Логистичка регресиjа

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Логистичка регресиjа"

Transcript

1 Логистичка регресиjа 4.час 22. март Боjана Тодић Статистички софтвер март / 26

2 Логистичка расподела Логистичка расподела jе непрекидна расподела вероватноће таква да jе њена функциjа расподеле логистичка функциjа 1 f(x) =. 1 + e x m s Боjана Тодић Статистички софтвер март / 26

3 Историjат Логистичка функциjа jе настала у 19. веку за потребе моделовања раста различитих популациjа. Наиме, различити истраживачи су се jош у 18. веку бавили проучавањем и предвиђањем раста популациjе у некоj земљи. Оваj проблем се своди на проучавање неке количине W (t) коjа, на пример, може да буде величина људске популациjе у временском тренутку t и њеног прираштаjа у jединици времена коjи се означава са W (t) W (t) = dw (t) dt Боjана Тодић Статистички софтвер март / 26

4 Историjат Наjjедноставниjа претпоставка коjа jе коришћена у науци jош у 18. веку jе била да jе W (t) пропорционално са W (t), односно да постоjи нека константна β за коjу важи W (t) = βw (t), β = W (t) W (t). Решавањем ове диференциjалне jедначине се долази до закључка да jе раст популациjе експоненциjалан, односно да постоjи нека константа A за коjу важи W (t) = Ae βt, где се за A често узима величина популациjе у почетном тренутку посматрања W (0). Оваj модел се показао као добар при проучавању младих популациjа, као што je на пример, популациjа САД-а у првим децениjама по њиховом настанку. Боjана Тодић Статистички софтвер март / 26

5 Историjат Међутим, белгиjски математичар Келте (Alphonse Quetelet ) и његов млађи сарадник математичар Велхурст (Pierre Francois Velhurst ) су приметили да овакво решење после неког времена доводи до нереалних процена и да би требало ограничити прираштаj популациjе на неки начин. Они су у претходну диференциjалну jедначину додали елемент φ(w (t)) коjи представља отпор популациjе према даљем расту у тренутку t: W (t) = βw (t) φ(w (t)). Боjана Тодић Статистички софтвер март / 26

6 Историjат Велхурст jе затим експериментисао са различтим облицима за φ(w (t)) и дошао на идеjу да уведе константу Ω коjа би представљала горњу границу засићености за W. Прираштаj популациjе би тада био пропорционалан и тренутноj величини, али и њеном простору за даљи раст Ω W (t) W (t) = βw (t)(ω W (t)). Увођењем смене P (t) = W (t) Ω у претходу jедначину добиjамо диференциjалну jедначину P (t) = βp (t)(1 P (t)), а њено решење jе облика P (t) = eα+βt 1 + e α+βt. Ову функциjу jе Велхурст назвао логистичком функциjом. Боjана Тодић Статистички софтвер март / 26

7 Историjат Ова истраживања нису привукла велику пажњу математичке jавности. Тек захваљуjући развоjем рачунара у другоj половини 20. века логистичка расподела стиче широку популарност. Њена предност jе у jедноставном облику и повољним аналитичким своjствима коjи jе чине погодном за израчунавање уз помоћ различитих алгоритама. Данас jе логистичака расподела наjпознатиjа по своjоj примени у моделима логистичке регресиjе. Осим тога користи се и у хидрологиjи за моделовање водостаjа, у теориjи полупроводника и на многим другим местима. Боjана Тодић Статистички софтвер март / 26

8 Особине логистичке расподеле Логистичка расподела jе симетрична расподела тешких репова. Ако jе X случаjна величина са логистичком расподелом, тада X има следећу функциjу и густину расподеле: 1 F (x) =, s > 0, m R, x R. 1 + e x m s f(x) = ( s e x m s 1 + e x m s ) 2, s > 0, m R, x R. Боjана Тодић Статистички софтвер март / 26

9 Особине логистичке расподеле Очекивање EX = m Медиjана µ = m Мод mod = m Дисперзиjа DX = s2 π 2 3 Коефициjент симетриjе γ 1 = 0 Коефициjент спљоштености γ 2 = 6 5 Карактеристика расподеле ln(1 + e x m s ) ɛ(1) Боjана Тодић Статистички софтвер март / 26

10 Основни модел логистичке регресиjе Нека jе X независна случаjна променљива на основу коjе треба предвидети вредности за Y и нека Y може да има само две вредности, Ω Y = {0, 1}. Уместо директног предвиђања коjоj ће класи припадати Y, идеjа логистичке регресиjе jе оцењивање вероватноће да Y припадне свакоj од класа ако jе вредност за X позната. Дакле, треба проценити следеће вероватноће: P {Y = 1 X}, P {Y = 0 X}. Боjана Тодић Статистички софтвер март / 26

11 Основни модел логистичке регресиjе Ако уведемо ознаку p(x) = P {Y = 1 X}, тада се проблем своди на оцењивање вредности p(x). Kако p(x) представља неку вероватноћу, потребно jе да функциjа коjом се ова вредност моделира буде непрекидна, монотона и да узима вредности између 0 и 1. Многе функциjе са овим особинама, а у логистичкоj регресиjи се користи логистичка функциjа облика p(x) = eβ 0+β 1 X 1 + e β 0+β 1 X, β 0, β 1 R, β 1 0. Jедноставном транфсформациjом добиjамо jеднакост p(x) 1 p(x) = eβ 0+β 1 X. Боjана Тодић Статистички софтвер март / 26

12 Основни модел логистичке регресиjе Израз. p(x) 1 p(x) се назива квотом и може узимати вредности између 0 и Квоте се чешће користе од вероватноћа користе у моделовањима система за клађење jер jе интуитивниjе приказуjу шансе добитка: вредности близу 0 одговараjу веома малим шансама и зато што jе вредност квоте већа, то jе већа и шанса позитивног исхода клађења. Применом природног логаритма на претхидну jедначину добиjамо: ( ) p(x) ln = β 0 + β 1 X 1 p(x) Лева страна jедначине се назива logit трансформациjом од p(x). Приметимо да jе веза између logit трансформациjе и независне променљиве X линеарна. Боjана Тодић Статистички софтвер март / 26

13 Оцењивање параметара Модел логистичке регресиjе зависи од параметара β 0 и β 1 коjе jе потребно оценити. Оцењивање се врши методом максималне веродостоjности. Случаjна величина Y у зависности од X има расподелу ( Y X : коjа може да се напише и као p(x) p(x) f(y X) = p(x) Y (1 p(x)) 1 Y, Y {0, 1}, X R. Функциjа максималне веродостоjности параметара на основу узорка обима n jе n L(β 0, β 1 ) = p(x i ) Y i (1 p(x i ) 1 Y i. i=1 Оцене ˆβ 0 и ˆβ 1 параметара β 0 и β 1 се добиjаjу као решења система ln L(β 0, β 1 ) = 0, β 0 ) ln L(β 0, β 1 ) β 1 = 0 Боjана Тодић Статистички софтвер март / 26

14 Валдов тест По добиjању оцена за параметре, потребно jе проверити да ли jе X заправо добар предиктор за вредности за Y, односно да ли постоjи статистички значаjна повезаност. Валдовим тестом се тестираjу следеће хипотезе H 0 : β 1 = 0, H 1 : β 1 0. Хипотеза H 0 проверава се формирањем Валдове тест статистике Z = ˆβ 1 ˆσ( ˆβ 1 ) коjа при важењу H 0 има стандардну нормалну расподелу, где jе ˆσ 2 ( ˆβ 1 ) оцена стандардне девиjациjе оцене ˆβ 1. Боjана Тодић Статистички софтвер март / 26

15 Предикциjа Када су параметри модела оцењени, оцена вредности p(x) се jедноставно добиjа из формуле ˆp(X) = e ˆβ 0 + ˆβ 1 X 1 + e ˆβ 0 + ˆβ. 1 X Класификациjа променљиве Y се затим врши на основу ˆp(X) { 0, ˆp(X) < q Ŷ = 1, ˆp(X) q где jе q унапред одређена константа. Стандардна вредност за q jе 1 2, али постоjе и случаjеви у коjима се узимаjу друге вредности. Боjана Тодић Статистички софтвер март / 26

16 Вишеструка логистичка регресиjа Нека су X = (X 1, X 2,..., X N ) случаjни вектор и Y случаjна применљива квалитативног типа коjа узима вредности из скупа G = {G 1, G 2,..., G M } и зависна jе од случаjног вектора X. Модел логистичке регресиjе дефинишемо на следећи начин: P {Y = G i X} = e β i0+β T i X 1 + M 1 j=1 eβ j0+β T j X, i {1, 2,..., M 1}, 1 P {Y = G i X} = 1 +. M 1 j=1 eβ j0+βj T X где су β 10,..., β (M 1)0 неки реални броjеви и β 1,..., β M 1 неки N-димензиони вектори. Сви поjмови уведени раниjе важе и овде. Боjана Тодић Статистички софтвер март / 26

17 Вишеструка логистичка регресиjа Други начин jе да се вишеструка логистичка регресиjа поjедностави и сведе на примену неколико основних логистичких регресиjа. Оваj метод се назива "сам против свих" (one-vs-all) и његова суштина jе да се креира M одвоjених класификатора коjи само процењуjу да ли променљива Y припада некоj одређеноj класи из G или не. Ово се постиже увођењем помоћних случаjних променљивих Z 1,..., Z M коjе служе као индикатори да ли Y припада одређеноj класи из G: { 0, Y G i Z i = I{Y = G i } = 1, Y = G i За свако i = 1, 2,..., M Боjана Тодић Статистички софтвер март / 26

18 Вишеструка логистичка регресиjа За овако уведене променљиве Z i се формираjу модели основне логистичке регресиjе оцењивањем вредности ˆp i (X) = P {Z i = 1 X}. На основу тих модела променљивоj Y се додељуjе класа за коjу jе ˆp i (X) наjвеће Ŷ = {G i ˆp i (X) = max ˆp j(x)}. j {1,2,...,M} На оваj начин се постижу ефекти вишеструке логистичке регресиjе без сложене примене у пракси коjу она захтева. Боjана Тодић Статистички софтвер март / 26

19 Пример Подаци садрже резултате два испита са приjемног испита на jедном универзитету у Америци и информациjу да ли jе студент примљен на мастер програм. На основу ових резултата направити модел логистичке регресиjе коjи може да предвиди да ли ће студент бити примљен на мастер. База садржи 100 опсервациjа и 3 променљиве (Exam1, Exam2, Admitted). Променљиве коjе садрже резултате испита су реални броjеви између 0 и 100, а трећа променљива има само две класе - 0 или 1. Наш модел ће имати облик P {Admitted = 1 Exam1, Exam2} = eβ 0+β 1 Exam1+β 2 Exam2 1 + e β 0+β 1 Exam1+β 2 Exam2. Боjана Тодић Статистички софтвер март / 26

20 Пример > head(baza) Exam1 Exam2 Admitted > summary(baza) Exam1 Exam2 Admitted Min. :30.06 Min. :30.60 Min. :0.0 1st Qu.: st Qu.: st Qu.:0.0 Median :67.03 Median :67.68 Median :1.0 Mean :65.64 Mean :66.22 Mean :0.6 3rd Qu.: rd Qu.: rd Qu.:1.0 Max. :99.83 Max. :98.87 Max. :1.0 Боjана Тодић Статистички софтвер март / 26

21 Пример Више информациjа може нам дати графичко приказивање података. Приказаћемо све податке на графику тако што ће свака тачка имати координате коjе представљаjу резултате jедног и другог испита, а тип тачке ће носити информациjу о укупном успеху на приjемном испиту. > plot(exam1[admitted==0], Exam2[Admitted==0], xlab = Exam1", ylab = "Exam2", xlim = c(0,100), ylim=c(0,100))" > points(exam1[admitted==1], Exam2[Admitted==1], pch = 20) Боjана Тодић Статистички софтвер март / 26

22 Пример > model <- glm(admitted Exam1+Exam2, family = binomial) > summary(model) Call: glm(formula = Admitted ~ Exam1 + Exam2, family = binomial) Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) e-05 *** Exam e-05 *** Exam e-05 *** --- Signif. codes: 0 *** ** 0.01 * (Dispersion parameter for binomial family taken to be 1) Null deviance: on 99 degrees of freedom Residual deviance: 40.7 on 97 degrees of freedom AIC: 46.7 Number of Fisher Scoring iterations: 7 Боjана Тодић Статистички софтвер март / 26

23 Пример Коефициjенти модела: > coef(model) (Intercept) Exam1 Exam Интервали поверења за параметре: > confint(model) Waiting for profiling to be done % 97.5 % (Intercept) Exam Exam Боjана Тодић Статистички софтвер март / 26

24 Пример Како су p вредности Валдових тестова веома мале, закључуjемо да се хипотезе да jе неки од параметара jеднак нули одбацуjу. Tражени модел jе: ˆP {Admitted = 1 Exam1, Exam2} = e Exam Exam2 1 + e Exam Exam2. Боjана Тодић Статистички софтвер март / 26

25 Пример Предвиђање на основу добиjемог модела: > p.x <- predict(model, type = response ) > y <- rep(0, length(admitted)) > y[p.x>0.5] <- 1 Проверимо да ли ће студент уписати мастер студиjе ако положи jедан испит са 50 поена, а други са 80. > newdata <- data.frame(exam1=50, Exam2=80) > predict(model,newdata,type = response ) Боjана Тодић Статистички софтвер март / 26

26 Задатак 1. Из базе података mtcars (пакет MASS) издвоjити променљиве vs, mpg и am у нову базу. Наћи наjбољи логистички модел за коjи су mpg и am независне променљиве помоћу коjих предвиђамо зависну променљиву vs и предвидети вредности за vs. Боjана Тодић Статистички софтвер март / 26

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10 Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

Нелинеарни регресиони модели и линеаризациjа

Нелинеарни регресиони модели и линеаризациjа Нелинеарни регресиони модели и линеаризациjа 3.час 15. март 2016. Боjана Тодић Статистички софтвер 4 15. март 2016. 1 / 23 Регресионa анализа Регресиона анализа jе скуп статистичких метода коjима се открива

Διαβάστε περισσότερα

Параметарски и непараметарски тестови

Параметарски и непараметарски тестови Параметарски и непараметарски тестови 6.час 12. април 2016. Боjана Тодић Статистички софтвер 4 12. април 2016. 1 / 25 Поступци коjима се применом статистичких метода утврђуjе да ли се, на основу узорка

Διαβάστε περισσότερα

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја. СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању

Διαβάστε περισσότερα

Монте Карло Интеграциjа

Монте Карло Интеграциjа Монте Карло Интеграциjа 4.час 22. март 2016. Боjана Тодић Статистички софтвер 2 22. март 2016. 1 / 22 Монте Карло методе Oве нумеричке методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА . колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност

Διαβάστε περισσότερα

Прост случаjан узорак (Simple Random Sampling)

Прост случаjан узорак (Simple Random Sampling) Прост случаjан узорак (Simple Random Sampling) 3.час 10. март 2016. Боjана Тодић Теориjа узорака 10. март 2016. 1 / 25 Прост случаjан узорак без понављања Random Sample Without Replacement - RSWOR Ово

Διαβάστε περισσότερα

1 Неодрђеност и информациjа

1 Неодрђеност и информациjа Теориjа информациjе НЕОДРЂЕНОСТ И ИНФОРМАЦИJА Неодрђеност и информациjа. Баца се фер новичић до прве поjаве писма. Нека jе X случаjна величина коjа представља броj потребних бацања. Наћи неодређеност случаjне

Διαβάστε περισσότερα

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm 1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:

Διαβάστε περισσότερα

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни

Διαβάστε περισσότερα

1.2. Сличност троуглова

1.2. Сличност троуглова математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)

Διαβάστε περισσότερα

η π 2 /3 χ 2 χ 2 t k Y 0/0, 0/1,..., 3/3 π 1, π 2,..., π k k k 1 β ij Y I i = 1,..., I p (X i = x i1,..., x ip ) Y i J (j = 1,..., J) x i Y i = j π j (x i ) x i π j (x i ) x (n 1 (x),..., n J (x))

Διαβάστε περισσότερα

Λογιστική Παλινδρόµηση

Λογιστική Παλινδρόµηση Κεφάλαιο 10 Λογιστική Παλινδρόµηση Στο κεφάλαιο αυτό ϑα δούµε την µέθοδο της λογιστικής παλινδρόµησης η οποία χρησιµεύει στο να αναπτύξουµε σχέση µίας δίτιµης ανεξάρτητης τυχαίας µετα- ϐλητής και συνεχών

Διαβάστε περισσότερα

Решења задатака са првог колоквиjума из Математике 1Б II група задатака

Решења задатака са првог колоквиjума из Математике 1Б II група задатака Решења задатака са првог колоквиjума из Математике Б II група задатака Пре самих решења, само да напоменем да су решења детаљно исписана у нади да ће помоћи студентима у даљоj припреми испита, као и да

Διαβάστε περισσότερα

Висока техничка школа струковних студија Београд Математика 2 Интервали поверења и линеарна регресија предавач: др Мићо Милетић

Висока техничка школа струковних студија Београд Математика 2 Интервали поверења и линеарна регресија предавач: др Мићо Милетић Математика Интервали поверења и линеарна регресија предавач: др Мићо Милетић Интервали поверења Тачкасте оцене параметара основног скупа могу се сматрати као приликом обраде узорка. Њихов недостатак је

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,

Διαβάστε περισσότερα

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

2.3. Решавање линеарних једначина с једном непознатом

2.3. Решавање линеарних једначина с једном непознатом . Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0

Διαβάστε περισσότερα

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису. ЛИНЕАРНА ФУНКЦИЈА 5.. Функција = a + b Функционалне зависности су веома значајне и са њиховим применама често се сусрећемо. Тако, већ су нам познате директна и обрнута пропорционалност ( = k; = k, k ),

Διαβάστε περισσότερα

Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1

Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1 Poisson Regression A Short Course on Data Analysis Using R Software (2017) Wan Nor Arifin (wnarifin@usm.my), Universiti Sains Malaysia Website: sites.google.com/site/wnarifin Wan Nor Arifin under the Creative

Διαβάστε περισσότερα

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем

Διαβάστε περισσότερα

5.2. Имплицитни облик линеарне функције

5.2. Имплицитни облик линеарне функције математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.

Διαβάστε περισσότερα

ГЕОМЕТРИJСКА СВОJСТВА АНАЛИТИЧКИХ ФУНКЦИJА

ГЕОМЕТРИJСКА СВОJСТВА АНАЛИТИЧКИХ ФУНКЦИJА УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ МАСТЕР РАД ГЕОМЕТРИJСКА СВОJСТВА АНАЛИТИЧКИХ ФУНКЦИJА Аутор Бобан Карапетровић Ментор проф. Миодраг Матељевић Jул, 04. Садржаj Увод Ознаке Schwarz-ова лема на

Διαβάστε περισσότερα

L кплп (Калем у кплу прпстпперипдичне струје)

L кплп (Калем у кплу прпстпперипдичне струје) L кплп (Калем у кплу прпстпперипдичне струје) i L u=? За коло са слике кроз калем ппзнате позната простопериодична струја: индуктивности L претпоставићемо да протиче i=i m sin(ωt + ψ). Услед променљиве

Διαβάστε περισσότερα

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је: Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног

Διαβάστε περισσότερα

АКАДЕМСКЕ ДОКТОРСКЕ СТУДИЈЕ - МЕДИЦИНСКЕ НАУКЕ

АКАДЕМСКЕ ДОКТОРСКЕ СТУДИЈЕ - МЕДИЦИНСКЕ НАУКЕ УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ ФАКУЛТЕТ МЕДИЦИНСКИХ НАУКА АКАДЕМСКЕ ДОКТОРСКЕ СТУДИЈЕ - МЕДИЦИНСКЕ НАУКЕ В: СТАТИСТИЧКЕ МЕТОДЕ У БИОМЕДИЦИНСКИМ ИСТРАЖИВАЊИМА Школске 2016/2017 (I семестар) В: СТАТИСТИЧКЕ МЕТОДЕ

Διαβάστε περισσότερα

6.2. Симетрала дужи. Примена

6.2. Симетрала дужи. Примена 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ

Διαβάστε περισσότερα

7. Модели расподела случајних променљивих ПРОМЕНЉИВИХ

7. Модели расподела случајних променљивих ПРОМЕНЉИВИХ 7. Модели расподела случајних променљивих 7. МОДЕЛИ РАСПОДЕЛА СЛУЧАЈНИХ ПРОМЕНЉИВИХ На основу природе појаве коју анализирамо, често можемо претпоставити да расподела случајне променљиве X припада једној

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

Анализа Петријевих мрежа

Анализа Петријевих мрежа Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,

Διαβάστε περισσότερα

8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези

8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези Регулциј електромоторних погон 8 ЛАБОРАТОРИЈСКА ВЕЖБА Здтк вежбе: Изрчунвње фктор појчњ мотор нпонским упрвљњем у отвореној повртној спрези Увод Преносн функциј мотор којим се нпонски упрвљ Кд се з нулте

Διαβάστε περισσότερα

ИСПИТИВАЊЕ СВОJСТАВА КОМПЛЕКСНИХ МРЕЖА СА ДИСКРЕТНОМ ДИНАМИКОМ

ИСПИТИВАЊЕ СВОJСТАВА КОМПЛЕКСНИХ МРЕЖА СА ДИСКРЕТНОМ ДИНАМИКОМ УНИВЕРЗИТЕТ У БЕОГРАДУ ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ Jелена М. Смиљанић ИСПИТИВАЊЕ СВОJСТАВА КОМПЛЕКСНИХ МРЕЖА СА ДИСКРЕТНОМ ДИНАМИКОМ докторска дисертациjа Београд, 2017 UNIVERSITY OF BELGRADE SCHOOL OF ELECTRICAL

Διαβάστε περισσότερα

Конструкциjе Адамарових матрица

Конструкциjе Адамарових матрица Математички факултет Универзитета у Београду Конструкциjе Адамарових матрица Мастер pад Сенад Ибраимоски Чланови комисиjе: проф. др. Миодраг Живковић - ментор проф. др. Предраг Jаничић проф. др. Филип

Διαβάστε περισσότερα

Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1

Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1 Linear Regression A Short Course on Data Analysis Using R Software (2017) Wan Nor Arifin (wnarifin@usm.my), Universiti Sains Malaysia Website: sites.google.com/site/wnarifin Wan Nor Arifin under the Creative

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

TAЧКАСТА НАЕЛЕКТРИСАЊА

TAЧКАСТА НАЕЛЕКТРИСАЊА TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични

Διαβάστε περισσότερα

НЕПАРАМЕТАРСКИ ТЕСТОВИ. Илија Иванов Невена Маркус

НЕПАРАМЕТАРСКИ ТЕСТОВИ. Илија Иванов Невена Маркус НЕПАРАМЕТАРСКИ ТЕСТОВИ Илија Иванов 2016201349 Невена Маркус 2016202098 Параметарски и Непараметарски Тестови ПАРАМЕТАРСКИ Базиран на одређеним претпоставкама везаним за параметре и расподеле популације.

Διαβάστε περισσότερα

Семинарски рад из линеарне алгебре

Семинарски рад из линеарне алгебре Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ

Διαβάστε περισσότερα

Скупови (наставак) Релације. Професор : Рака Јовановић Асиситент : Јелена Јовановић

Скупови (наставак) Релације. Професор : Рака Јовановић Асиситент : Јелена Јовановић Скупови (наставак) Релације Професор : Рака Јовановић Асиситент : Јелена Јовановић Дефиниција дуалне скуповне формуле За скуповне формулу f, која се састоји из једног или више скуповних симбола и њихових

Διαβάστε περισσότερα

1. Функција интензитета отказа и век трајања система

1. Функција интензитета отказа и век трајања система f(t). Функција интензитета отказа и век трајања система На почетку коришћења неког система јављају се откази који као узрок имају почетне слабости или пропуштене дефекте у току производње и то су рани

Διαβάστε περισσότερα

Екстремне статистике поретка и примjене у неживотном осигурању

Екстремне статистике поретка и примjене у неживотном осигурању Математички факултет Универзитет у Београду МАСТЕР РАД Екстремне статистике поретка и примjене у неживотном осигурању Студент: 1039/2015 Ментор: др Павле Младеновић 10.11.2016. Садржаj 1 Увод 1 2 Значаj

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 011/01. година ТЕСТ МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА Стандардна девијација показује расподелу резултата мерења око средње вредности, али не указује на облик расподеле. У табели 1 су дате вредности за 50 поновљених одређивања

Διαβάστε περισσότερα

1 ПРОСТОР МИНКОВСКОГ

1 ПРОСТОР МИНКОВСКОГ 1 ПРОСТОР МИНКОВСКОГ 1.1 Простор Минковског. Поjам Лоренцове трансформациjе. Лоренцове трансформациjе на векторима и дуалним векторима. На самом почетку увешћемо координатни систем (t, x, y, z) на следећи

Διαβάστε περισσότερα

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x) ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити

Διαβάστε περισσότερα

5.1 logistic regresssion Chris Parrish July 3, 2016

5.1 logistic regresssion Chris Parrish July 3, 2016 5.1 logistic regresssion Chris Parrish July 3, 2016 Contents logistic regression model 1 1992 vote 1 data..................................................... 1 model....................................................

Διαβάστε περισσότερα

Нумеричко решавање парцијалних диференцијалних једначина и интегралних једначина

Нумеричко решавање парцијалних диференцијалних једначина и интегралних једначина Нумеричко решавање парцијалних диференцијалних једначина и интегралних једначина Метода мреже за Дирихлеове проблеме Метода мреже се приближно решавају диференцијалне једначине тако што се диференцијална

Διαβάστε περισσότερα

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре 0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских

Διαβάστε περισσότερα

Основе теорије вероватноће

Основе теорије вероватноће . Прилог А Основе теорије вероватноће Основни појмови теорије вероватноће су експеримент и исходи резултати. Најпознатији пример којим се уводе појмови и концепти теорије вероватноће је бацање новчића

Διαβάστε περισσότερα

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2.1. МАТЕМАТИЧКИ РЕБУСИ Најједноставније Диофантове једначине су математички ребуси. Метод разликовања случајева код ових проблема се показује плодоносним, јер је раздвајање

Διαβάστε περισσότερα

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила. Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,

Διαβάστε περισσότερα

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу

Διαβάστε περισσότερα

ИНТЕГРИСАНЕ АКАДЕМСКЕ СТУДИЈЕ ФАРМАЦИЈЕ

ИНТЕГРИСАНЕ АКАДЕМСКЕ СТУДИЈЕ ФАРМАЦИЈЕ ИНТЕГРИСАНЕ АКАДЕМСКЕ СТУДИЈЕ ФАРМАЦИЈЕ ТРЕЋА ГОДИНА СТУДИЈА СТАТИСТИКА У ФАРМАЦИЈИ школска 2016/2017. Предмет: СТАТИСТИКА У ФАРМАЦИЈИ Предмет се вреднује са 6 ЕСПБ. Недељно има 6 часова активне наставе

Διαβάστε περισσότερα

Факултет организационих наука Центар за пословно одлучивање. PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation)

Факултет организационих наука Центар за пословно одлучивање. PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation) Факултет организационих наука Центар за пословно одлучивање PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation) Студија случаја D-Sight Консултантске услуге за Изградња брзе пруге

Διαβάστε περισσότερα

ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5. школска 2016/2017. ШЕСТА ГОДИНА СТУДИЈА

ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5. школска 2016/2017. ШЕСТА ГОДИНА СТУДИЈА ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5 ШЕСТА ГОДИНА СТУДИЈА школска 2016/2017. Предмет: ЗАВРШНИ РАД Предмет се вреднује са 6 ЕСПБ. НАСТАВНИЦИ И САРАДНИЦИ: РБ Име и презиме Email адреса звање 1. Јасмина Кнежевић

Διαβάστε περισσότερα

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,

Διαβάστε περισσότερα

ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева

ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције Diffie-Hellman размена кључева Преглед Биће објашњено: Diffie-Hellman размена кључева 2/13 Diffie-Hellman размена кључева први алгоритам са јавним

Διαβάστε περισσότερα

ИНФОРМАЦИJА ПЕРЦЕПЦИJЕ слобода, демократиjа и физика

ИНФОРМАЦИJА ПЕРЦЕПЦИJЕ слобода, демократиjа и физика ИНФОРМАЦИJА ПЕРЦЕПЦИJЕ слобода, демократиjа и физика Растко Вуковић Радна верзиjа текста! Економски институт Бања Лука, 2016. Радна верзиjа (2017) Растко Вуковић: ИНФОРМАЦИJА ПЕРЦЕПЦИJЕ - слобода, демократиjа

Διαβάστε περισσότερα

Тестирање статистичких хипотеза. Методичка упутства и варијанте домаћих задатака

Тестирање статистичких хипотеза. Методичка упутства и варијанте домаћих задатака Тестирање статистичких хипотеза Методичка упутства и варијанте домаћих задатака ПРОВЕРА СТАТИСТИЧКИХ ХИПОТЕЗА Статистичка хипотеза је претпоставка о облику непознате расподеле случајне променљиве или о

Διαβάστε περισσότερα

Аксиоме припадања. Никола Томовић 152/2011

Аксиоме припадања. Никола Томовић 152/2011 Аксиоме припадања Никола Томовић 152/2011 Павле Васић 104/2011 1 Шта је тачка? Шта је права? Шта је раван? Да бисмо се бавили геометријом (и не само геометријом), морамо увести основне појмове и полазна

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни

Διαβάστε περισσότερα

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45

Διαβάστε περισσότερα

Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ

Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ Прва година ИНФОРМАТИЧКЕ МЕТОДЕ У БИОМЕДИЦИНСКИМ ИСТРАЖИВАЊИМА Г1: ИНФОРМАТИЧКЕ МЕТОДЕ У БИОМЕДИЦИНСКИМ ИСТРАЖИВАЊИМА 10 ЕСПБ бодова. Недељно има 20 часова

Διαβάστε περισσότερα

АНАЛИТИЧКА ГЕОМЕТРИJА. Владица Андреjић ( ) УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ БЕОГРАД 2015.

АНАЛИТИЧКА ГЕОМЕТРИJА. Владица Андреjић ( ) УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ БЕОГРАД 2015. АНАЛИТИЧКА ГЕОМЕТРИJА Владица Андреjић (01-03-2015) УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ БЕОГРАД 2015. Глава 1 Вектори у геометриjи 1.1 Увођење вектора Поjам вектора у еуклидскоj геометриjи можемо

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује

Διαβάστε περισσότερα

Универзитет у Београду. Математички факултет. Мастер рад. Тема: Геометријски случајни процеси

Универзитет у Београду. Математички факултет. Мастер рад. Тема: Геометријски случајни процеси Универзитет у Београду Математички факултет Мастер рад Тема: Геометријски случајни процеси Ментор: Проф др Слободанка Јанковић Кандидат: Радојка Станковић дипл математичар Београд 2012 Садржај Садржај

Διαβάστε περισσότερα

Нестандардна анализа као почетна настава анализе

Нестандардна анализа као почетна настава анализе Математички факултет Универзитет у Београду Нестандардна анализа као почетна настава анализе Мастер рад Ментор: др Небоjша Икодиновић Студент: Лазар Коковић Београд, 2016. Садржаj 1 Мотивациjа 2 2 Основи

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА

РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА 006. Задатак. Одредити вредност израза: а) : за, и 69 0, ; б) 9 а) Како је за 0 и 0 дати израз идентички једнак изразу,, : : то је за дате вредности,

Διαβάστε περισσότερα

Количина топлоте и топлотна равнотежа

Количина топлоте и топлотна равнотежа Количина топлоте и топлотна равнотежа Топлота и количина топлоте Топлота је један од видова енергије тела. Енергија коју тело прими или отпушта у топлотним процесима назива се количина топлоте. Количина

Διαβάστε περισσότερα

Примена првог извода функције

Примена првог извода функције Примена првог извода функције 1. Одреди дужине страница два квадрата тако да њихов збир буде 14 а збир површина тих квадрата минималан. Ре: x + y = 14, P(x, y) = x + y, P(x) = x + 14 x, P (x) = 4x 8 Први

Διαβάστε περισσότερα

ИНФОРМАТИКА У ЗДРАВСТВУ

ИНФОРМАТИКА У ЗДРАВСТВУ ИНФОРМАТИКА У ЗДРАВСТВУ ОСНОВНЕ СТРУКОВНЕ СТУДИЈЕ СТРУКОВНА МЕДИЦИНСКА СЕСТРА СТРУКОВНИ ФИЗИОТЕРАПЕУТ ДРУГА ГОДИНА СТУДИЈА школска 2016/2017. Предмет: ИНФОРМАТИКА У ЗДРАВСТВУ Предмет се вреднује са 3

Διαβάστε περισσότερα

ПРИРОДА ВРЕМЕНА. информациjа материjе термодинамика теориjа релативности квантна механика. принцип вероватноће у физици

ПРИРОДА ВРЕМЕНА. информациjа материjе термодинамика теориjа релативности квантна механика. принцип вероватноће у физици ПРИРОДА ВРЕМЕНА информациjа материjе термодинамика теориjа релативности квантна механика принцип вероватноће у физици растко вуковић Архимед Бања Лука, jануар 2017. Растко Вуковић: ПРИРОДА ВРЕМЕНА - информациjа

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

Увод у теориjу игара и игра инспекциjе

Увод у теориjу игара и игра инспекциjе proba Математички институт у Београду Увод у теориjу игара и игра инспекциjе Лука Павловић Београд, 12. маj 2017. proba Увод у Теориjу Игара 1 Увод у Теориjу Игара Теориjа игара jе грана математике коjа

Διαβάστε περισσότερα

Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2. За плочу

Διαβάστε περισσότερα

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез

Διαβάστε περισσότερα

Теорија одлучивања. Анализа ризика

Теорија одлучивања. Анализа ризика Теорија одлучивања Анализа ризика Циљеви предавања Упознавање са процесом анализе ризика Моделовање ризика Монте-Карло Симулација Предности и недостаци анализе ризика 2 Дефиниција ризика (квалитативни

Διαβάστε περισσότερα

УНИВЕРЗИТЕТ У НОВОМСАДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И

УНИВЕРЗИТЕТ У НОВОМСАДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И УНИВЕРЗИТЕТ У НОВОМСАДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ Зорана Томић ГРАНИЧНЕ ВРЕДНОСТИ ФУНКЦИЈА Мастер рад Нови Сад, 2012. Предговор... 3 1. Увод... 4 Појам функције...

Διαβάστε περισσότερα

ПРИМЕНА МУЛТИВАРИЈАНТНЕ ДИСКРИМИНАЦИОНЕ АНАЛИЗЕ У ПРОЦЕСУ РЕВИЗИЈЕ

ПРИМЕНА МУЛТИВАРИЈАНТНЕ ДИСКРИМИНАЦИОНЕ АНАЛИЗЕ У ПРОЦЕСУ РЕВИЗИЈЕ Универзитет у Новом Саду Природно-математички факултет Департман за математику и информатику ПРИМЕНА МУЛТИВАРИЈАНТНЕ ДИСКРИМИНАЦИОНЕ АНАЛИЗЕ У ПРОЦЕСУ РЕВИЗИЈЕ Мастер рад Ментор др Наташа Спахић Студент

Διαβάστε περισσότερα

Упутство за избор домаћих задатака

Упутство за избор домаћих задатака Упутство за избор домаћих задатака Студент од изабраних задатака области Математике 2: Комбинаторика, Вероватноћа и статистика бира по 20 задатака. Студент може бирати задатке помоћу програмског пакета

Διαβάστε περισσότερα

МЕДИЦИНСКА СТАТИСТИКА И ИНФОРМАТИКА

МЕДИЦИНСКА СТАТИСТИКА И ИНФОРМАТИКА МЕДИЦИНСКА СТАТИСТИКА И ИНФОРМАТИКА МЕДИЦИНА И ДРУШТВО ШЕСТА ГОДИНА СТУДИЈА школска 2015/2016. Предмет: МЕДИЦИНСКА СТАТИСТИКА И ИНФОРМАТИКА Предмет се вреднује са 2 ЕСПБ. Недељно има 2 часа активне наставе

Διαβάστε περισσότερα

Објектно орјентисано програмирање. Владимир Филиповић Александар Картељ

Објектно орјентисано програмирање. Владимир Филиповић Александар Картељ Објектно орјентисано програмирање Владимир Филиповић Александар Картељ kartelj@matf.bg.ac.rs Типови података у Јави Владимир Филиповић Александар Картељ kartelj@matf.bg.ac.rs Типови података у Јави 3/33

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

У н и в е р з и т е т у Б е о г р а д у Математички факултет. Семинарски рад. Методологија стручног и научног рада. Тема: НП-тешки проблеми паковања

У н и в е р з и т е т у Б е о г р а д у Математички факултет. Семинарски рад. Методологија стручног и научног рада. Тема: НП-тешки проблеми паковања У н и в е р з и т е т у Б е о г р а д у Математички факултет Семинарски рад из предмета Методологија стручног и научног рада Тема: НП-тешки проблеми паковања Професор: др Владимир Филиповић Студент: Владимир

Διαβάστε περισσότερα

Имплементациjа монада у програмском jезику Swift 1.1

Имплементациjа монада у програмском jезику Swift 1.1 Имплементациjа монада у програмском jезику Swift 1.1 Ивица Миловановић Садржаj Монаде су моћан и ефективан алат из арсенала функционалног програмирања. У овом раду ћемо показати како се ове структуре,

Διαβάστε περισσότερα

6.5 Површина круга и његових делова

6.5 Површина круга и његових делова 7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност

Διαβάστε περισσότερα

ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ

ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ 1. Удео снаге и енергије ветра у производњи електричне енергије - стање и предвиђања у свету и Европи. 2. Навести називе најмање две међународне организације

Διαβάστε περισσότερα

Вежба 4. Графика. Наредба има облик plot(x,y) Аргументи x и y су вектори, који морају имати исти број елемената.

Вежба 4. Графика. Наредба има облик plot(x,y) Аргументи x и y су вектори, који морају имати исти број елемената. Вежба Графика У МATLAB-у постоји много команди за цртање графика. Изглед графика може се подешавати произвољним избором боје, дебљине и врсте линија, уношењем мреже, наслова, коментара и слично. У овој

Διαβάστε περισσότερα

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c 6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c Ако су а, b и с цели бројеви и аb 0, онда се линеарна једначина ах + bу = с, при чему су х и у цели бројеви, назива линеарна Диофантова једначина. Очигледно

Διαβάστε περισσότερα

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016.

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016. ЕНЕРГЕТСКИ ПРЕТВАРАЧИ (3Е03ЕП) октобар 06.. Батерија напона B = 00 пуни се преко трофазног полууправљивог мосног исправљача, који је повезан на мрежу 3x380, 50 Hz преко трансформатора у спрези y, са преносним

Διαβάστε περισσότερα

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 Метод разликовања случајева је један од најексплоатисанијих метода за решавање математичких проблема. У теорији Диофантових једначина он није свемогућ, али је сигурно

Διαβάστε περισσότερα