R 2. I област. 1. Реални напонски генератор електромоторне силе E. и реални напонски генератор непознате електромоторне силе E 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "R 2. I област. 1. Реални напонски генератор електромоторне силе E. и реални напонски генератор непознате електромоторне силе E 2"

Transcript

1 I област. Реални напонски генератор електромоторне силе = 0 V и унутрашње отпорности = Ω и реални напонски генератор непознате електромоторне силе и унутрашње отпорности = 0, 5 Ω везани су у коло као на слици. Израчунати електромоторну силу при којој је снага коју прима други реални напонски генератор (, ) максимална. Решење: а) = 0 V b) = 5 V c) = 5 V d) = 0 V Слика. I област. Дата је отпорничка мрежа приказана на слици. Одредити еквивалентну отпорност између тачака и B ако се зна да је отпорност сваке гране мреже. 4 Решење: a) B = 3 b) B = c) B = d) B = 3 Слика. B

2 II област 3. За електрично коло приказано на слици 3 је познато: = 0Ω и = 0Ω. Електромоторна сила може да се мења. У случају када је преклопник у положају при = 0 амперметар А показује струју I = а при = V амперметар показује струју I =,. Када се преклопник пребаци у положај, при = 3 V амперметар показује струју I =, 4. Одредити показивање амперметра при = 5 V (преклопник је у положају ). Решење: а) I = 0, 9 b) I =, c) I = 3 d) I =, Π 6 I I 5 7 Слика 3. II област 4. Електромоторна сила акумулатора је = V а његова унутрашња отпорност r =, 5 Ω. Таквих N = 36 акумулатора подељено је на p група. Унутар сваке групе акумулатори су везани на ред, па затим те групе међу собом паралелно и прикључене на пријемник отпорности p = 9 Ω као што је приказано на слици 4. Одредити ону струју пријемника I која има највећу вредност. Решење: a) I = 9, 8 b) I = 9, 6 c) I = 9, 4 d) I = 9, r r p Слика 4. r r I

3 III област 5. Електростатички дипол је смештен вакууму у координатном почетку Декартовог система тако да му је електрични момент p = p p cos θ iz. Потенцијал овог дипола је дат изразом V =, где су 4πε0r r и θ сферне координате приказане на слици 5. Одредити израз за вектор јачине електричног поља овог дипола на z -оси. p Решење: a) = z πε0z i p cos θ b) = i 3 z 4πε0r p sin θ c) = i 3 z πε0z p d) = 3 z πε0z i p z θ Слика 5. r III област 6. За коло приказано на слике 6 познато је: = 3 = 50Ω, 5 = 500Ω, 6 = 750Ω, 7 = 8 = 400Ω, 3 = 30 V, 4 = 0 V и I = 40 m. Када се прекидач Π ( Π отворен) пребаци из положаја један у положај два, кроз грану са кондензатором C = 0, 5 µf протекне количина електрицитета q = 0 µc уз назначени референтни смер на слици. Одредити протеклу количину наелектрисања q кроз грану са кондензатором после затварања прекидача Π, држећи се претходног референтног смера протока q. Решење: а) q = 5 µc b) q = 0 µc c) q = 5 µc d) q = 4 µc Π 8 Π C q 5 3 I Слика 6.

4 IV област 7. Усамљени диелектрични цилиндар, полупречника а и висине h, приказан на слици 7, хомогено је поларизован по својој запремини. Познат је вектор поларизације P = P0 iz.одредити израз за вектор јачине електричног поља у средишту цилиндра када a h. Решење: а) Pa = 0 z ε0h i = Pa 0 z ε0h i b) P 0 c) = iz ε0 4Pa 0 d) = z ε0h i z a Слика 7. h IV област 8. Полупречник унутрашњег проводника коаксијалног кабла је a = 0 mm, а унутрашњи полупречник спољашњег проводника је c = 50 mm. Кабл има два коаксијална слоја диелектрика (слика 8.). Релативне пермитивности унутрашњег и спољашњег слоја диелектрика су ε r = 4 и ε r = 3, респективно, а одговарајуће електричне чврстоће диелектрика су kr = 300 kv/cm и kr = 00 kv/cm. Колико треба да буде полупречник b раздвојне површи слојева диелектрика да би пробојни напон кабла био највећи. Решење: a) b = 0 mm b) b = 30 mm c) b = 40 mm d) b = 50 mm ε r c ε r b a U Слика 8.

5 V област 9. Феромагнетски цилиндар кружног попречног пресека, полупречника a и дужине a, хомогено је намагнетисан тако да је вектор магнетизације M паралелан оси цилиндра. Околна средина је ваздух. Одредити вектор јачине магнетског поља у тачки која се налази на оси цилиндра приказаној на слици 9. Решење: a) H = 0,M b) H = 0, 879M c) H = 0,M d) H = 0,4M е) ниједан одговор M z a a a Слика 9. V област 0. Одредити израз за подужну унутрашњу индуктивност веома дугачког, правог проводника кружмог попречног пресека, полупречника a и пермеабилности µ. µ Решење: a) L i = 4π µ b) L i = 8π µ c) L i = 8a π µ d) L i = 6π

6 VI област. Који од понуђених дијаграма одговара магнетском флуксу Φ () t у односу на референтни смер, ако је индукована електромоторна сила коју формира тај флукс e ind () t = sin() t у интервалу t (0, π) и eind( t ) = 0, Φ () t = 0за t (0, π). () a () b () c () d () Φ t () Φ t () Φ t () Φ t Решење: a) b) c) d) VI област. За савршени трансформатор са слике познати су бројеви завојака примара и секундара ( N и N ), средњи обим (l ), површина попречног пресека (S ), пермеабилност феромагнетског језгра које се сматра линеарним ( µ ) и напон примара, u( t) = U cos ωt. Одредити изразе за тренутну вредност напона секундара када је секундар затворен пријемником комплексне импедансе Z. Занемарити отпорност намотаја примара и секундара ( = = 0). N Решење: а) u() t = U cosωt N N b) u( t) = U cos ωt N N c) u( t) = U sin ωt N N d) u( t) = U sin ωt N u l N S N Слика. u

7 VII област 3. У коло стане струје приказано на слици 3 познато је: = V, > 0 и L = L = L (идеалне завојнице и коефицијент спреге k = 0 ). Израчунати однос струја λ = I/ I у завојницама. Решење: а) λ = b) λ = / c) λ = d) не зависи од L, L I I L L Слика 3. VII област 4. У колу простопериодичне струје приказаном на слици 4 је ω L =. Колика треба да буде импеданса кондензатора Z да би идеални волтметар показивао максималну ефективну вредност. Решење: a) Z = j b) Z = j / c) Z = j d) Z = j L V C Слика 4.

8 VIII област 5. У колу простопериодичне струје са слике 5 је познато: G = 0 ms, B = 50 ms, Z 3 = (6 j 8) Ω и I = ( 0 j 60) m. Привидна снага струјног генератора је S = 0 V, а његова активна снага је три пута већа од активне снаге пријемника кондуктансе G. Струја i фазно предњачи напону u 3. Одредити фактор снаге генератора k = cosϕ. Решење: а) k = / b) k = 0, 6 c) k = 0, 8 d) k = I 3 I G B Слика 5. Z Z 3 VIII област 6. У колу простопериодичне струје приказаном на слици 4 је Z p = (3 j 4) Ω. Колика треба да буде импеданса генератора Z да би ватметар показивао максималну вредност. Решење: а) Z = (3 j 4) Ω b) Z = (4 j3 ) Ω c) Z = j 4 Ω d) Z = 0 Z W Z p Слика 6.

9 IX област 7. Коло са два индуктивно спрегнута калема је прикључено на простопериодични напон ефективне вредности U = 0 V и фреквенције f = 50 Hz, као на слици 7. Када су оба преклопника Π, Π у положају, као на слици, привидна снага кола је S = 440 V а идеални ватметар показује P = 864 W. Ако се оба преклопника Π, Π пребаце у положај, ватметар показује P = 600 W. Одредити међусобну индуктивност M спрегнутих калемова. Решење: а) M =, mh b) M =, 43 mh c) M =, 73 mh d) M =, 90 mh е) ниједан одговор Π W Π r, L r, L U, f Слика 7. IX област 8. У колу простопериодичне струје са идеалним трансформатором, код кога је n = N/ N, приказаном на слици 8. Одредити параметар n тако да идеални амперметар показује највећу ефективну вриједност струје. Познато је: = 0 V, = 0 Ω, ωl = 4/( ωc) Решење: a) n = 4 b) n = c) n = d) n = / L n : C Слика 8.

10 X област 9. Симетрични резистивни трофазни пријемник, везан је у звезду и прикључен на симетричну трофазну мрежу директног редоследа, слика 9. Отпорност у грани А може се мењати у широком опсегу. Одредити однос k = Pmax / Pmin (однос највеће снаге трофазног потрошача P max у односу на најмању снагу P min трофазног потрошача). Ефективна вредност фазних напона је U. Решење: а) k = b) k = c) k = 3 d) k = 4 B C Слика 9. 0 Ω 0 Ω X област 0. У колу на слици електромоторне силе трофазног генератора чине симетричан директан систем. Позната је кружна учестаност ω, ефективна вредност линијског (међуфазног) напона генератора U, отпорност, индуктивност L и сачинилац спреге k. Одредити капацитивност C тако да трофазни генератор предаје само активну снагу. Решење: a) C = ω L( k) k b) C = ω L( k ) k c) C = ω L( k ) k d) C = ω L( k ) S T k L L Слика 0. C

. Одредити количник ако је U12 U34

. Одредити количник ако је U12 U34 област. У колу сталне струје са слике познато је = 3 = и =. Одредити количник λ = E/ E ако је U U34 =. Решење: а) λ = b) λ = c) λ = 3 / d) λ = g E 4 g 3 3 E Слика. област. Дата је жичана мрежа у облику

Διαβάστε περισσότερα

Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ

Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ Испит из предмета Електротехника са електроником 1. Шест тачкастих наелектрисања Q 1, Q, Q, Q, Q 5 и Q налазе се у теменима правилног шестоугла, као на слици. Познато је: Q1 = Q = Q = Q = Q5 = Q ; Q 1,

Διαβάστε περισσότερα

ОСНОВА ЕЛЕКТРОТЕНИКЕ

ОСНОВА ЕЛЕКТРОТЕНИКЕ МИНИСТАРСТВО ПРОСВЕТЕ РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ЧЕТРНАЕСТО РЕГИОНАЛНО ТАКМИЧЕЊЕ ПИТАЊА И ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕНИКЕ ЗА УЧЕНИКЕ ДРУГОГ РАЗРЕДА број задатка 1

Διαβάστε περισσότερα

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика Штампарске грешке у петом издању уџбеника Основи електротехнике део Страна пасус први ред треба да гласи У четвртом делу колима променљивих струја Штампарске грешке у четвртом издању уџбеника Основи електротехнике

Διαβάστε περισσότερα

Слика 1. Слика 1.2 Слика 1.1

Слика 1. Слика 1.2 Слика 1.1 За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика

Διαβάστε περισσότερα

Слика 1. Слика 1.1 Слика 1.2 Слика 1.3. Количина електрицитета која се налази на електродама кондензатора капацитивности C 3 је:

Слика 1. Слика 1.1 Слика 1.2 Слика 1.3. Количина електрицитета која се налази на електродама кондензатора капацитивности C 3 је: Три кондензатора познатих капацитивности 6 nf nf и nf везани су као на слици и прикључени на напон U Ако је позната количина наелектрисања на кондензатору капацитивности одредити: а) Напон на који је прикључена

Διαβάστε περισσότερα

ОСНОВА ЕЛЕКТРОТЕХНИКЕ

ОСНОВА ЕЛЕКТРОТЕХНИКЕ МИНИСТАРСТВО ПРОСВЕТЕ РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ПЕТНАЕСТО РЕГИОНАЛНО ТАКМИЧЕЊЕ ПИТАЊА И ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕХНИКЕ ЗА УЧЕНИКЕ ДРУГОГ РАЗРЕДА број задатка 3

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

1.2. Сличност троуглова

1.2. Сличност троуглова математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)

Διαβάστε περισσότερα

TAЧКАСТА НАЕЛЕКТРИСАЊА

TAЧКАСТА НАЕЛЕКТРИСАЊА TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични

Διαβάστε περισσότερα

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 Лабораторијска вежба број 2 ТРОФАЗНИ ПУНОУПРАВЉИВИ МОСТНИ ИСПРАВЉАЧ СА ТИРИСТОРИМА 1. ТЕОРИЈСКИ УВОД

Διαβάστε περισσότερα

ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА

ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТ ДРУГО РЕГИОНАЛНО ТАКМИЧЕЊЕ ОДГОВОРИ И РЕШЕЊА ИЗ ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ

Διαβάστε περισσότερα

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 Лабораторијска вежба број 1 МОНОФАЗНИ ФАЗНИ РЕГУЛАТОР СА ОТПОРНИМ И ОТПОРНО-ИНДУКТИВНИМ ОПТЕРЕЋЕЊЕМ

Διαβάστε περισσότερα

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ У БЕОГРАДУ КАТЕДРА ЗА ЕЛЕКТРОНИКУ АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ВЕЖБА БРОЈ 2 ПОЈАЧАВАЧ СНАГЕ У КЛАСИ Б 1. 2. ИМЕ И ПРЕЗИМЕ БР. ИНДЕКСА ГРУПА ОЦЕНА ДАТУМ ВРЕМЕ ДЕЖУРНИ

Διαβάστε περισσότερα

Електромагнетика одабрана поглавља

Електромагнетика одабрана поглавља Универзитет у Нишу Електронски факултет у Нишу Катедра за теоријску електротехнику Електромагнетика одабрана поглавља рачунске вежбе Предметни професор: др Небојша Раичевић e-mil: nebojsiceic@elfknics

Διαβάστε περισσότερα

брзина којом наелектрисања пролазе кроз попречни пресек проводника

брзина којом наелектрисања пролазе кроз попречни пресек проводника Струја 1 Електрична струја Кад год се наелектрисања крећу, јавља се електрична струја Струја је брзина којом наелектрисања пролазе кроз попречни пресек проводника ΔQ I Δtt Јединица за струју у SI систему

Διαβάστε περισσότερα

Ротационо симетрична деформација средње површи ротационе љуске

Ротационо симетрична деформација средње површи ротационе љуске Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну

Διαβάστε περισσότερα

C кплп (Кпндензатпр у кплу прпстпперипдичне струје)

C кплп (Кпндензатпр у кплу прпстпперипдичне струје) C кплп (Кпндензатпр у кплу прпстпперипдичне струје) i u За кплп са слике на крајевима кпндензатпра ппзнате капацитивнпсти C претппставићемп да делује ппзнат прпстпперипдичан наппн: u=u m sin(ωt + ϴ). Услед

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни

Διαβάστε περισσότερα

6.5 Површина круга и његових делова

6.5 Површина круга и његових делова 7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност

Διαβάστε περισσότερα

10.3. Запремина праве купе

10.3. Запремина праве купе 0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка

Διαβάστε περισσότερα

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни

Διαβάστε περισσότερα

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,

Διαβάστε περισσότερα

Енергетски трансформатори рачунске вежбе

Енергетски трансформатори рачунске вежбе 1. Jеднофазни транформатор примарног напона 4 V, фреквенције 5 Hz има једностепени крстасти попречни пресек магнетског кола чије су димензије a = 55mm и b = 35 mm. а) Израчунати површину пресека чистог

Διαβάστε περισσότερα

Кондензатор је уређај који се користи

Кондензатор је уређај који се користи Kондензатори 1 Кондензатор Кондензатор је уређај који се користи у великом броју електричних кола Капацитет, C, кондензатора се дефинише као количник интензитета наелектрисања на његовим плочама и интернзитета

Διαβάστε περισσότερα

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. = 0.2 dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2.

Διαβάστε περισσότερα

Енергетски трансформатори рачунске вежбе

Енергетски трансформатори рачунске вежбе 16. Трофазни трансформатор снаге S n = 400 kva има временску константу загревања T = 4 h, средњи пораст температуре после једночасовног рада са номиналним оптерећењем Â " =14 и максимални степен искоришћења

Διαβάστε περισσότερα

6.2. Симетрала дужи. Примена

6.2. Симетрала дужи. Примена 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права

Διαβάστε περισσότερα

САМОПОБУДНИ АСИНХРОНИ ГЕНЕРАТОР SELF-EXCITED ASYNCHRONOUS GENERATOR

САМОПОБУДНИ АСИНХРОНИ ГЕНЕРАТОР SELF-EXCITED ASYNCHRONOUS GENERATOR INFOTEH-JAHORINA Vol. 10, Ref. F-36, p. 1061-1065, March 2011. САМОПОБУДНИ АСИНХРОНИ ГЕНЕРАТОР SELF-EXCITED ASYNCHRONOUS GENERATOR Глуховић Владимир, Електротехнички факултет Источно Сарајево Садржај-У

Διαβάστε περισσότερα

Антене и простирање. Показна лабораторијска вежба - мерење карактеристика антена. 1. Антене - намена и својства

Антене и простирање. Показна лабораторијска вежба - мерење карактеристика антена. 1. Антене - намена и својства Антене и простирање Показна лабораторијска вежба - мерење карактеристика антена 1. Антене - намена и својства Антена је склоп који претвара вођени електромагнетски талас у електромагнетски талас у слободном

Διαβάστε περισσότερα

УПУТСТВА ЗА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ЕНЕРГЕТСКИХ ТРАНСФОРМАТОРА И АСИНХРОНИХ МАШИНА

УПУТСТВА ЗА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ЕНЕРГЕТСКИХ ТРАНСФОРМАТОРА И АСИНХРОНИХ МАШИНА Електротехнички факултет Универзитета у Београду Енергетски одсек Катедра за енергетске претвараче и погоне УПУТСТВА ЗА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ЕНЕРГЕТСКИХ ТРАНСФОРМАТОРА И АСИНХРОНИХ МАШИНА Име и презиме:

Διαβάστε περισσότερα

ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА ОСНОВНИХ ШКОЛА ШКОЛСКЕ 2012/2013. ГОДИНЕ. која се троши на његово загревање након затварања прекидача.

ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА ОСНОВНИХ ШКОЛА ШКОЛСКЕ 2012/2013. ГОДИНЕ. која се троши на његово загревање након затварања прекидача. ШКОЛСКЕ 0/03. ГОДИНЕ. Друштво физичара Србије VIII Министарство просвете, науке и технолошког РАЗРЕД развоја Републике Србије ЗАДАЦИ. Отпорности у струјном колу приказаном на слици износе R.8, R и R 3.

Διαβάστε περισσότερα

ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (13Е013ЕНТ) јануар 2017

ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (13Е013ЕНТ) јануар 2017 ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (1Е1ЕНТ) јануар 17 Трофазни уљни дистрибутивни трансформатор има следеће номиналне податке: S = kv, U 1 /U = 1 x%/.4 kv, 5 Hz, спрега Dy5, P k =.6 kw, u k = 5 %, P = 4 W, j =

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

Катедра за електронику, Основи електронике

Катедра за електронику, Основи електронике Лабораторијске вежбе из основа електронике, 13. 7. 215. Презиме, име и број индекса. Трајање испита: 12 минута Тест за лабораторијске вежбе 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 5 1 5 1 5 5 2 3 5 1

Διαβάστε περισσότερα

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ: Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине

Διαβάστε περισσότερα

Машина за једносмерну струју са независном побудом

Машина за једносмерну струју са независном побудом Машина за једносмерну струју са независном побудом Садржај Садржај... 1 Увод... 1 Опрема која се користи у оквиру лабораторијске поставке... 2 Константе... 4 Ток вежбе... 4 Почетно стање... 4 Припрема

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10 Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила. Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,

Διαβάστε περισσότερα

4. ГУБИЦИ СНАГЕ, СТЕПЕН ИСКОРИШЋЕЊА И ПРОМЕНА НАПОНА

4. ГУБИЦИ СНАГЕ, СТЕПЕН ИСКОРИШЋЕЊА И ПРОМЕНА НАПОНА Делове текста између маркера и прочитати информативно (из тог дела градива се неће постављати питања на испиту) 4. ГУБИЦИ СНАГЕ, СТЕПЕН ИСКОРИШЋЕЊА И ПРОМЕНА НАПОНА 4. 1. ГУБИЦИ У ГВОЖЂУ О губицима у гвожђу

Διαβάστε περισσότερα

УПУТСТВА ЗА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ СИНХРОНИХ МАШИНА

УПУТСТВА ЗА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ СИНХРОНИХ МАШИНА Електротехнички факултет Универзитета у Београду Енергетски одсек Катедра за енергетске претвараче и погоне УПУТСТВА ЗА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ СИНХРОНИХ МАШИНА Име и презиме: Број индекса: Вежба број

Διαβάστε περισσότερα

Галваномагнетни ефекти

Галваномагнетни ефекти УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ Владимир Голуб Миљић Јована Ивана Антић Галваномагнетни ефекти семинарски рад Нови Сад, 2010. Садржај 1 Предговор

Διαβάστε περισσότερα

ФИЗИКА Час број 11 Понедељак, 5. децембар, Електричне и магнетне појаве. Електростатика. Електростатика

ФИЗИКА Час број 11 Понедељак, 5. децембар, Електричне и магнетне појаве. Електростатика. Електростатика Електростатика ФИЗИКА Час број 11 Понедељак, 5. децембар, 2010 1 Електричне и магнетне појаве Електростатика Раздвајање наелектрисања у атомима Проводници и изолатори. Наелектрисање контактном и индукцијом

Διαβάστε περισσότερα

У к у п н о :

У к у п н о : ГОДИШЊИ (ГЛОБАЛНИ) ПЛАН РАДА НАСТАВНИКА Наставни предмет: ФИЗИКА Разред: Осми Ред.број Н А С Т А В Н А Т Е М А / О Б Л А С Т Број часова по теми Број часова за остале обраду типове часова 1. ЕЛЕКТРИЧНО

Διαβάστε περισσότερα

ФИЗИКА Час број 12 Понедељак, 27. децембар 2010

ФИЗИКА Час број 12 Понедељак, 27. децембар 2010 Магнетне појаве ФИЗИКА Час број 12 Понедељак, 27. децембар 2010 1 10.1. (понедељак) 2011., 2. колоквијум 21. 1.2011. ухх.хх поправни колоквијум 24.01.2011. у 09.00, испит 2 Магнети Откриће магнета-магнезија

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: МЕХАНИКА 1 студијски програми: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 3. 1 Садржај предавања: Статичка одређеност задатака

Διαβάστε περισσότερα

Вежба 19 Транзистор као прекидач

Вежба 19 Транзистор као прекидач Вежба 19 Транзистор као прекидач Увод Једна од примена транзистора у екектроници јесте да се он користи као прекидач. Довођењем напона на базу транзистора, транзистор прелази из једног у други режима рада,

Διαβάστε περισσότερα

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,

Διαβάστε περισσότερα

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2 АНАЛИТИЧКА ГЕОМЕТРИЈА d AB x x y - удаљеност између двије тачке y x x x y s, y y s - координате средишта дужи x x y x, y y - подјела дужи у заданом односу x x x y y y xt, yt - координате тежишта троугла

Διαβάστε περισσότερα

ФИЗИКА Час број 12 Понедељак, 11. јануар, 2010

ФИЗИКА Час број 12 Понедељак, 11. јануар, 2010 ФИЗИКА Час број 12 Понедељак, 11. јануар, 2010 Магнетне појаве 1 16.1.2010. у 09.00 2. колоквијум 21. 1.2010. у 17.00 поправни колоквијум 25.01.2010. у... испит 2 1 Магнети Откриће магнета-магнезија (Мала

Διαβάστε περισσότερα

Лабораторијске вежбе из електричних машина

Лабораторијске вежбе из електричних машина Лабораторијске вежбе из електричних машина Први циклус вежби Магнетска левитација Демонстрација ефеката обртног магнетског поља Машина за једносмерну струју са независном побудом (за ову вежбу постоји

Διαβάστε περισσότερα

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез

Διαβάστε περισσότερα

3. 5. ИЗРАЧУНАВАЊЕ РЕАКТАНСИ РАСИПАЊА

3. 5. ИЗРАЧУНАВАЊЕ РЕАКТАНСИ РАСИПАЊА Школска година 2014 / 2015 Припремио: Проф. Зоран Радаковић октобар 2014., материјал за део градива из поглавља 3. и 4. из књиге Ђ. Калић, Р. Радосављевић: Трансформатори, Завод за уџбенике и наставна

Διαβάστε περισσότερα

Реализована вежба на протоборду изгледа као на слици 1.

Реализована вежба на протоборду изгледа као на слици 1. Вежбе из електронике Вежба 1. Kондензатор три диоде везане паралелно Циљ вежбе је да ученици повежу струјно коло са три диоде везане паралелно од којих свака има свој отпорник. Вежба је успешно реализована

Διαβάστε περισσότερα

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ I Линеарне једначине Линеарне једначине се решавају по следећем шаблону: Ослободимо се разломка Ослободимо се заграде Познате

Διαβάστε περισσότερα

61. У правоуглом троуглу АВС на слици, унутрашњи угао код темена А је Угао

61. У правоуглом троуглу АВС на слици, унутрашњи угао код темена А је Угао ЗАДАЦИ ЗА САМОСТАЛНИ РАД Задаци за самостлни рад намењени су првенствено ученицима који се припремају за полагање завршног испита из математике на крају обавезног основног образовања. Задаци су одабрани

Διαβάστε περισσότερα

Анализа Петријевих мрежа

Анализа Петријевих мрежа Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,

Διαβάστε περισσότερα

Вежба 18 Транзистор као појачавач

Вежба 18 Транзистор као појачавач Вежба 18 Транзистор као појачавач Увод Jедна од најчешћих примена транзистора јесте у појачавачким колима. Најчешће се користи веза транзистора са заједничким емитором. Да би транзистор радио као појачавач

Διαβάστε περισσότερα

5.2. Имплицитни облик линеарне функције

5.2. Имплицитни облик линеарне функције математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.

Διαβάστε περισσότερα

МАСТЕР РАД РЕАЛИЗАЦИЈА МИКРОТАЛАСНИХ ФИЛТАРА У ТАЛАСОВОДНОЈ ТЕХНИЦИ КОРИШЋЕЊЕМ ШТАМПАНИХ РЕЗОНАТОРА

МАСТЕР РАД РЕАЛИЗАЦИЈА МИКРОТАЛАСНИХ ФИЛТАРА У ТАЛАСОВОДНОЈ ТЕХНИЦИ КОРИШЋЕЊЕМ ШТАМПАНИХ РЕЗОНАТОРА УНИВЕРЗИТЕТ У БЕОГРАДУ Електротехнички факултет МАСТЕР РАД РЕАЛИЗАЦИЈА МИКРОТАЛАСНИХ ФИЛТАРА У ТАЛАСОВОДНОЈ ТЕХНИЦИ КОРИШЋЕЊЕМ ШТАМПАНИХ РЕЗОНАТОРА Ментор: Кандидат: Доц. др Милка Потребић Немања Радосављевић

Διαβάστε περισσότερα

Eлектричне силе и електрична поља

Eлектричне силе и електрична поља Eлектричне силе и електрична поља 1 Особине наелектрисања Постоје две врсте наелектрисања Позитивна и негативна Наелектрисања супротног знака се привлаче, а различитог знака се одбијају Основни носиоц

Διαβάστε περισσότερα

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом

Διαβάστε περισσότερα

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре 0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских

Διαβάστε περισσότερα

ОГЛЕДНИ СЕТ ЗА ДЕМОНСТРАЦИЈУ РАДА

ОГЛЕДНИ СЕТ ЗА ДЕМОНСТРАЦИЈУ РАДА ОГЛЕДНИ СЕТ ЗА ДЕМОНСТРАЦИЈУ РАДА ФОТОНАПОНСКОГ СИСТЕМА НАПАЈАЊА www.netinvest.rs САДРЖАЈ Опис система Упутство за припрему и реализацију вежби Упутство за одржавање и безбедно руковање Преглед теоретског

Διαβάστε περισσότερα

Утицај дистрибуираних извора електричне енергије на мрежу

Утицај дистрибуираних извора електричне енергије на мрежу INFOTEH-JAHORINA Vol. 13, March 2014. Утицај дистрибуираних извора електричне енергије на мрежу Младен Бањанин, Јована Тушевљак Електротехнички факултет Источно Сарајево, Босна и Херцеговина banjanin@ymail.com,

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Р Е Ш Е Њ Е О ОДОБРЕЊУ ТИПА МЕРИЛА године

Р Е Ш Е Њ Е О ОДОБРЕЊУ ТИПА МЕРИЛА године САВЕЗНА РЕПУБЛИКА ЈУГОСЛАВИЈА САВЕЗНО МИНИСТАРСТВО ПРИВРЕДЕ И УНУТРАШЊЕ ТРГОВИНЕ САВЕЗНИ ЗАВОД ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11 000 Београд, Мике Аласа 14, поштански фах 384 телефон: (011) 328-2736, телефакс:

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 1 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

ЕЛЕКТРИЧНИ УРЕЂАЈИ за други разред

ЕЛЕКТРИЧНИ УРЕЂАЈИ за други разред Драган Товаришић, дипл.инж.ел. Скрипта за предавања из наставног предмета ЕЛЕКТРИЧНИ УРЕЂАЈИ за други разред Образовни профил: Техничар вуче Суботица, 2012/2013. год. I ИСТОРИЈСКИ РАЗВОЈ И ДАЉЕ ТЕНДЕНЦИЈЕ

Διαβάστε περισσότερα

ЕЛЕКТРИЧНА СТРУЈА РЈЕШАВАЊА ЗАДАТАКА

ЕЛЕКТРИЧНА СТРУЈА РЈЕШАВАЊА ЗАДАТАКА Ивана Љубојевић ЕЛЕКТРИЧНА СТРУЈА РЈЕШАВАЊА ЗАДАТАКА 0. Садржај: Улога и значај рјешавања задатака из физике... Класификација задатака... 4 Методика рјешавања задатака... 5 Квантитативни задаци... 6 Квалитативни

Διαβάστε περισσότερα

МЕРЕЊЕ ТЕМПЕРАТУРЕ ПОМОЋУ ЊЕНИХ МАКРОСКОПСКИХ ЕЛЕКТРИЧНИХ ЕФЕКАТА

МЕРЕЊЕ ТЕМПЕРАТУРЕ ПОМОЋУ ЊЕНИХ МАКРОСКОПСКИХ ЕЛЕКТРИЧНИХ ЕФЕКАТА МЕРЕЊЕ ТЕМПЕРАТУРЕ ПОМОЋУ ЊЕНИХ МАКРОСКОПСКИХ ЕЛЕКТРИЧНИХ ЕФЕКАТА 1. УВОД Промена температуре материјалне средине доводи до макроскопских ефеката попут промене агрегатног стања, ширења, скупљања, промене

Διαβάστε περισσότερα

Р Ц4-07. Рачунарске провере расподеле магнетне индукције у близини енергетског трансформатора 10 kv / 0.4 kv без и са магнетним екраном

Р Ц4-07. Рачунарске провере расподеле магнетне индукције у близини енергетског трансформатора 10 kv / 0.4 kv без и са магнетним екраном Р Ц4-7 Рачунарске провере расподеле магнетне индукције у близини енергетског трансформатора 1 kv /.4 kv без и са магнетним екраном Марко Шоргић, Зоран Радаковић, Милан Савић, Ратко Ковачић Електротехнички

Διαβάστε περισσότερα

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима 50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

Утицај интерфазних трансформатора и комутационих пригушница на дељење струја тиристорских мостова у осамнаестоимпулсним исправљачима

Утицај интерфазних трансформатора и комутационих пригушница на дељење струја тиристорских мостова у осамнаестоимпулсним исправљачима Оригинални научни рад UDK: 621.314.63 BIBLID: 0350-8528(2015), 25.p.1-30 doi:10.5937/zeint25-9150 Утицај интерфазних трансформатора и комутационих пригушница на дељење струја тиристорских мостова у осамнаестоимпулсним

Διαβάστε περισσότερα

Семинарски рад из линеарне алгебре

Семинарски рад из линеарне алгебре Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити

Διαβάστε περισσότερα

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА Стандардна девијација показује расподелу резултата мерења око средње вредности, али не указује на облик расподеле. У табели 1 су дате вредности за 50 поновљених одређивања

Διαβάστε περισσότερα

МЕРНИ ПРЕТВАРАЧ НАИЗМЕНИЧНЕ ЕЛЕКТРИЧНЕ СТРУЈЕ У ЈЕДНОСМЕРНИ НАПОН. Петар Бошњаковић, Борислав Хаџибабић, Милутин Нешић, Ненад Толић

МЕРНИ ПРЕТВАРАЧ НАИЗМЕНИЧНЕ ЕЛЕКТРИЧНЕ СТРУЈЕ У ЈЕДНОСМЕРНИ НАПОН. Петар Бошњаковић, Борислав Хаџибабић, Милутин Нешић, Ненад Толић МЕРНИ ПРЕТВАРАЧ НАИЗМЕНИЧНЕ ЕЛЕКТРИЧНЕ СТРУЈЕ У ЈЕДНОСМЕРНИ НАПОН Петар Бошњаковић, Борислав Хаџибабић, Милутин Нешић, Ненад Толић Кључне речи: мерење наизменичне струје, усмерачи, КРАТАК САДРЖАЈ У раду

Διαβάστε περισσότερα

6.7. Делтоид. Делтоид је четвороугао који има два пара једнаких суседних страница.

6.7. Делтоид. Делтоид је четвороугао који има два пара једнаких суседних страница. 91.*Конструиши трапез у размери 1:200, ако је дато: = 14 m, = 6 m, = 8 m и β = 60. 92.*Ливада има облик трапеза. Нацртај је у размери 1:2000, ако су јој основице 140 m и 95 m, један крак 80 m, и висина

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Координатни системи у физици и ОЕТ-у

Координатни системи у физици и ОЕТ-у Материјал Студентске организације Електрон ТРЕЋА ГЛАВА Координатни системи у физици и ОЕТ-у Припремио Милош Петровић 1 -Студентска организација ЕЛЕКТРОН- 1.ДЕКАРТОВ КООРДИНАТНИ СИСТЕМ Декартов координанти

Διαβάστε περισσότερα

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2 8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или

Διαβάστε περισσότερα

ИСПИТИВАЊЕ ЕЛЕКТРИЧНИХ МАШИНА. 2.Мерење електричних величина

ИСПИТИВАЊЕ ЕЛЕКТРИЧНИХ МАШИНА. 2.Мерење електричних величина Електротехнички факултет Енергетски одсек Катедра за енергетске претвараче и погоне ИСПИТИВАЊЕ ЕЛЕКТРИЧНИХ МАШИНА 2.Мерење електричних величина Предавач: доц. др Младен Терзић Шта ћемо обрадити? 2.1 Мерни

Διαβάστε περισσότερα

КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН год.

КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН год. КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН 7. год. Тест има задатака. Време за рад је 8 минута. Задаци са редним бројем -6 вреде по поена задаци 7- вреде по 5 поена задаци 5- вреде

Διαβάστε περισσότερα

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x) ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити

Διαβάστε περισσότερα

ПРИРУЧНИК ЗА УПОТРЕБУ СОФТВЕРСКОГ АЛАТА LtSpice СА ПРИМЕРИМА

ПРИРУЧНИК ЗА УПОТРЕБУ СОФТВЕРСКОГ АЛАТА LtSpice СА ПРИМЕРИМА ПРИРУЧНИК ЗА УПОТРЕБУ СОФТВЕРСКОГ АЛАТА LtSpice СА ПРИМЕРИМА Aлександар Пеулић Ђорђе Дамњановић Чачак, Август 2015 Building Network of Remote Labs for strenghthening university- secondary vocational schools

Διαβάστε περισσότερα

На основу члана 15. став 2, члана 18. став 5. и члана 21. став 8. Закона о метрологији ( Службени гласник РС, број 30/10), ПРАВИЛНИК

На основу члана 15. став 2, члана 18. став 5. и члана 21. став 8. Закона о метрологији ( Службени гласник РС, број 30/10), ПРАВИЛНИК 4463 На основу члана 15. став 2, члана 18. став 5. и члана 21. став 8. Закона о метрологији ( Службени гласник РС, број 30/10), Министар привреде доноси ПРАВИЛНИК о мерним трансформаторима који се користе

Διαβάστε περισσότερα

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом).

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом). СЕЧИЦА(СЕКАНТА) ЦЕНТАР ПОЛУПРЕЧНИК ТАНГЕНТА *КРУЖНИЦА ЈЕ затворена крива линија која има особину да су све њене тачке једнако удаљене од једне сталне тачке која се зове ЦЕНТАР КРУЖНИЦЕ. *Дуж(OA=r) која

Διαβάστε περισσότερα

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује

Διαβάστε περισσότερα

Електроскоп. ФИЗИКА Час број 14 Понедељак, 22. децембар, колоквијум. Две врсте електрицитета. Електростатика - посматрања

Електроскоп. ФИЗИКА Час број 14 Понедељак, 22. децембар, колоквијум. Две врсте електрицитета. Електростатика - посматрања . колоквијум ФИЗИКА Час број 14 Понедељак,. децембар, 8 16.1.9. године, од 9. Електростатика 1 Електростатика посматрања Област физике Проучава интеракције између наелектрисаних тела која мирују Талес

Διαβάστε περισσότερα

1. ЕЛЕКТРОСТАТИЧКО ПОЉЕ

1. ЕЛЕКТРОСТАТИЧКО ПОЉЕ Б Крстајић Збирка задатака из Електромагнетике - (007/008) ЕЛЕКТРОСТАТИЧКО ПОЉЕ Примјер Израчунати силу на тачкасто наелектрисање = 0µ C од тачкастог наелектрисања = 300µ C ако су координате тачака и одређене

Διαβάστε περισσότερα

ЗБИРКА ТЕОРИЈСКИХ ЗАДАТАКА ЗА МАТУРСКИ ИСПИТ

ЗБИРКА ТЕОРИЈСКИХ ЗАДАТАКА ЗА МАТУРСКИ ИСПИТ ЕЛЕКТРОТЕХНИЧАР ТЕЛЕКОМУНИКАЦИЈА ОГЛЕД ЗБИРКА ТЕОРИЈСКИХ ЗАДАТАКА ЗА МАТУРСКИ ИСПИТ март, 00. Садржај ОСНОВЕ ЕЛЕКТРОТЕХНИКЕ... ЕЛЕКТРОНИКА... ТЕХНИКА АНАЛОГНОГ ПРЕНОСА... 3 ТЕХНИКА ДИГИТАЛНОГ ПРЕНОСА...

Διαβάστε περισσότερα

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова 4 Троугао (II део) Хилберт Давид, немачки математичар и логичар Велики углед у свету Хилберту је донело дело Основи геометрије (1899), у коме излаже еуклидску геометрију на аксиоматски начин Хилберт Давид

Διαβάστε περισσότερα

ТЕХНИЧКА ПРЕПОРУКА БР. 16 ОСНОВНИ ТЕХНИЧКИ ЗАХТЕВИ ЗА ПРИКЉУЧЕЊЕ МАЛИХ ЕЛЕКТРАНА НА ДИСТРИБУТИВНИ СИСТЕМ

ТЕХНИЧКА ПРЕПОРУКА БР. 16 ОСНОВНИ ТЕХНИЧКИ ЗАХТЕВИ ЗА ПРИКЉУЧЕЊЕ МАЛИХ ЕЛЕКТРАНА НА ДИСТРИБУТИВНИ СИСТЕМ ТЕХНИЧКА ПРЕПОРУКА БР. 16 ОСНОВНИ ТЕХНИЧКИ ЗАХТЕВИ ЗА ПРИКЉУЧЕЊЕ МАЛИХ ЕЛЕКТРАНА НА ДИСТРИБУТИВНИ СИСТЕМ ИЗДАВАЧ: Техничко уређење: Коректура: Рачунарска обрада цртежа: ЈП ЕПС ДИРЕКЦИЈА ЗА ДИСТРИБУЦИЈУ

Διαβάστε περισσότερα

АСИНХРОНЕ МАШИНЕ МАЛЕ СНАГЕ

АСИНХРОНЕ МАШИНЕ МАЛЕ СНАГЕ АСИНХРОНЕ МАШИНЕ МАЛЕ СНАГЕ Аутор: Ненад Костадиновић Факултет техничких наука, Чачак Електротехничко и рачунарско инжењерство, електроенергетика, школска 0/03 eakota87@gmail.com Ментор рада: Проф. др

Διαβάστε περισσότερα

1. Функција интензитета отказа и век трајања система

1. Функција интензитета отказа и век трајања система f(t). Функција интензитета отказа и век трајања система На почетку коришћења неког система јављају се откази који као узрок имају почетне слабости или пропуштене дефекте у току производње и то су рани

Διαβάστε περισσότερα

2.1. Права, дуж, полуправа, раван, полураван

2.1. Права, дуж, полуправа, раван, полураван 2.1. Права, дуж, полуправа, раван, полураван Човек је за своје потребе градио куће, школе, путеве и др. Слика 1. Слика 2. Основа тих зграда је често правоугаоник или сложенија фигура (слика 3). Слика 3.

Διαβάστε περισσότερα

П Р Е Д Г О В О Р. У Београду, септембра године Аутор

П Р Е Д Г О В О Р. У Београду, септембра године Аутор Садржај ПРЕДГОВОР 4 ПИТАЊА И ЗАДАЦИ 5 ОСЦИЛАТОРНО И ТАЛАСНО КРЕТАЊЕ 6 Питања 6 Одговори 7 Задаци 8 СВЕТЛОСНЕ ПОЈАВЕ 6 Питања 6 Одговори 7 Задаци 8 ЕЛЕКТРИЧНО ПОЉЕ 6 Питања 6 Одговори 7 Задаци 9 ЕЛЕКТРИЧНА

Διαβάστε περισσότερα