεις πολλαπλής επιλογής, εάν

Διαβάστε περισσότερα

Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες και 30 λεπτά

Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες και 30 λεπτά Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Αλγεβρικές οµές ΙΙ 1. Εστω ότι R Z 3 [x]. Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες 30 λεπτά (αʹ) Να αποδείξετε ότι ο R είναι περιοχή

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

ακτύλιοι Πολυωνύµων και Σώµατα Κλασµάτων

ακτύλιοι Πολυωνύµων και Σώµατα Κλασµάτων Κεφάλαιο 9 ακτύλιοι Πολυωνύµων και Σώµατα Κλασµάτων Στο παρόν Κεφάλαιο ϑα µελετήσουµε διεξοδικότερα τις ϐασικές ιδιότητες του δακτυλίου πολυωνύµων, κυ- ϱίως µιας µεταβλητής, µε στοιχεία από έναν µεταθετικό

Διαβάστε περισσότερα

Αλγεβρικές Δομές Ι. 1 Ομάδα I

Αλγεβρικές Δομές Ι. 1 Ομάδα I Αλγεβρικές Δομές Ι 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω G μια προσθετική ομάδα S ένα μη κενό σύνολο και M(S G το σύνολο όλων των συναρτήσεων f : S G. Δείξτε ότι το σύνολο M(S G είναι ομάδα με πράξη την πρόσθεση

Διαβάστε περισσότερα

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014 Α Δ Ι Α - Φ 9 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Δευτέρα 13 Ιανουαρίου

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2019/laii2019html Παρασκευή 1 Μαρτίου 2019 Ασκηση

Διαβάστε περισσότερα

,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί.

,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί. Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις7: Γραμμικές Απεικονίσεις Βασικά σημεία Ορισμός και παραδείγματα γραμμικών απεικονίσεων Σύνθεση γραμμικών απεικονίσεων, ισομορφισμοί Κάθε γραμμική απεικόνιση f : V W, όπου

Διαβάστε περισσότερα

8.1 Διαγωνοποίηση πίνακα

8.1 Διαγωνοποίηση πίνακα Κεφάλαιο 8 Κανονικές μορφές από 6 Κεφάλαιο 8 Κ Α Ν Ο Ν Ι Κ Ε Σ Μ Ο Ρ Φ Ε Σ 8. Διαγωνοποίηση πίνακα Ορισμός 8.α Ένας πίνακας M n ( ) oνομάζεται διαγωνοποιήσιμος στο αν υπάρχει αντιστρέψιμος πίνακας P M

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 24 Ιανουαρίου 2014

Α Δ Ι. Παρασκευή 24 Ιανουαρίου 2014 Α Δ Ι Α - Φ 11 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 24 Ιανουαρίου

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Επιλύσιμες Ομάδες. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Επιλύσιμες Ομάδες. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Επιλύσιμες Ομάδες Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 4 Επιλύσιμες Ομάδες 41 Προκαταρκτικές Έννοιες 411 Ορισμός και Παραδείγματα

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Επεκτάσεις Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Επεκτάσεις Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Επεκτάσεις Ομάδων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 6 Επεκτάσεις Ομάδων 6.1 Προκαταρκτικές Έννοιες Σύμφωνα με το Θεώρημα 4.2.4

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιµοποιώντας τανυστικά γινόµενα και εφαρµόζοντας το θεώρηµα των Wedderbur-rt ( 33) θα αποδείξουµε δύο θεµελιώδη θεωρήµατα που αφορούν κεντρικές απλές άλγεβρες *

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής:

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής: Α Δ Ι Α - Φ 1 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 25 Οκτωβρίου 2013 Ασκηση

Διαβάστε περισσότερα

Πρόλογος 3. Εισαγωγή 7

Πρόλογος 3. Εισαγωγή 7 Πρόλογος Η σύγχρονη Άλγεβρα είναι ένα σημαντικό και ουσιαστικό κομμάτι της μαθηματικής εκπαίδευσης σε όλα τα πανεπιστήμια του κόσμου. Αυτό δεν οφείλεται μόνο στο γεγονός ότι πολλοί άλλοι κλάδοι των μαθηματικών,

Διαβάστε περισσότερα

ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ SEIFERT ΚΑΙ VAN KAMPEN

ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ SEIFERT ΚΑΙ VAN KAMPEN ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ SEIFERT ΚΑΙ VAN KAMPEN Μάριος Βελιβασάκης 1 ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΟΜΑΔΩΝ Ορισμός 1.1. Έστω G μια ομάδα και έστω H μια ορθόθετη υποομάδα της. Τότε ο επιμορφισμός ομάδων π : G G/H που δίδεται από

Διαβάστε περισσότερα

Περιεχόμενα Εισαγωγή στα πεπερασμένα σώματα

Περιεχόμενα Εισαγωγή στα πεπερασμένα σώματα Περιεχόμενα 1 Εισαγωγή στα πεπερασμένα σώματα 3 1.1 Μάθημα 1..................................... 3 1.1.1 Στοιχεία αλγεβρικής θεωρίας....................... 4 1.2 Μάθημα 2.....................................

Διαβάστε περισσότερα

Σώμα του Hilbert, Μιγαδικός Πολλαπλασιασμός και το Jugendtraum του Kronecker

Σώμα του Hilbert, Μιγαδικός Πολλαπλασιασμός και το Jugendtraum του Kronecker Σώμα του Hilbert, Μιγαδικός Πολλαπλασιασμός και το Jugendtraum του Kronecker Aλ ϵξανδρoς Γ. Γαλανάκης (alexandros.galanakis@gmail.com) Επιβλέπων καθηγητής: Iωάννης A. Aντ ωνιάδης Πτυχιακή εργασία Τμήμα

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ελάχιστο Πολυώνυµο Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 20 4. Ελάχιστο Πολυώνυµο Στην παρούσα παράγραφο

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

Εισαγωγή στο Πρόγραμμα Langlands Γεώργιος Παπάς Μεταπτυχιακή Εργασία Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Μαθηματικών Αθήνα, Αύγουστος 2016 Εισηγητής: Αριστείδης Κοντογεώργης Επιτροπή Ιωάννης

Διαβάστε περισσότερα

Φυλ. Ασκ. 5, Θεωρία Ομάδων Ασκήσεις στα: Ευθέα Γινόμενα Ομάδων, Θεώρημα Jordan Hölder, Συνθετικές και Κυρίαρχες Σειρές, Επιλύσιμες Ομάδες

Φυλ. Ασκ. 5, Θεωρία Ομάδων Ασκήσεις στα: Ευθέα Γινόμενα Ομάδων, Θεώρημα Jordan Hölder, Συνθετικές και Κυρίαρχες Σειρές, Επιλύσιμες Ομάδες Φυλ. Ασκ. 5, Θεωρία Ομάδων Ασκήσεις στα: Ευθέα Γινόμενα Ομάδων, Θεώρημα Jordan Hölder, Συνθετικές και Κυρίαρχες Σειρές, Επιλύσιμες Ομάδες Εσωτερικά και Εξωτερικά ευθέα Γινόμενα Α 1. Έστω η κυκλική ομάδα

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ),

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ), Α Δ Ι Α - Φ 4 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 15 Νοεμβρίου

Διαβάστε περισσότερα

ΓΥΜΝΑΣΜΑΤΑ ΑΡΙΘΜΟΘΕΩΡΙΑΣ Κασαπίδης Γεώργιος Μαθηματικός Αναπαράσταση πρώτων αριθμών ως άθροισμα δυο τετραγώνων. p 1.

ΓΥΜΝΑΣΜΑΤΑ ΑΡΙΘΜΟΘΕΩΡΙΑΣ Κασαπίδης Γεώργιος Μαθηματικός Αναπαράσταση πρώτων αριθμών ως άθροισμα δυο τετραγώνων. p 1. Κάθε πρώτος της μορφής κ+1 γράφεται ως άθροισμα δυο τετραγώνων. Έστω p πρώτος p 1 mod q= α. α 1modp β. Υπάρχουν ακέραιοι x,y με 0< x, y< p τέτοιοι ώστε α x y 0 modp γ. p=x +y και α=q!. Δείξτε ότι Απόδειξη

Διαβάστε περισσότερα

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Ορισμός ελαχίστου πολυωνύμου γραμμικής απεικόνισης και ιδιότητές του Κριτήριο διαγωνισιμότητας

Διαβάστε περισσότερα

Πρώτα και Μεγιστοτικά Ιδεώδη

Πρώτα και Μεγιστοτικά Ιδεώδη Κεφάλαιο 10 Πρώτα και Μεγιστοτικά Ιδεώδη Στο παρόν Κεφάλαιο ϑα µελετήσουµε ειδικούς τύπους ιδεωδών σε έναν δακτύλιο και την επίδραση που έχουν οι επιπλέον ιδιότητες τις οποίες ικανοποιούν τα ιδεώδη αυτά

Διαβάστε περισσότερα

Α Δ Ι Θ Θ Α Ε Ι Μ : https://sites.google.com/site/maths4edu/home/algdom114

Α Δ Ι Θ Θ Α Ε Ι Μ :  https://sites.google.com/site/maths4edu/home/algdom114 Α Δ Ι Θ Θ Α Ε 2013-2014 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 12 Μαρτίου 2014 19:26

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ

ΚΕΦΑΛΑΙΟ 5: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ ΚΕΦΑΛΑΙΟ 5: 5. ΟΡΙΣΜΟΙ Έστω U και V δύο διανυσματικοί χώροι. Μια συνάρτηση F : U V θα λέγεται γραμμική απεικόνιση (ή ομομορφισμός, ή απλά μορφισμός εάν ικανοποιεί τις συνθήκες (i F ( u + = u + για κάθε

Διαβάστε περισσότερα

f x 0 για κάθε x και f 1

f x 0 για κάθε x και f 1 06 4.2 Το Λήμμα του Uysoh το Λήμμα της εμφύτευσης και το θεώρημα μετρικοποίησης του Uysoh. Ο κύριος στόχος αυτής της παραγράφου είναι η απόδειξη ενός θεμελιώδους αποτελέσματος γνωστού ως το Λήμμα του Uysoh.

Διαβάστε περισσότερα

(a + b) n = a k b n k, k. (a + b) p = a p + b p. k=0. n! k! (n k)! k =

(a + b) n = a k b n k, k. (a + b) p = a p + b p. k=0. n! k! (n k)! k = ΒΑΣΙΚΗ ΑΛΓΕΒΡΑ Συμπληρωματικές Ασκήσεις Χειμερινό Εξάμηνο 2016 Χρήστος Α. Αθανασιάδης Συμβολίζουμε με Z m το δακτύλιο των ακεραίων modulo m, με ā Z m την κλάση (mod m) του a Z και με M n (R) το δακτύλιο

Διαβάστε περισσότερα

V (F ) = {(u 1, u 2, u 3 ) P 2 K F (u 1, u 2, u 3 ) = 0}

V (F ) = {(u 1, u 2, u 3 ) P 2 K F (u 1, u 2, u 3 ) = 0} 1 Θεώρημα BEZOU T Ο δακτύλιος K[x 1,..., x n ] είναι περιοχή μονοσήμαντης ανάλυσης. Άρα κάθε πολυώνυμο f K[x 1,..., x n ] (που δεν είναι σταθερά, δηλαδή f / K) αναλύεται σε γινόμενο αναγώγων πολυωνύμων,

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 3. Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος. N ( a)

Δακτύλιοι και Πρότυπα Ασκήσεις 3. Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος. N ( a) 11 Δακτύλιοι και Πρότυπα 2016-17 Ασκήσεις 3 Η ύλη των ασκήσεων αυτών είναι η Ενότητα3, Ελεύθερα πρότυπα Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος 1 Δείξτε ότι το

Διαβάστε περισσότερα

Πορίσματα της Κανονικής Μορφής Smith (συμπλήρωμα για την Ενότητα 4)

Πορίσματα της Κανονικής Μορφής Smith (συμπλήρωμα για την Ενότητα 4) Πορίσματα της Κανονικής Μορφής Smh (συμπλήρωμα για την Ενότητα 4 Θα δείξουμε εδώ ότι από την κανονική μορφή Smh πινάκων πάνω από περιοχή κυρίων ιδεωδών R, έπονται τα εξής Το Θεώρημα Βάσεων Το Θεώρημα Ανάλυσης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. Πολυωνυμικοί-Κυκλικοί Κώδικες. 3.1 Πολυωνυμικοί κώδικες

ΚΕΦΑΛΑΙΟ 3. Πολυωνυμικοί-Κυκλικοί Κώδικες. 3.1 Πολυωνυμικοί κώδικες ΚΕΦΑΛΑΙΟ 3 Πολυωνυμικοί-Κυκλικοί Κώδικες Στα προηγούμενα ασχοληθήκαμε με τους γραμμικούς κώδικες και είδαμε πώς η δομή ενός γραμμικού κώδικα, ως διανυσματικού χώρου, καθιστά τις διαδικασίες κωδικοποίησης

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Τα πρώτα μαθήματα, σχεδόν σε όλους τους κλάδους των μαθηματικών, περιέχουν, ή θεωρούν γνωστές, εισαγωγικές έννοιες που αφορούν σύνολα, συναρτήσεις, σχέσεις ισοδυναμίας, αλγεβρικές δομές, κλπ.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Bursde Θα αποδείξουµε εδώ ότι κάθε οµάδα τάξης a q b (, q πρώτοι) είναι επιλύσιµη. Το θεώρηµα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιµοποίησε τη νέα τότε

Διαβάστε περισσότερα

Άλγεβρα Ι(Μ) Λύσεις Ασκήσεων-Φυλλαδίο 9

Άλγεβρα Ι(Μ) Λύσεις Ασκήσεων-Φυλλαδίο 9 140/140 Άλγεβρα Ι(Μ) Λύσεις Ασκήσεων-Φυλλαδίο 9 Τσάνγκο Ιωσήφ 24 Απριλίου 2017 1. Εχω ότι R δακτύλιος, S υποδακτύλιος και I ιδεώδες του R. (Σχόλιο:Το πλήθος των απαντήσεων μου είναι ίδιο με αυτό των ερωτήσεων,

Διαβάστε περισσότερα

Θ. Θεοχάρη-Αποστολίδη, Χ. Χαραλάμπους, Θεωρία Galois 2 2

Θ. Θεοχάρη-Αποστολίδη, Χ. Χαραλάμπους, Θεωρία Galois 2 2 Θεωρία Galois Θεοδώρα Θεοχαρη-Αποστολιδη Χαρά Χαραλαμπους Οι σημειωσεις αυτες θα συμπληρωνονται κατα τη διαρκεια των μαθηματων. 11 Νοεμβρίου 2014 Θ. Θεοχάρη-Αποστολίδη, Χ. Χαραλάμπους, Θεωρία Galois 2

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι. Ακαδηµαϊκο Ετος Βοηθος Ασκησεων: Χ. Ψαρουδάκης

Γραµµικη Αλγεβρα Ι. Ακαδηµαϊκο Ετος Βοηθος Ασκησεων: Χ. Ψαρουδάκης Γραµµικη Αλγεβρα Ι Ακαδηµαϊκο Ετος 2011-2012 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml 21-2 - 2012

Διαβάστε περισσότερα

j=1 x n (i) x s (i) < ε.

j=1 x n (i) x s (i) < ε. Κεφάλαιο 5 Πληρότητα 5.1 Πλήρεις μετρικοί χώροι Ορισμός 5.1.1 (πλήρης μετρικός χώρος). Ενας μετρικός χώρος (X, ρ) λέγεται πλήρης (complete) αν κάθε ρ βασική ακολουθία (x n ) στον X είναι ρ συγκλίνουσα.

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

A, και εξετάστε αν είναι διαγωνίσιμη.

A, και εξετάστε αν είναι διαγωνίσιμη. Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Θεώρημα (Κριτήριο διαγωνισιμότητας) Ένας είναι διαγωνίσιμος αν και μόνο αν ( x) γινόμενο διακεκριμένων

Διαβάστε περισσότερα

Séminaire Grothendieck

Séminaire Grothendieck Séminaire Grothendieck in memoriam 28 March 928 3 November 204 Αριστείδης Κοντογεώργης 7 Φεβρουαρίου 205 Συνιστώμενη βιβλιογραφία. J.S Milne, Étale Cohomology 2. P. Deligne, SGA 4 2 Cohomologie étale Εισαγωγή

Διαβάστε περισσότερα

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1) Κεφάλαιο 4 Ευθέα γινόµενα οµάδων Στο Παράδειγµα 1.1.2.11 ορίσαµε το ευθύ εξωτερικό γινόµενο G 1 G 2 G n των οµάδων G i, 1 i n. Στο κεφάλαιο αυτό ϑα ασχοληθούµε λεπτοµερέστερα µε τα ευθέα γινόµενα οµάδων

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii19/laii19html Παρασκευή 1 Μαρτίου 19 Υπενθυµίσεις

Διαβάστε περισσότερα

Μία απεικόνιση από ένα διανυσματικό χώρο V στον εαυτό του, L : V V την ονομάζουμε γραμμικό τελεστή στο V (ή ενδομορφισμό του V ). Ορισμός. L : V V γρα

Μία απεικόνιση από ένα διανυσματικό χώρο V στον εαυτό του, L : V V την ονομάζουμε γραμμικό τελεστή στο V (ή ενδομορφισμό του V ). Ορισμός. L : V V γρα Γραμμική Άλγεβρα ΙΙ Διάλεξη 15 Αναλλοίωτοι Υπόχωροι, Ιδιόχωροι Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 2/5/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 15 2/5/2014 1 / 12 Μία απεικόνιση από ένα διανυσματικό

Διαβάστε περισσότερα

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα