Objektno orijentisano programiranje

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Objektno orijentisano programiranje"

Transcript

1 Matematički fakultet, Univerzizet u Beogradu Katedra za računarstvo i informatiku Objektno orijentisano programiranje vežbe školska 2016/ 2017 Biljana Stojanović Nemanja Mićović Nikola Milev

2 1 Наслеђивање класа * Концепт наслеђивања је врло битан сегмент објектно оријентисаног програмирања. Наслеђивање је поступак којим се из постојећих праве (изводе) нове класе. Нова класа зове се изведена или поткласа, док је постојећа класа базна или суперкласа. Нова и постојећа класа налазе се у специфичном односу. Хијерархија наслеђивања може бити произвољне дубине (из изведене класе могу се даље изводити нове класе). Зашто изводимо класе из постојећих? Главни циљ нам је да решимо неки проблем. Наравно, имаћемо класе и објекте јер Јава без тога не може. Објекти могу бити нешто апстрактно (тачке, кругови, дужи), а могу бити и нешто опипљивије (животиње, мачке, буве). Може постојати и некаква хијерархија међу објектима и класама са којима се ради. Нпр. можемо имати класу Povrs и класе Pravougaonik, Kvadrat, Krug... И јасно је да је правоугаоник површ, као и квадрат и круг... Или нпр. ако имамо класе Zivotinja, Macka, Pas, опет: мачка је животиња, пас је такође животиња итд. Мачка ЈЕ животиња. То значи да има сва својства животиње (све податке (атрибуте) и понашања заједничка за све животиње). Али мачка има и нешто више од тога, нешто што је својствено само мачкама, због чега је издвојена у посебну животињску врсту (нпр. мачке преду...). У таквим ситуацијама, када су објекти двају или већег броја класа на неки начин специјализација објеката једне класе, природно је да та класа буде базна, а да се ове остале изведу из ње. У базној класи треба да се нађу атрибути и методи заједнички за објекте свих изведених класа, док у изведене класе треба сместити оно по чему се њихови објекти међусобно разликују. Како рећи да је једна класа изведена из друге? То се чини кључном речју extends која се наводи у првом реду дефиниције класе. Нпр. public class Krug extends Povrs {... } Овде се каже да је класа Krug изведена из класе Povrs. То, даље, значи да ће сваки објекат класе Krug, поред атрибута који се налазе у дефиницији те класе, садржати и све атрибуте дефинисане у базној класи Povrs. Ипак, атрибути дефинисани у базној класи не морају увек бити доступни методима изведене класе. Посебно је важно нагласити да је приликом прављења објекта изведене класе (Krug) неопходно извршити иницијализацију и тих атрибута базне класе (Povrs) који су присутни у објекту изведене класе. Наслеђени чланови Код наслеђивања се уводи и појам тзв. наслеђених чланова базне класе. То нису сви чланови (атрибути и методи) базне класе, иако су сви они присутни у објекту изведене класе. Чланови базне класе који су доступни унутар изведене класе су наслеђени чланови. Они који нису наслеђени су и даље део објеката изведене класе. * Укључује и садржај из материјала Марије Милановић

3 Kaда се базна и изведена класа налазе у истом пакету, не наслеђују се само они чланови који су у базној класи дефинисани са приступним атрибутом private. Ако се, пак, базна и изведена класа налазе у различитим пакетима, неће бити наслеђени ни они чланови базне класе који имају пакетно право приступа. Дакле, public и protected чланови базне класе наслеђују се увек, без обзира на размештај класа по пакетима. A шта добијемо када наследимо неки члан базне класе? То је као да се дефиниција тог члана налази у дефиницији изведене класе. Практично, наслеђеном члану базне класе можемо приступати навођењем само његовог имена. Он је равноправан са члановима који су дефинисани у самој изведеној класи. Одавде, између осталог, следи: како нам, по правилу, атрибути класа (што ће се односити и на базну) имају приступни атрибут private, они нису наслеђени чланови базне класе. За њихову иницијализацију користи се позив конструктора базне класе на начин који ће ускоро бити описан, док ако су нам у изведеној класи потребне њихове вредности, морамо их дохватити позивом одговарајућих метода get*() базне класе. Скриверни чланови класе Може се (случајно) десити да постоји атрибут са истим именом и у базној и у изведеној класи (тип и приступни атрибут у овој причи нису од значаја). Тада је атрибут базне класе скривен истоименим атрибутом изведене класе. Навођењем само имена атрибута обраћамо се атрибуту изведене класе. Да бисмо реферисали истоимени наслеђени атрибут базне класе, морамо његово име квалификовати кључном речју super. Ово није пожељан приступ при дефинисању атрибута изведене класе. Препорука је да се њихова имена разликују од оних из базне класе.

4 Наслеђивање метода Методи базне класе (са изузетком конструктора) наслеђују се по истом принципу као и атрибути. Конструктори базне класе никада се не наслеђују! То значи да их у конструктору изведене класе не можемо звати на начин на који то чинимо нпр. у тест-класи (навођењем њиховог имена и листе аргумената унутар пара облих заграда). Али то не значи да их не можемо звати уопште. Штавише, приликом прављења сваког новог објекта изведене класе НЕОПХОДНО ЈЕ У КОНСТРУКТОРУ ИЗВЕДЕНЕ ПОЗВАТИ КОНСТРУКТОР БАЗНЕ КЛАСЕ, који ће извршити иницијализацију атрибута базне класе присутних у објекту изведене класе. Ако не позовемо конструктор базне класе из конструктора изведене, компајлер ће покушати то да уради за нас. Позив конструктора базне класе у конструктору изведене врши се помоћу кључне речи super као имена метода и то мора да буде прва наредба у телу конструктора изведене класе. Ако то није случај, компајлер ће имплицитно убацити позив подразумеваног конструктора базне класе: super(); а уколико подразумевани конструктор не постоји у базној класи, то ће резултовати грешком при компајлирању. Дакле, прва наредба у телу конструктора изведене класе је УВЕК позив конструктора базне класе (имплицитни позив подразумеваног конструктора од стране преводиоца или одговарајући експлицитни позив). Ако се позива конструктор базне класе различит од подразумеваног, наводи се и одговарајући број аргумената у складу са дефиницијом конструктора: super(...); Пример 1 (paket nasledjivanje, klase Povrs, Krug): Класа Krug наслађује само методе getcentar() i tostring() из класе Povrs, јер се конструктори, копиконструктор и private инстанцна променљива (нестатички атрибут) centar не наслеђују. Иако се променљива centar не наслеђује, она јесте део објекта изведене класе, па мора бити адекватно иницијализована: 1. у конструктору класе Krug позивом конструктора базне класе 2. у копи-конструктору класе Krug позивом копи-конструктора базне класе (који мора да постоји) или позивом конструктора базне класе У другом случају, пошто је копи-конструктор базне класе дефинисан тако да му је аргумент типа базне класе (Povrs), као стварни аргумент, приликом позива, може да му се проследи референца на објекат типа Povrs, али и на објекат произвољне поткласе класе Povrs (а самим тим и класе Krug која је из ње изведена). Варијанта са конструктором захтева да у базној класи постоје дефинисани public методи get*() за сваку private инстанцну променљиву (у овом случају метод getcentar() за променљиву centar). Кастовање Када се копи-конструктору базне класе Povrs проследи референца на објекат класе Krug (или било које друге поткласе), врши се кастовање у базни тип Povrs. Кастовање представља објекат као да је неког другог типа. Могуће је кастовати објекат у тип (директне или индиректне) наткласе или поткласе, дакле само навише и наниже кроз неку хијерархију класа. Кастовање навише врши се имплицитно (компајлер га убацује сâм, када је потребно). Управо се то дешава у примеру са позивом копи-конструктора базне класе Povrs.

5 Пример 2 (paket nasledjivanje2, klase Povrs, Krug, Pravougaonik, Kvadrat): Час 5: Наслеђивање у програмском језику Јава. Класи Povrs додати су подразумевани конструктор, public методи povrsina()и rastojanjedocentra(povrs), који ће заједно са методима getcentar() i tostring() бити наслеђени у изведеним класама. Из класе Povrs изведена је још једна класа, Pravougaonik, а из ње класа Kvadrat. Метод povrsina()није дефинисан у базној класи (враћа вредност 0), јер се површина рачуна различито за различите типове површи. У изведеним класама је адекватно предефинисан, за круг по формули P=r 2 π, а за правоугаоник по формули P=а*b. Метод rastojanjedocentra(povrs)рачуна растојање од центра текуће до центра дате површи. Параметар метода је типа базне класе Povrs, те ће као стварни аргумент моћи да се проследи референца на објекат типа Povrs, али и референца на објекат произвољне изведене класе (Krug, Pravougaonik, Kvadrat), при чему се онда врши имплицино кастовање навише. У класи Pravougaonik дефинисан је и метод dijagonala(), за рачунање дијагонале текућег правоугаоника, као и метод opisanikrug(), који прави и враћа круг описан око правоугаоника. Ови методи ће бити наслеђени у класи Kvadrat, јер су декларисани као public и нема потребе да се предефинишу у тој класи, јер се понашају исто и за квадрате. Класа Kvadrat нема додатних нестатичких атрибута, јер квадрат је правоугаоник где су странице a и b једнаке дужине. Неопходно је једино да се дефинишу констуктори и да се предефинише метод tostring(). Приступ ненаслеђеним члановима базне класе у изведеној класи Методи базне класе који су наслеђени у изведеној класи (имају атрибут приступа различит од private или су без атрибута приступа у базној класи) могу да приступе свим члановима базне класе унутар изведене класе, чак и онима који нису наслеђени. 2 Predefinisanje (overriding) metoda bazne klase Mоже се дефинисати метод у изведеној класи који има исти потпис као и неки метод базне класе. Претпоставка је да су нама, као и обично, методи у класама public, па ће ова прича важити. Иначе, прича важи када приступни атрибут метода у изведеној класи није рестриктивнији од приступног атрибута метода базне класе који има исти потпис. Када позовемо метод просто навођењем његовог имена, позиваће се метод изведене класе, а ако желимо да позовемо базну верзију метода, морамо користити кључну реч super. Пример: Метод tostring() класе Krug предефинише метод tostring() класе Povrs, који се може позвати у облику super.tostring() како би се генерисала String-репрезентација базног дела круга.

6 Избор приступних атрибута за чланове базне класе Час 5: Наслеђивање у програмском језику Јава. методе који чине спољни интерфејс класе треба декларисати као public. Све док нису предефинисани у изведеној класи, биће у њој доступни директно преко свог имена (иначе им се приступа преко super) препорука је да се инстанцне променљиве (нестатички атрибути) декларишу као private, а да се обезбеде public методи за приступ и измену константни атрибути (статички или нестатички) могу да буду public ако су намењени некој општој употреби protected чланови се најчешће користе у пакетима класа са неограниченим приступом свим члановима из истог пакета, при чему је приступ ван пакета ограничен на поткласе 3 java.lang.object универзална суперкласа Уколико се експлицитно не наведе да је класа изведена из неке друге, подразумева се да је изведена из класе java.lang.object, тако да је Object директна или индиректна суперкласа сваке друге класе. Тиме се обезбеђује да класе које дефинишемо наслеђују чланове класе Object. За сада је од значаја public метод tostring(), који враћа стринг-репрезентацију објекта, и о коме је било речи и раније. Подсећања ради, стринг-репрезентација се генерише у подразумеваном облику: Пуно квалификовано име класе укључује и име пакета коме класа припада. О хеш кодовима објеката ће бити речи у наставку курса. Ради се о вредности која се генерише на основу вредности референце објекта позивом одговарајућег метода (hashcode()). Поред метода tostring(), размотрићемо и public методе equals(), hashcode() и getclass(). Документација је доступна на адреси:

7 4 Задаци за вежбу 1. Написати базну класу Zivotinja која садржи један нестатички атрибут vrsta, који представља врсту којој животиња припада. Атрибут декларисати тако да приступ ван класе буде онемогућен. Обезбедити: подразумевани конструктор (вредност атрибута vrsta поставља се на nepoznata ) конструктор који очекује све потребне аргументе копи-конструктор метод за прављење стринг-репрезентације; нпр ако је врста пас, у облику: "Ovo je pas" Написати изведену класу Pas која од атрибута додатно садржи име пса и његову расу. Атрибут декларисати тако да приступ ван класе буде онемогућен. Обезбедити: конструктор који очекује један аргумент (име пса), а расу поставља на подразумевану вредност sarplaninac конструктор који очекује све потребне аргументе копи-конструктор метод за прављење стринг-репрезентације; нпр у облику: "Ovo je pas Lesi, sarplaninac" Написати тест класу TestZivotinje и у њој направити објекте класе Pas (коришћењем оба конструктора), исписати податке о њима и позвати метод за оглашавање пса. Направити и копију једног од објеката и исписати његове податке, као и начин његовог оглашавања. 2. У претходном задатку потребно је урадити следеће: а) допунити дефиницију изведене класе Pas методом за оглашавање пса: public void oglasise() који исписује како се пас оглашава (нпр. "AV AV") б) Написати класу Macka изведену из класе Zivotinja која од атрибута додатно садржи име мачке и њену расу. Атрибут декларисати тако да приступ ван класе буде онемогућен. Обезбедити: конструктор који очекује један аргумент (име мачке), а расу поставља на подразумевану вредност persijska конструктор који очекује све потребне аргументе копи-конструктор метод за прављење стринг-репрезентације; нпр у облику: "Ovo je macka Srecko, sijamska" метод за оглашавање мачке public void oglasise() који исписује како се мачка оглашава (нпр. "MIJAUUU") в) Написати класу Pudlica изведену из класе Pas која нема никакве додатне атрибуте и методе. Једино што је потребно дефинисати јесте одговарајући конструктор и копи-конструктор. Тест класу допунити прављењем једног објекта класе Macka и једног објекта класе Pudlica, исписати податке о њима и позвати метод за њихово оглашавање.

1.2. Сличност троуглова

1.2. Сличност троуглова математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез

Διαβάστε περισσότερα

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,

Διαβάστε περισσότερα

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10 Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

Анализа Петријевих мрежа

Анализа Петријевих мрежа Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,

Διαβάστε περισσότερα

6.2. Симетрала дужи. Примена

6.2. Симетрала дужи. Примена 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права

Διαβάστε περισσότερα

5.2. Имплицитни облик линеарне функције

5.2. Имплицитни облик линеарне функције математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.

Διαβάστε περισσότερα

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни

Διαβάστε περισσότερα

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре 0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских

Διαβάστε περισσότερα

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису. ЛИНЕАРНА ФУНКЦИЈА 5.. Функција = a + b Функционалне зависности су веома значајне и са њиховим применама често се сусрећемо. Тако, већ су нам познате директна и обрнута пропорционалност ( = k; = k, k ),

Διαβάστε περισσότερα

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23 6.3. Паралелограми 27. 1) Нацртај паралелограм чији је један угао 120. 2) Израчунај остале углове тог четвороугла. 28. Дат је паралелограм (сл. 23), при чему је 0 < < 90 ; c и. c 4 2 β Сл. 23 1 3 Упознајмо

Διαβάστε περισσότερα

6.5 Површина круга и његових делова

6.5 Површина круга и његових делова 7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност

Διαβάστε περισσότερα

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује

Διαβάστε περισσότερα

Аксиоме припадања. Никола Томовић 152/2011

Аксиоме припадања. Никола Томовић 152/2011 Аксиоме припадања Никола Томовић 152/2011 Павле Васић 104/2011 1 Шта је тачка? Шта је права? Шта је раван? Да бисмо се бавили геометријом (и не само геометријом), морамо увести основне појмове и полазна

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2 8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или

Διαβάστε περισσότερα

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x) ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити

Διαβάστε περισσότερα

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА 1. Допуни шта недостаје: а) 5m = dm = cm = mm; б) 6dm = m = cm = mm; в) 7cm = m = dm = mm. ПОЈАМ ПОВРШИНЕ. Допуни шта недостаје: а) 10m = dm = cm = mm ; б) 500dm = a

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

Διαβάστε περισσότερα

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је: Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног

Διαβάστε περισσότερα

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова 4 Троугао (II део) Хилберт Давид, немачки математичар и логичар Велики углед у свету Хилберту је донело дело Основи геометрије (1899), у коме излаже еуклидску геометрију на аксиоматски начин Хилберт Давид

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем

Διαβάστε περισσότερα

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45

Διαβάστε περισσότερα

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 Метод разликовања случајева је један од најексплоатисанијих метода за решавање математичких проблема. У теорији Диофантових једначина он није свемогућ, али је сигурно

Διαβάστε περισσότερα

Семинарски рад из линеарне алгебре

Семинарски рад из линеарне алгебре Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити

Διαβάστε περισσότερα

2.1. Права, дуж, полуправа, раван, полураван

2.1. Права, дуж, полуправа, раван, полураван 2.1. Права, дуж, полуправа, раван, полураван Човек је за своје потребе градио куће, школе, путеве и др. Слика 1. Слика 2. Основа тих зграда је често правоугаоник или сложенија фигура (слика 3). Слика 3.

Διαβάστε περισσότερα

TAЧКАСТА НАЕЛЕКТРИСАЊА

TAЧКАСТА НАЕЛЕКТРИСАЊА TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила. Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,

Διαβάστε περισσότερα

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,

Διαβάστε περισσότερα

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима 50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Решења задатака са првог колоквиjума из Математике 1Б II група задатака

Решења задатака са првог колоквиjума из Математике 1Б II група задатака Решења задатака са првог колоквиjума из Математике Б II група задатака Пре самих решења, само да напоменем да су решења детаљно исписана у нади да ће помоћи студентима у даљоj припреми испита, као и да

Διαβάστε περισσότερα

10.3. Запремина праве купе

10.3. Запремина праве купе 0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 016/017. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом).

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом). СЕЧИЦА(СЕКАНТА) ЦЕНТАР ПОЛУПРЕЧНИК ТАНГЕНТА *КРУЖНИЦА ЈЕ затворена крива линија која има особину да су све њене тачке једнако удаљене од једне сталне тачке која се зове ЦЕНТАР КРУЖНИЦЕ. *Дуж(OA=r) која

Διαβάστε περισσότερα

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c 6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c Ако су а, b и с цели бројеви и аb 0, онда се линеарна једначина ах + bу = с, при чему су х и у цели бројеви, назива линеарна Диофантова једначина. Очигледно

Διαβάστε περισσότερα

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2 АНАЛИТИЧКА ГЕОМЕТРИЈА d AB x x y - удаљеност између двије тачке y x x x y s, y y s - координате средишта дужи x x y x, y y - подјела дужи у заданом односу x x x y y y xt, yt - координате тежишта троугла

Διαβάστε περισσότερα

Дух полемике у филозофији Јован Бабић

Дух полемике у филозофији Јован Бабић Дух полемике у филозофији Јован Бабић У свом истинском смислу филозофија претпостаља једну посебну слободу мишљења, исконску слободу која подразумева да се ништа не подразумева нешто што истовремено изгледа

Διαβάστε περισσότερα

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом

Διαβάστε περισσότερα

Скрипта ријешених задатака са квалификационих испита 2010/11 г.

Скрипта ријешених задатака са квалификационих испита 2010/11 г. Скрипта ријешених задатака са квалификационих испита 00/ г Универзитет у Бањој Луци Електротехнички факултет Др Момир Ћелић Др Зоран Митровић Иван-Вања Бороја Садржај Квалификациони испит одржан 9 јуна

Διαβάστε περισσότερα

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ: Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине

Διαβάστε περισσότερα

Слика 1. Слика 1.2 Слика 1.1

Слика 1. Слика 1.2 Слика 1.1 За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика

Διαβάστε περισσότερα

РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА

РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА 006. Задатак. Одредити вредност израза: а) : за, и 69 0, ; б) 9 а) Како је за 0 и 0 дати израз идентички једнак изразу,, : : то је за дате вредности,

Διαβάστε περισσότερα

ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА

ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА ВАЉЕВО, 006 1 1. УВОД 1.1. ПОЈАМ ДИОФАНТОВЕ ЈЕДНАЧИНЕ У једној земљи Далеког истока живео је некад један краљ, који је сваке ноћи узимао нову жену и следећег

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 1 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Мастер рад. Гребнерове базе. Аутор: Јелена Јовичић Број индекса: 1033/2008. Ментор: Доцент др Зоран Петровић. Математички факултет Београд 2010.

Мастер рад. Гребнерове базе. Аутор: Јелена Јовичић Број индекса: 1033/2008. Ментор: Доцент др Зоран Петровић. Математички факултет Београд 2010. Мастер рад Гребнерове базе Аутор: Јелена Јовичић Број индекса: /8 Ментор: Доцент др Зоран Петровић Математички факултет Београд. Резиме Рад пред вама је мастер рад судента Математичког факултета у Београду,

Διαβάστε περισσότερα

Ротационо симетрична деформација средње површи ротационе љуске

Ротационо симетрична деформација средње површи ротационе љуске Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну

Διαβάστε περισσότερα

< < < 21 > > = 704 дана (15 бодова). Признавати било који тачан. бодова), па је тражена разлика 693 (5 бодова), а тражени збир 907(5

< < < 21 > > = 704 дана (15 бодова). Признавати било који тачан. бодова), па је тражена разлика 693 (5 бодова), а тражени збир 907(5 05.03.011 - III РАЗРЕД 1. Нацртај 4 праве a, b, c и d, ако знаш да је права а нормална на праву b, права c нормалана на b, а d паралелнa са а. Затим попуни табелу стављајући знак (ако су праве нормалне)

Διαβάστε περισσότερα

Теорија одлучивања. Циљеви предавања

Теорија одлучивања. Циљеви предавања Теорија одлучивања Бајесово одлучивање 1 Циљеви предавања Увод у Бајесово одлучивање. Максимална а постериори класификација. Наивна Бајесова класификација. Бајесове мреже за класификацију. 2 1 Примене

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

Са орнос 9 (2015) УДК Јован, пергамски митрополит(049.2) Ларше Ж.-К.(049.2) DOI: /sabornost Оригинални научни рад

Са орнос 9 (2015) УДК Јован, пергамски митрополит(049.2) Ларше Ж.-К.(049.2) DOI: /sabornost Оригинални научни рад Са орнос 9 (2015) Α Ω 57 81 УДК 271.2-1 Јован, пергамски митрополит(049.2) 271.2-1 Ларше Ж.-К.(049.2) DOI: 10.5937/sabornost9-9771 Оригинални научни рад Александар Ђаковац * Универзитет у Београду, Православни

Διαβάστε περισσότερα

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА 4. Закон великих бројева 4. ЗАКОН ВЕЛИКИХ БРОЈЕВА Аксиоматска дефиниција вероватноће не одређује начин на који ће вероватноће случајних догађаја бити одређене у неком реалном експерименту. Зато треба наћи

Διαβάστε περισσότερα

ТРОУГАО. права p садржи теме C и сече страницу. . Одредити највећи угао троугла ако је ABC

ТРОУГАО. права p садржи теме C и сече страницу. . Одредити највећи угао троугла ако је ABC ТРОУГАО 1. У троуглу АВС израчунати оштар угао између: а)симетрале углова код А и В ако је угао код А 84 а код С 43 б)симетрале углова код А и В ако је угао код С 40 в)између симетрале угла код А и висине

Διαβάστε περισσότερα

УНИВЕРЗИТЕТ У НОВОМСАДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И

УНИВЕРЗИТЕТ У НОВОМСАДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И УНИВЕРЗИТЕТ У НОВОМСАДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ Зорана Томић ГРАНИЧНЕ ВРЕДНОСТИ ФУНКЦИЈА Мастер рад Нови Сад, 2012. Предговор... 3 1. Увод... 4 Појам функције...

Διαβάστε περισσότερα

Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба

Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање ОРГАНИЗАЦИЈА ПАРКИРАЛИШТА 1. вежба Место за паркирање (паркинг место) Део простора намењен, технички опремљен и уређен за паркирање једног

Διαβάστε περισσότερα

ТАЧКЕ КОЈЕ ЕКСПЛОДИРАЈУ ПОГЛАВЉЕ 5 ДЕЉЕЊЕ ПОЧИЊЕМО

ТАЧКЕ КОЈЕ ЕКСПЛОДИРАЈУ ПОГЛАВЉЕ 5 ДЕЉЕЊЕ ПОЧИЊЕМО ТАЧКЕ КОЈЕ ЕКСПЛОДИРАЈУ ПОГЛАВЉЕ 5 ДЕЉЕЊЕ Сабирање, одузимање, множење. Сад је ред на дељење. Ево једног задатка с дељењем: израчунајте колико је. Наравно да постоји застрашујући начин да то урадите: Нацртајте

Διαβάστε περισσότερα

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ I Линеарне једначине Линеарне једначине се решавају по следећем шаблону: Ослободимо се разломка Ослободимо се заграде Познате

Διαβάστε περισσότερα

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика Штампарске грешке у петом издању уџбеника Основи електротехнике део Страна пасус први ред треба да гласи У четвртом делу колима променљивих струја Штампарске грешке у четвртом издању уџбеника Основи електротехнике

Διαβάστε περισσότερα

МАСТЕР РАД УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ. Тема: ГОРЊА И ДОЊА ГРАНИЧНА ВРЕДНОСТ НИЗА И НИЗА СКУПОВА И ЊИХОВЕ ПРИМЕНЕ У РЕЛНОЈ АНАЛИЗИ

МАСТЕР РАД УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ. Тема: ГОРЊА И ДОЊА ГРАНИЧНА ВРЕДНОСТ НИЗА И НИЗА СКУПОВА И ЊИХОВЕ ПРИМЕНЕ У РЕЛНОЈ АНАЛИЗИ УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ МАСТЕР РАД Тема: ГОРЊА И ДОЊА ГРАНИЧНА ВРЕДНОСТ НИЗА И НИЗА СКУПОВА И ЊИХОВЕ ПРИМЕНЕ У РЕЛНОЈ АНАЛИЗИ МЕНТОР: КАНДИДАТ: Проф. др Драгољуб Кечкић Милинко Миловић

Διαβάστε περισσότερα

Теорија одлучивања. Анализа ризика

Теорија одлучивања. Анализа ризика Теорија одлучивања Анализа ризика Циљеви предавања Упознавање са процесом анализе ризика Моделовање ризика Монте-Карло Симулација Предности и недостаци анализе ризика 2 Дефиниција ризика (квалитативни

Διαβάστε περισσότερα

(1) Дефиниција функције више променљивих. Околина тачке (x 0, y 0 ) R 2. График и линије нивоа функције f: (x, y) z.

(1) Дефиниција функције више променљивих. Околина тачке (x 0, y 0 ) R 2. График и линије нивоа функције f: (x, y) z. Дефиниција функције више променљивих Околина тачке R График и линије нивоа функције : Дефиниција Величина се назива функцијом променљивих величина и на скупу D ако сваком уређеном пару D по неком закону

Διαβάστε περισσότερα

6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова. B Сл. 1

6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова. B Сл. 1 6. Четвороугао 6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова А Сл. 1 А На приложеним сликама сигурно уочаваш геометријске фигуре које су ти познате (троугао,

Διαβάστε περισσότερα

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ У БЕОГРАДУ КАТЕДРА ЗА ЕЛЕКТРОНИКУ АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ВЕЖБА БРОЈ 2 ПОЈАЧАВАЧ СНАГЕ У КЛАСИ Б 1. 2. ИМЕ И ПРЕЗИМЕ БР. ИНДЕКСА ГРУПА ОЦЕНА ДАТУМ ВРЕМЕ ДЕЖУРНИ

Διαβάστε περισσότερα

Закони термодинамике

Закони термодинамике Закони термодинамике Први закон термодинамике Први закон термодинамике каже да додавање енергије систему може бити утрошено на: Вршење рада Повећање унутрашње енергије Први закон термодинамике је заправо

Διαβάστε περισσότερα

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА Стандардна девијација показује расподелу резултата мерења око средње вредности, али не указује на облик расподеле. У табели 1 су дате вредности за 50 поновљених одређивања

Διαβάστε περισσότερα

Ознаке: f и. Парцијални изводи, парцијалних извода су парцијални изводи другог реда функције z = f (x, y): 2. извод другог реда по x 2 2

Ознаке: f и. Парцијални изводи, парцијалних извода су парцијални изводи другог реда функције z = f (x, y): 2. извод другог реда по x 2 2 Довољан услов за M M Дефинисати парцијалне изводе I реда и II реда функције I реда: Ако постоје коначне граничне вредности количника парцијалних прираштаја функције у тачки са одговарајућим прираштајима

Διαβάστε περισσότερα

Показано је у претходној беседи да се

Показано је у претходној беседи да се ДРУГА БЕСЕДА КАКАВ ДОПРИНОС ЖИВОТУ У ХРИСТУ ПРУЖА БОЖАНСКО КРШТЕЊЕ Показано је у претходној беседи да се свештени живот у Христу садржи у светим Тајнама. Испитајмо сада како нас свака од Тајни уводи у

Διαβάστε περισσότερα

СОЦИЈАЛНО УЧЕЊЕ У ПРАВОСЛАВНОЈ ТЕОЛОГИЈИ

СОЦИЈАЛНО УЧЕЊЕ У ПРАВОСЛАВНОЈ ТЕОЛОГИЈИ СОЦИЈАЛНО УЧЕЊЕ У ПРАВОСЛАВНОЈ ТЕОЛОГИЈИ Захваљујем се организатору на љубазном позиву да узмем учешћа у данашњем скупу а поводом врло значајног догађаја и врло значајне теме. Када се у јесен прошле године,

Διαβάστε περισσότερα

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 Лабораторијска вежба број 1 МОНОФАЗНИ ФАЗНИ РЕГУЛАТОР СА ОТПОРНИМ И ОТПОРНО-ИНДУКТИВНИМ ОПТЕРЕЋЕЊЕМ

Διαβάστε περισσότερα

Изометријске трансформације еуклидскее равни и простора и њихове групе

Изометријске трансформације еуклидскее равни и простора и њихове групе УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ МАКСИМОВИЋ ТАЊА Изометријске трансформације еуклидскее равни и простора и њихове групе МАСТЕР РАД Ментор: др. Александар Липковски Београд 2015. Садржај Увод

Διαβάστε περισσότερα

Испитвање тока функције

Испитвање тока функције Милош Станић Техничка школа Ужицe 7/8 Испитвање тока функције Испитивање тока функције y f подразумева да се аналитичким путем дође до сазнања о понашању функције, као и њеним значајним тачкама у координантном

Διαβάστε περισσότερα

TEMA V ЉУДИ (НАЈЧЕШЋЕ) ЛАЖУ КАКО БИ ЗАШТИТИЛИ СОПСТВЕНУ РЕПУТАЦИЈУ

TEMA V ЉУДИ (НАЈЧЕШЋЕ) ЛАЖУ КАКО БИ ЗАШТИТИЛИ СОПСТВЕНУ РЕПУТАЦИЈУ TEMA V ЉУДИ (НАЈЧЕШЋЕ) ЛАЖУ КАКО БИ ЗАШТИТИЛИ СОПСТВЕНУ РЕПУТАЦИЈУ Станко Абаџић, Праг (2000) 75 76 ПРАВО НА ЛАГАЊЕ Ј е ли овај свет видео икада грану дебљу и тежу од стабла на коме лежи? Покушавате да

Διαβάστε περισσότερα

7. Модели расподела случајних променљивих ПРОМЕНЉИВИХ

7. Модели расподела случајних променљивих ПРОМЕНЉИВИХ 7. Модели расподела случајних променљивих 7. МОДЕЛИ РАСПОДЕЛА СЛУЧАЈНИХ ПРОМЕНЉИВИХ На основу природе појаве коју анализирамо, често можемо претпоставити да расподела случајне променљиве X припада једној

Διαβάστε περισσότερα

ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5. школска 2016/2017. ШЕСТА ГОДИНА СТУДИЈА

ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5. школска 2016/2017. ШЕСТА ГОДИНА СТУДИЈА ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5 ШЕСТА ГОДИНА СТУДИЈА школска 2016/2017. Предмет: ЗАВРШНИ РАД Предмет се вреднује са 6 ЕСПБ. НАСТАВНИЦИ И САРАДНИЦИ: РБ Име и презиме Email адреса звање 1. Јасмина Кнежевић

Διαβάστε περισσότερα

Монте Карло Интеграциjа

Монте Карло Интеграциjа Монте Карло Интеграциjа 4.час 22. март 2016. Боjана Тодић Статистички софтвер 2 22. март 2016. 1 / 22 Монте Карло методе Oве нумеричке методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

Архитектура система за имплементацију игара заснована на компонентама

Архитектура система за имплементацију игара заснована на компонентама Математички факултет Универзитет у Београду Мастер рад Архитектура система за имплементацију игара заснована на компонентама студент: Урош Јовановић ментор: проф. др. Владимир Филиповић Београд, 2016 Ментор:

Διαβάστε περισσότερα

У Н И В Е Р З И Т Е Т У Б Е О Г Р А Д У Е Л Е К Т Р О Т Е Х Н И Ч К И Ф А К У Л Т Е Т. дипломски рад. Ментор: проф. др Слободан Вукосавић

У Н И В Е Р З И Т Е Т У Б Е О Г Р А Д У Е Л Е К Т Р О Т Е Х Н И Ч К И Ф А К У Л Т Е Т. дипломски рад. Ментор: проф. др Слободан Вукосавић У Н И В Е Р З И Т Е Т У Б Е О Г Р А Д У Е Л Е К Т Р О Т Е Х Н И Ч К И Ф А К У Л Т Е Т ФРАКТАЛНА КОМПРЕСИЈА СЛИКЕ дипломски рад Кандидат: Дарко Штерн Ментор: проф. др Слободан Вукосавић Београд септембар

Διαβάστε περισσότερα

Енергетски трансформатори рачунске вежбе

Енергетски трансформатори рачунске вежбе 16. Трофазни трансформатор снаге S n = 400 kva има временску константу загревања T = 4 h, средњи пораст температуре после једночасовног рада са номиналним оптерећењем Â " =14 и максимални степен искоришћења

Διαβάστε περισσότερα

Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља

Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља Универзитет у Машински факултет Београду Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља -семинарски рад- ментор: Александар Томић Милош Живановић 65/

Διαβάστε περισσότερα

Aнализа линкова и алгоритам PageRank

Aнализа линкова и алгоритам PageRank УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ Aнализа линкова и алгоритам PageRank МАСТЕР РАД МЕНТОР: проф. др Миодраг Живковић СТУДЕНТ: Душан Цемовић БЕОГРАД, 2017. Садржај 1 Увод... 4 1.1 Aлати за претрагу...

Διαβάστε περισσότερα

ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА

ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТ ДРУГО РЕГИОНАЛНО ТАКМИЧЕЊЕ ОДГОВОРИ И РЕШЕЊА ИЗ ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ

Διαβάστε περισσότερα

ЈЕДАН НЕМОГУЋИ ОСВРТ НА УРБОФИЛИЈУ, ДВАДЕСЕТ ПРОПАЛИХ ГОДИНА КАСНИЈЕ

ЈЕДАН НЕМОГУЋИ ОСВРТ НА УРБОФИЛИЈУ, ДВАДЕСЕТ ПРОПАЛИХ ГОДИНА КАСНИЈЕ АЛЕКСАНДАР ЈЕРКОВ ЈЕДАН НЕМОГУЋИ ОСВРТ НА УРБОФИЛИЈУ, ДВАДЕСЕТ ПРОПАЛИХ ГОДИНА КАСНИЈЕ Mожда је дошло време да се запише понека успомена, иако би се рекло да је прерано за сећања. Има нечег гротескног

Διαβάστε περισσότερα

Данка Вујанац. Бојење графова. мастер рад

Данка Вујанац. Бојење графова. мастер рад Данка Вујанац Бојење графова мастер рад Нови Сад, 2015 Садржај Предговор... 2 Увод... 3 Глава 1. Основни појмови графа... 5 Глава 2. Бојење чворова... 11 Глава 3. Бојење грана... 22 Глава 4. Бојење планарних

Διαβάστε περισσότερα

Задаци из Објектно-орјентисаног програмирања (Скрипта)

Задаци из Објектно-орјентисаног програмирања (Скрипта) Владимир Филиповић Биљана Стојановић Марија Милановић Сташа Вујичић Станковић Задаци из Објектно-орјентисаног програмирања (Скрипта) Београд, 2012. 1. Аритметичка средина. Написати апликацију у којој се

Διαβάστε περισσότερα

1. Функција интензитета отказа и век трајања система

1. Функција интензитета отказа и век трајања система f(t). Функција интензитета отказа и век трајања система На почетку коришћења неког система јављају се откази који као узрок имају почетне слабости или пропуштене дефекте у току производње и то су рани

Διαβάστε περισσότερα

Основе теорије вероватноће

Основе теорије вероватноће . Прилог А Основе теорије вероватноће Основни појмови теорије вероватноће су експеримент и исходи резултати. Најпознатији пример којим се уводе појмови и концепти теорије вероватноће је бацање новчића

Διαβάστε περισσότερα

61. У правоуглом троуглу АВС на слици, унутрашњи угао код темена А је Угао

61. У правоуглом троуглу АВС на слици, унутрашњи угао код темена А је Угао ЗАДАЦИ ЗА САМОСТАЛНИ РАД Задаци за самостлни рад намењени су првенствено ученицима који се припремају за полагање завршног испита из математике на крају обавезног основног образовања. Задаци су одабрани

Διαβάστε περισσότερα

УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ

УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ ЧЕВИЈЕВА ТЕОРЕМА И ПОСЛЕДИЦЕ Мастер рад Кандидат: Рајка Милетић Ментор: проф др Неда Бокан Београд, 00 САДРЖАЈ Увод 3 I ЧЕВИЈЕВА ТЕОРЕМА 4 I Доказ Чевијеве теореме

Διαβάστε περισσότερα

Модели организовања и методе кооперативног учења, њихова примена и реални домети у обради конкретних тема у настави математике

Модели организовања и методе кооперативног учења, њихова примена и реални домети у обради конкретних тема у настави математике Универзитет у Београду Математички факултет Мастер рад Модели организовања и методе кооперативног учења, њихова примена и реални домети у обради конкретних тема у настави математике Студент: Дубравка Глишовић

Διαβάστε περισσότερα

Црква Сабор: икона светотројичног сапостојања једног и многих

Црква Сабор: икона светотројичног сапостојања једног и многих Саборност Α Ω 2 (2008) 13 40 УДК 271.222(497.11)-726.2:929 Игнатије, браничевски епископ(047.53) 271.2-1 Игнатије Мидић Универзитет у Београду Православни богословски факултет Црква Сабор: икона светотројичног

Διαβάστε περισσότερα

Стручни рад ПРИМЕНА МЕТОДЕ АНАЛИТИЧКИХ ХИЕРАРХИJСКИХ ПРОЦЕСА (АХП) КОД ИЗБОРА УТОВАРНО -ТРАНСПОРТНЕ МАШИНЕ

Стручни рад ПРИМЕНА МЕТОДЕ АНАЛИТИЧКИХ ХИЕРАРХИJСКИХ ПРОЦЕСА (АХП) КОД ИЗБОРА УТОВАРНО -ТРАНСПОРТНЕ МАШИНЕ ПОДЗЕМНИ РАДОВИ 15 (2006) 43-48 UDK 62 РУДАРСКО-ГЕОЛОШКИ ФАКУЛТЕТ БЕОГРАД YU ISSN 03542904 Стручни рад ПРИМЕНА МЕТОДЕ АНАЛИТИЧКИХ ХИЕРАРХИJСКИХ ПРОЦЕСА (АХП) КОД ИЗБОРА УТОВАРНО -ТРАНСПОРТНЕ МАШИНЕ ИЗВОД

Διαβάστε περισσότερα

Јелена Фемић Касапис. Универзитет у Београду, Православни богословски факултет, Београд

Јелена Фемић Касапис. Универзитет у Београду, Православни богословски факултет, Београд Саборност 3 (2009) Α Ω 259 268 Јелена Фемић Касапис Универзитет у Београду, Православни богословски факултет, Београд УДК 111(38) 111(38):27-1 Термин ὑπόστασις [hypóstasis] у јелинскоj писаној баштини

Διαβάστε περισσότερα