Περιεχόμενα Μαθήματος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Περιεχόμενα Μαθήματος"

Transcript

1 Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος -, 8ο Εξάμηνο Ρομποτική II Ευφυή και Επιδέξια Ρομποτικά Συστήματα Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή Ηλεκτρ. Μηχ/κών & Μηχ/κών Υπολ., Ε.Μ.Π. Τηλ.: , (Κτήριο Ηλεκτρ., Γραφείο. Web: Περιεχόμενα Μαθήματος ΕΝΟΤΗΤΑ-: Επιδέξιος Ρομποτικός Χειρισμός Έλεγχος Ρομπότ με πλεονάζοντες β.ε. (redundant robots Δείκτες Ικανότητας Χειρισμού (manipulability Έλεγχος «Αλληλεπίδρασης» με το περιβάλλον Έλεγχος «Συμμόρφωσης» (compliance Έλεγχος «Οπτικής Οδήγησης» (visual servoing Μοντελοποίηση και έλεγχος επιδέξιου χειρισμού (dextrous (Συνεργαζόμενα ρομπότ, Ρομποτικά χέρια Robot Hands ΕΝΟΤΗΤΑ-: Κινούμενα Ρομπότ (Mobile Robotics Αρχιτεκτονικές Ελέγχου Κινούμενων Ρομπότ Σχεδιασμός δρόμου Αποφυγή εμποδίων Σύνθεση αισθητηρίων πληροφοριών Σύνθετοι ρομποτικοί χειριστές - Εφαρμογές

2 Βιβλιογραφία (Εισαγωγή στη Ρομποτική Τζαφέστας, Σπύρος Γ., «Ρομποτική. Τομ. : Ανάλυση και έλεγχος» (69.89 ΤΖΑ Craig John J. Εισαγωγή στη Ρομποτική Μηχανική και Αυτόματος Έλεγχος, Εκδόσεις Τζιόλα, 9. Δουλγέρη Ζωή, «Ρομποτική. Κινηματική, Δυναμική και Έλεγχος Αρθρωτών Βραχιόνων», ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ Α.Ε. (Σελίδες: 3 Εμίρης Δημήτριος, «Ρομποτική», Εκδόσεις Άνωση, 999. B. Siciliano et al., Robotics: modelling, planning and control, Springer, 9 Yoshikawa, Tsuneo, Foundations of robotics : analysis and control, The MIT Press, 99. (69.89 YOS Asada, H., Slotine, J.-J., Robot Analysis and Control, John Wiley & Sons, 986. Craig, John J., Introduction to robotics : mechanics and control, Addison- Wesley, 989. (69.89 CRA Schilling, Robert J., Fundamentals of robotics : analysis and control, Prentice Hall, 99. (69.89 SCH K. S. Fu, R. C. Gonzalez, G. S. G. Lee, Robotics : control, sensing, vision, and intelligence, McGraw-Hill, 987. (69.89 FU 3 Βιβλιογραφία (advanced robotics Murray, R.M., Li, Z., and Sastry, S., A Mathematical Introduction to Robotic Manipulation, CRC Press, 994. (69.89 MUR Mason, Matthew, Mechanics of Robotic Manipulation, MIT Press,. Mason, M. and Salisbury, J.K., Jr., Robot Hands and the Mechanics of Manipulation, MIT Press, 985. Latombe, Jean-Claude, "Robot motion planning," Kluwer, 99. (69.89 Siegwart,R., Nourbakhsh, I. R., "Introduction to Autonomous Mobile Robots", The MIT Press, Cambridge, MA, 4 Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., & Thrun, S., "Principles of Robot Motion - Theory, Algorithms and Implementations", The MIT Press, 5 Borenstein, Johann, "Navigating mobile robots : systems and techniques," Wellesley, MA.: : AK Peters, Ltd., 996. ( Dudek, G., Jenkin, M., "Computational Principles of Mobile Robotics", Cambridge University Press,. Meystel, A., "Autonomous mobile robots : vehicles with cognitive control," World Scientific, 99. (69.89 MEY Sheridan, Thomas B., "Telerobotics, automation, and human supervisory control," The MIT Press, 99. (6.46 SHE 4

3 Ρομποτική Ι: Ανάλυση, Έλεγχος, Εργαστήριο (Α Μηχανική Ανάλυση «Κλασσικών» (Βιομηχανικών Ρομποτικών Χειριστών: Κινηματική, Στατική, Δυναμική μοντελοποίηση (Β Εισαγωγή στον έλεγχο ρομποτικών χειριστών Σχεδιασμός ρομποτικού δρόμου, έλεγχος ρομποτικών αρθρώσεων, εισαγωγή σε μη γραμμικές τεχνικές ρομποτικού ελέγχου (Γ Εργαστήριο Ρομποτικής Προγραμματισμός ρομποτικού βραχίονα, ρομποτικό κύτταρο, δυναμικός έλεγχος ρομποτικών συστημάτων μέσω υπολογιστή Εφαρμογές «κλασσικών» ρομποτικών χειριστών: Αυτοματοποίηση Βιομηχανικών Διεργασιών Παραγωγής 5 (Α «Επιδέξιοι» Ρομποτικοί Χειριστές: Πλεονάζοντες βαθμοί ελευθερίας Έλεγχος ρομποτικής αφής Επιδέξια ρομποτική λαβή Ανάλυση σύνθετων ρομποτικών χειριστών, Ρομποτικά χέρια Ρομποτική ΙΙ: Ευφυή Ρομποτικά Συστήματα (Β «Αυτόνομα» κινούμενα ρομποτικά συστήματα: Μηχανισμοί κίνησης, αισθητήρες Αρχιτεκτονικές ευφυούς ρομποτικού ελέγχου Αυτόνομη Πλοήγηση, Σχεδιασμός κίνησης Σύνθεση αισθητηριακών πληροφοριών, χαρτογράφηση και εντοπισμός θέσης 6

4 Τι είναι Ρομπότ? (/3 Ετυμολογία του όρου: robota (Τσέχικα: άμισθη/εξαναγκασμένη εργασία rabu (Σλάβικα: σκλάβος, работать (rabotat : Ρώσικα: εργασία arbeit (Γερμανικά: εργασία, ή Erbe (κληρονόμος Ρίζα : rob ή rab επίσης, orb ή orph οrphelin - ορφανός... serf - σκλαβιά orbh (Ινδο-Ευρωπαϊκή ρίζα: κληρονόμος, κληρονομιά Πρώτη εμφάνιση της έννοιας: Karel Capek (9, «RUR: Les robots universels de Rossum", εμφάνιση ενός «Ανδροϊδούς» το οποίο αποκαλείται «robot»... 7 Τι είναι Ρομπότ? (/3 Μπορούμε να ορίσουμε ως ρομπότ μια μηχανή που «αισθάνεται», «σκέφτεται» και «επενεργεί» (sense, think, act. Άρα, ένα ρομπότ διαθέτει: αισθητήρες (sensors, για την απόκτηση πληροφορίας (a από το εξωτερικό περιβάλλον (exteroceptive, ή (b σε σχέση με την εσωτερική κατάσταση (proprioceptive δυνατότητες επεξεργασίας (processing αντίληψη, συλλογισμός, λήψη αποφάσεων, σχεδιασμός δράσης (cognition επενεργητές (actuators, για την εκτέλεση κάποιας εργασίας στο περιβάλλον (motion, manipulation 8

5 Τι είναι Ρομπότ? (3/3 Τρείς βασικές ιδιότητες ενός ρομπότ: δυνατότητες επαναπρογραμματισμού (programmability: a robot is a computer (information/data processing δυνατότητες μηχανικής δράσης (mechanical abilities, εκτέλεση φυσικών εργασιών πάνω στο περιβάλλον (physical, not data processing a robot is a machine (mechatronic device προσαρμοστικότητα, ευελιξία, πολυσχιδής λειτουργικότητα (adaptability, versatility, flexibility: adapt to different environment and task requirements 9 Ρομποτική Εισαγωγή ( Ρομπότ: «Ευφυείς», «ευέλικτοι», «προσαρμοζόμενοι» μηχανισμοί κίνηση και δράση στο χώρο Κατηγορίες Ρομποτικών Συστημάτων: - Βιομηχανικοί (κλασσικοί ρομποτικοί χειριστές (industrial robot manipulators - Επιδέξιοι ρομποτικοί χειριστές (dextrous robots - Αυτοκινούμενα ρομπότ ρομπότ προσφοράς υπηρεσιών (mobile/service robotics - Μικρο-ρομποτική (micro-robotics Τηλε-ρομποτική vs. Ευφυή/αυτόνομα ρομπότ

6 Ρομποτική Εισαγωγή ( Ρομποτική: «κατακόρυφη» κατάτμηση σε θεματολογικά επιστημονικά πεδία / «οριζόντια» κατάτμηση σε πεδία εφαρμογών Μηχανική (ανάλυση/σχεδίαση Ηλεκτρονική (μικρο-επεξεργαστές, Αισθητήρες, embedded systems etc. Αυτόματος Έλεγχος Συστημάτων Προγραμματισμός Υπολογιστών Διασύνδεση ανθρώπου-μηχανής Υπολογιστική Νοημοσύνη... Βιομηχανικές Εφαρμογές (robotized manufacturing etc. Προσφορά Υπηρεσιών (service & intervention robots - mobile robotics (wheeled, legged - dextrous robotics (medical etc. - telerobotics - microrobotics Ρομποτική και Αυτοματοποιημένα Συστήματα Παραγωγής Staubli Fanuc Ολοκληρωμένα συστήματα προγραμματισμού αυτοματο- ποιημένων διαδικασιών παραγωγής Computer Integrated Manufacturing (CIM

7 ΕΝΟΤΗΤΑ : Επιδέξιοι Ρομποτικοί Χειριστές ( Dexterous Robot Manipulators 3 Επιδέξιοι Ρομποτικοί Χειριστές Θέματα Ενότητας Κινηματικός Έλεγχος Ρομπότ με πλεονάζοντες βαθμούς ελευθερίας (redundant robot manipulators Δείκτες Ικανότητας Χειρισμού (manipulability Έλεγχος «Αλληλεπίδρασης» με το περιβάλλον Έλεγχος «Συμμόρφωσης» (compliance / impedance Έλεγχος «Οπτικής Οδήγησης» (visual servoing Μοντελοποίηση και κινηματικός στατικός έλεγχος επιδέξιου χειρισμού (dextrous robot manipulation (Συνεργαζόμενοι ρομποτικοί χειριστές, Ρομποτικά χέρια cooperating robot manipulators, robot hands 4

8 Επιδέξιοι Ρομποτικοί Χειριστές Ρομποτικοί Χειριστές με πλεονέζοντες βαθμούς ελευθερίας (redundant robot manipulators DLR lightweight 7dof robot On-line obstacle avoidance (kinematic redundancies 5 Ρομποτικοί Χειριστές με Πλεονάζοντες Βαθμούς Ελευθερίας (/ NASA Robotics Research Modular Redundant Robot ModArm 6

9 Ρομποτικοί Χειριστές με Πλεονάζοντες Βαθμούς Ελευθερίας (/ NASA RoboticsResearch - ModArm DLR KineMedic Redundant Robot Εφαρμογές στο Διάστημα Ιατρικές Εφαρμογές (όπου απαιτείται αυξημένη «ικανότητα χειρισμού» 7 Συνεργαζόμενοι Ρομποτικοί Χειριστές ( ARM Autonomous Robotic Manipulation Program (DARPA 8

10 Συνεργαζόμενοι Ρομποτικοί Χειριστές ( Dual Arm Robot Manipulator (Dexter/UMass 9 Συνεργαζόμενοι Ρομποτικοί Χειριστές (3 Justin Humanoid Robot with DLR-III arms and DLR-II hands DLR: German Aerospace Center Germany's National Research Center for Aeronautics and Space (Deutsches Zentrum für Luft- und Raumfahrt, DLR

11 Επιδέξια (Ανθρωπόμορφα Ρομποτικά Χέρια (Dexterous Robot Hands (/3 Δεξιότητα: Συνεργασία πολλαπλών βαθμών ελευθερίας για τον έλεγχο σύνθετων/λεπτών εργασιών χειρισμού JPL/NASA hand Utah/MIT robot hand Επιδέξια Ρομποτικά Χέρια (/3 Shadow Robot Hand Thumb & fingers Little finger Drill Demo

12 Επιδέξια Ρομποτικά Χέρια (3/3 Robonaut Humanoid / NASA DLR Hand ΙΙ 3 Εκμάθηση Ρομποτικών Δεξοτήτων Αυτόνομη εκμάθηση δεξιοτήτων Μη επιβλεπόμενη (αναπτυξιακή μάθηση (developmental robot learning Εκπαίδευση ρομπότ από άνθρωπο / Αλληλεπίδραση ανθρώπου ρομπότ Μάθηση μέσω παρατήρησης (robot teaching by demonstration, learning by observation / by imitation Τηλερομποτική / Τηλεχειρισμός 4

13 Τηλερομποτική Εισαγωγή Master Control Station Communication Channel Remote Robot Controller Multi disciplinary field: Robot control sensors actuators Networks communication link Human machine interaction / human robot cooperation Human factors (perception/action/decision, sensori motor behavior 5 Τηλερομποτική Ιστορική αναδρομή 95: mechanical master-slave telemanipulators (Raymond Goertz Argonne National Labs 96: electrical telemanipulators Bilateral servo-control link (CEA/Saclay: nuclear industry 97 s: telemanipulation technology meets robotics. Creation of the field of telerobotics 98 s: computer-assisted teleoperation (Vertut & Coiffet 99 s: advanced telerobotics Shared-autonomy teleoperation control Predictive displays (Bejczy/JPL and virtual reality methods Supervisory control (Sheridan/MIT 6

14 Εξέλιξη της Τηλερομποτικής Robot Autonomy Intelligent / Autonomous Robots Supervisory Control Robotics Shared-Autonomy Teleoperation Telerobotics Telemanipulation Computer-Aided Teleoperation Servo-Controlled Master-Slave Mechanical Telemanipulators Human-Robot Communication / Teleoperation 7 Ρομποτικός Τηλεχειρισμός Τηλερομποτική: Eφαρμογές σε περιβάλλοντα εργασίας (α μη δομημένα (unstructured και (β μη φιλικά (hostile προς τον άνθρωπο (τηλεχειρισμός ραδιενεργών υλικών, διάστημα, υποβρύχια έρευνα, απενεργοποίηση βομβών κλπ. Παραδείγματα συστημάτων: DLR Γερμανία TUM Γερμανία Potiers Vilette Master-slave telemanipulation (άμεσος αμφίδρομος τηλεχειρισμός (CEA / France Computer-assisted teleoperation (τηλεχειρισμός υποβοηθούμενος από υπολογιστή (JPL / NASA - USA LRP Γαλλία 8

15 Τηλερομποτική: Βασικές Έννοιες Στόχος: «Τηλεπαρουσία» (Telepresence «Διαφάνεια» (transparency του συστήματος ως προς την ανατροφοδότηση αισθητηριακής πληροφορίας «Παρουσία» (feel of presence στον απομακρυσμένο χώρο ρομποτικής εργασίας (sensory-physical/action-decision Πρόβλημα: χρονικές καθυστερήσεις στο βρόχο αμφίδρομης επικοινωνίας (time-delays Προβλεπτικός Έλεγχος (predictive control Προβλεπτικά μοντέλα απεικόνισης και ανάδρασης (predictive displays Μοντέλα Εικονικής Πραγματικότητας 9 Εφαρμογή Ρομποτική Χειρουργική Σύγχρονη Ρομποτική Τεχνολογία ως μέσο υποβοήθησης / υποκατάστασης του έργου του χειρουργού, μέσω φυσικής δράσης (τηλεχειριζόμενης ή αυτόνομης στο πραγματικό επεμβατικό πεδίο 3

16 Χειρουργικά Ρομποτικά Συστήματα DaVinci Surgical Robotic System (/ 3 Χειρουργικά Ρομποτικά Συστήματα DaVinci Surgical Robotic System (/ (slave «Ρομποτικές» Διατάξεις «Απτικές» (master Διατάξεις 3

17 Νανορομποτική Χειρουργική Surgical console for cellular surgery Courtesy Prof Jaydev Desai, Drexel Univ, Philadelphia, PA 5 33 «Φιλικές» Ρομποτικές Εφαρμογές Η Τεχνολογία είναι «αρκετά ώριμη» για ενσωμάτωση σε τόσο «επεμβατικές» εφαρμογές; Ποιό το «αποδεκτό ρίσκο»; Η κοινωνία είναι «έτοιμη» να αποδεχτεί τέτοιες σημαντικές μεταβολές στην παροχή υπηρεσιών υγείας; Περισσότερο «φιλικές» (μη επεμβατικές εφαρμογές ρομποτικής τεχνολογίας: Ρομπότ βοηθοί / νοσηλευτές Ρομποτικά - Απτικά συστήματα στη χειρουργική εκπαίδευση, άσκηση και πιστοποίηση δεξιοτήτων 34

18 Ρομπότ Βοηθός / Νοσηλευτής InTouch Technologies, Inc, Goleta, CA SATAVA 7 July, 999 DARPA 35 Χειρουργικοί Προσομοιωτές Λαπαρο ενδοσκοπικός Προσομοιωτής με ανάδρασης αφής Laparoscopic Simulator with tactile feedback Xitact, Lausanne Switzerland 36

19 Χειρουργικοί Προσομοιωτές ( Συστήματα εικονικής προσομοίωσης ιατρικών (επεμβατικών πράξεων Απτική Ρομποτική Διάταξη Εικονική προσομοίωση Συστήματα Εικονικής Πραγματικότητας (virtual reality με «ανάδραση αφής» (haptic display για προσομοίωση κλινικών πράξεων Εκπαίδευση και πιστοποίηση κλινικών «δεξιοτήτων» 37 Διεπιστημονική Συνέργεια The Bio Intelligence Age ΒΙΟΛΟΓΙΑ Genomics Bioinformatics Biosensors Biomaterials Biomimetic ΜΕΛΛΟΝ ΦΥΣΙΚΗ Robotics MEMS/Nano Human robot interaction for skill transfer robot skill acquisition Bio inspired sensory motor control architectures adaptive / learning robots Bio mimetic robot structures Bio signals (EMG / BCI in human robot communication & telerobotic systems ΠΛΗΡΟΦΟΡΙΚΗ Courtesy, Dr. Satava, UW 38

20 ΕΝΟΤΗΤΑ : Αυτοκινούμενα Ρομπότ (Mobile Robotics 39 Αυτοκινούμενα Ρομπότ Περιβάλλον Κίνησης (ground, air, sea, underwater,... Μηχανισμοί κίνησης (wheeled, legged, hybrid, etc.... Αισθητήριες διατάξεις (sensors Σύνθεση αισθητηριακών δεδομένων (sensor/data fusion Χαρτογράφηση Χώρου (mapping Εντοπισμός θέσης (localization Συνδυασμένη χαρτογράφηση και εκτίμηση θέσης σε άγνωστο δυναμικό περιβάλλον (SLAM Σχεδιασμός Δρόμου (path planning Σχεδιασμός Δράσης (task planning Μάθηση Συμπεριφορών 4

21 Αυτοκινούμενα Ρομπότ Αισθητήρες (mobile robots sensors Laser Range Finder Μικρός Gripper Σύστημα Όρασης Ασύρματο Ethernet Αισθητήρες Υπερήχων Αισθητήρες Υπέρυθρων Video- ActiveMedia Robots RWI IS Robotics Video- 4 Τροχοφόρα Αυτοκινούμενα Ρομπότ Σύγχρονα Συστήματα Indoor Outdoor (in action 4

22 UAV Unmanned Aerial Vehicles Παράδειγμα Εφαρμογών: Autonomous Helicopter Projects CMU Project 43 Αυτόνομα Υποβρύχια Ρομπότ (Environmentally Non-Disturbing Under-ice Robotic Antarctic Explorer NASA Endurance robot AMOUR: Autonomous Modular Underwater Robot Εφαρμογή: pipe inspection Δίκτυο υποβρύχιων αισθητήρων 44

23 Mars Rovers (Διαστημικά Ρομποτικά Οχήματα Rocky I Rocky IV prototype Sojourner Mars Pathfinder Mission 45 Mars Rovers (συνέχεια Marsokhod concept (συνεργασία NASA ESA 46

24 Mars Rovers Spirit και Opportunity anim-part3 Χαρτογράφηση και Σχεδιασμός Δρόμου 47 Βαδίζοντα Ρομπότ (Ανθρωπόμορφα Δίποδα με Σύστημα Όρασης (biped walking robots Σύστημα Κατευθυνόμενης Στερεοσκοπικής Όρασης Σχεδιασμός και Έλεγχος της κίνησης του Ρομπότ Αισθητήρες Δύναμης (force/tactile sensors Sample movie (Johnnie Johnnie Πολυτεχνείο Μονάχου (TUM 48

25 Multi-Legged Mobile / Walking robots Σχεδίαση «εμπνευσμένη» από «φυσικά συστήματα» (adaptive behaviors Research (e.g. locomotion, gaiting, control Edutainement Genghis 6-legged robot AI lab / MIT Quadruped Robot LittleDog CMU / Boston Dynamics SONY - Aibo Sample movie 49 Βαδίζοντα Ρομπότ - Εφαρμογές Εφαρμογές intervention, service, exploration, rescue, etc. Εξερεύνηση «δύσβατων» περιοχών Μεταφορά «Υλικού» - Επιχειρήσεις διάσωσης Εξάποδο (hexapod ρομπότ Dante Τετράποδο Ρομπότ BigDog, CMU / Boston Dynamics 5

26 Ολοκληρωμένα Κινούμενα Ρομποτικά Συστήματα Υπηρεσιών (Service Robots Κινούμενα Ρομπότ με Ενσωματωμένο Ρομποτικό Βραχίονα Βαδίζοντα Ανθρωπόμορφα Ρομπότ walk step χειρισμός συνεργασία Honda Humanoid Robot 5 Humanoid Robots Asimo (Honda REEM-H (PAL Robotics, Barcelona / Spain Charli (USA Cognitive Humanoid Autonomous Robot with Learning Intelligence Justin / DLR (Germany HRP- / JAIST (Japan NAO (France 5

27 Εφαρμογές Ολοκληρωμένων Κινούμενων Ρομποτικών Οχημάτων Intervention & Service Robots (Ρομπότ Παρέμβασης και Υπηρεσιών Εντοπισμός & απενεργοποίηση εκρηκτικών Ρομπότ «Διάσωσης» (Rescue Ρομπότ «Εξερεύνησης» σε περιβάλλον «μη φιλικό» προς τον άνθρωπο 53 «Υβριδικοί» Μηχανισμοί Κίνησης NASA's ATHLETE (All-Terrain Hex-Legged Extra-Terrestrial Explorer 54

28 Σύνθετοι Μηχανισμοί Κίνησης «Αναρριχόμενα» ρομπότ (climbing robots «Έρποντα» Ρομπότ (snake robots JPL s LEMUR robot Snake Rescue Robot Mod-Snake Robot (CMU 55 Ανασκόπηση Ρομποτικής Κινηματικής / Δυναμικής 56

29 Βασικοί Ορισμοί Αρχές Ρομποτικοί βραχίονες (βιομηχανικοί ρομποτικοί χειριστές (robot manipulators: ανοικτές κινηματικές αλυσίδες Κινηματική αλυσίδα (kinematic chain: σύστημα στερεών σωμάτων που συνδέονται μέσω αρθρώσεων (joints Βαθμοί ελευθερίας (degrees of freedom - DOF: αριθμός ανεξάρτητων μεταβλητών για την περιγραφή της διάταξης (configuration ενός μηχανισμού στο χώρο 57 Βασικές Ρομποτικές Αρθρώσεις Περιστροφική άρθρωση (revolute joint βαθμός ελευθερίας (degree of freedom DOF (Μεταβλητή : Υ ή q Γραμμική (πρισματική άρθρωση (prismatic joint DOF (linear (Variable - d Σφαιρική άρθρωση (Spherical Joint 3 DOF (Variables - Υ, Υ, Υ 3 58

30 Ρομποτικοί Βραχίονες / Χειριστές: Ανοικτές (σειριακές κινηματικές αλυσίδες Ορολογία: Link = σύνδεσμος Joint = άρθρωση Actuator = κινητήρας (κινητήριο στοιχείο End-effector = τελικό στοιχείο δράσης 59 Παράλληλες κινηματικές αλυσίδες Επίπεδος παράλληλος μηχανισμός Πλατφόρμα Stewart (6 DOF 6

31 Παράδειγμα Ρομποτικού Βραχίονα Το ρομπότ PUMA 56 PUMA: Programmable Universal Machine for Assembly Unimation Inc. 978 (now Staübli 3 4 The PUMA 56 has SIX (6 revolute joints A revolute joint has ONE degree of freedom ( DOF that is defined by its angle Κινηματική Δομή Κλασσικών Ρομποτικών Χειριστών: Ταξινόμηση Αρθρωτό ρομπότ (τύπου PUMA Ρομπότ τύπου SCARA Καρτεσιανό ρομπότ Κυλινδρικό ρομπότ Σφαιρικό ρομπότ 6

32 Κινηματική Ανάλυση των Ρομπότ Προκαταρκτικά Γεωμετρικά Εργαλεία Μετασχηματισμοί στο χώρο κλπ. Ορθή κινηματική ανάλυση ρομπότ (γεωμετρικό μοντέλο Μετατοπίσεις αρθρώσεων {q i } Θέση/Προσανατολισμός (x,θ τελικού στοιχείου δράσης του ρομπότ Ανάστροφη κινηματική ανάλυση Ορθή διαφορική κινηματική ανάλυση (κινηματικό μοντέλο Ιακωβιανή μήτρα J: ταχύτητες αρθώσεων {q i } ταχύτητα (v,ω τελικού στοιχείου δράσης του ρομπότ Ανάστροφη διαφορική κινηματική ανάλυση 63 Κινηματική Ανάλυση: Προκαταρκτικά Γεωμετρικά Εργαλεία Θέση και προσανατολισμός στερεού σώματος a r x z σ o Θέση: r = OO σ = r y z O σ y r σ z r O x y σ Προσανατολισμός: R = [ n, o, a ] n x n x o x a x Μήτρα προσανατολισμού (ή στροφής (3 x 3 : R = n y o y a y n z o z a z [ n, o, a] : ορθοκανονικό σύστημα αναφοράς μοναδιαία διανύσματα : n = n x + n y + n z =, κλπ... κάθετα μεταξύ τους : n o=, n a=, o a= 64

33 Μετασχηματισμοί στο χώρο x O Μετασχηματισμοί συντεταγμένων z r Σ y n a z σ x σ O Σ y σ o P Έστω p Σ = [p n, p o, p a ] T οι συντεταγμένες του σημείου P στο σύστημα αναφοράς R Σ p O = (OP O = r Σ + (O Σ P O (O Σ P O = p n n+ p o o+ p a a= O R Σ p Σ όπου O R Σ =[n, o, a] Άρα: p O = r Σ + O R Σ p Σ p Σ = -( O R Σ Τ r Σ + ( O R Σ Τ p Ο Στροφή του R Σ ως προς το R O Μετατόπιση ΟΟ Σ (εκφρασμένη στο R O 65 Στροφή Ειδικές Περιπτώσεις Περιστροφή γύρω από τον άξονα z (R R a O sin(θ z x n θ z x z z o cos(θ z y θ z y n x n = n y = n z O R =[n, o, a]= cos(θ z sin(θ z cos(θ z sin(θ z o x o = o y = o z -sin(θ z cos(θ z Περιστροφή γύρω από τον άξονα x : R x (θ x = Περιστροφή γύρω από τον άξονα y : R y (θ y = θ z cos(θ x sin(θ x cos(θ y -sin(θ y -sin(θ z cos(θ z = R z (θ z -sin(θ x cos(θ x sin(θ y cos(θ y 66

34 Παραμετροποίηση Στροφής Γωνίες Euler (στροφή ως προς: z x (or y z Euler(φ,θ,ψ = R z (φ R x (θ R z (ψ = c φ c ψ -s φ c θ s ψ -c φ s ψ -s φ c θ c ψ s φ s θ s φ c ψ +c φ c θ s ψ -s φ s ψ +c φ c θ c ψ -c φ s θ s θ s ψ s θ c ψ c θ Γωνίες κύλισης, ανύψωσης, στροφής, (roll,pitch,yaw x z y R(φ,θ,ψ = R z (φ R y (θ R x (ψ = c φ c θ c φ s θ s ψ -s φ c ψ c φ s θ c ψ +s φ s ψ s φ c θ s φ s θ s ψ +c φ c ψ s φ s θ c ψ -c φ s ψ -s θ c θ s ψ c θ c ψ 67 Ομογενείς Μετασχηματισμοί p O = r Σ + O R Σ p Σ P O = O A Σ P Σ o z O Σ y r σ Ο p p O σ p p Σ O P Σ x x y x σ Ο σ όπου: P O p = y, P Σ p n = y x Ο p σ z p z ομογενή διανύσματα συντεταγμένων a z σ και : O A Σ = O R Σ r Σ ομογενής μήτρα μετασχηματισμού (4 x 4 ( O A Σ - = (O R Σ Τ ( O R Σ Τ r Σ (ανάστροφη ομογενής μήτρα 68

35 Ομογενείς Μετασχηματισμοί (συνέχεια O z x y p ( x^ = n v x nx ny V ( v = y = v z nz z^ = a O o o o v ( ( A V x y z y^ = o v ( V a a a x y z p x py p z Το ομογενές διάνυσμα V ( = [v n,v o,v a,] T εκφρασμένο στο «τοπικό» σύστημα αναφοράς R (n,o,a, ενώ το διάνυσμα V ( εκφράζεται ως προς το «κοινό» σύστημα αναφοράς R O -X,Y,Z της βάσης v a Η μήτρα περιστροφής και το διάνυσμα μετατόπισης p ( μπορούν να συνδυαστούν σε μία ομογενή μήτρα μετασχηματισμού, εφόσον εκφράζονται ως προς κοινό σύστημα αναφοράς. v n v o V ( = A V ( v ( = v n n + v o o + v a a + p ( v x = v n n x + v o o x + v a a x + p x 69 Z Ομογενείς Μήτρες Μετασχηματισμών Ειδικές Περιπτώσεις ( R O Y P X Γραμμική μετατόπιση (μεταφορά χωρίς στροφή Z o a Y a n o R N X = n Στροφή χωρίς μεταφορά Α O N Α N O nx n y = nz o o o x y z Μήτρα στροφής a a a px py p z x y z Γραμμική Μετατόπιση 7

36 Ομογενείς Μήτρες Μετασχηματισμών Ειδικές Περιπτώσεις ( Rot(x,θ x = cosθ x -sinθ x sinθ x cosθ x Tra(x,d x = d x Rot(y,θ y = cosθ y sinθ y -sinθ y cosθ y Tra(y,d y = d y Rot(z,θ z = cosθ z -sinθ z sinθ z cosθ z Tra(z,d z = d z 7 Διαδοχικοί ομογενείς μετασχηματισμοί i- Α i : 4x4 ομογενής μήτρα μετασχηματισμού από το πλαίσιο i στο πλαίσιο i- (i=,,n δηλαδή, n διαδοχικοί μετασχηματισμοί από το πλαίσιο n στο πλαίσιο. Τότε : i- i n- n X = A A A A X X : ομογενές (4x διάνυσμα θέσης στο πλαίσιο n n X : ομογενές (4x διάνυσμα θέσης στο πλαίσιο n 7

37 Κινηματική Ανάλυση: Εισαγωγή Ορθή κινηματική ανάλυση Μετατοπίσεις αρθρώσεων {q i } Μετατόπιση τελικού στοιχείου δράσης (θέση p, προσανατολισμός R Μετασχηματισμός από το χώρο αρθρώσεων στο χώρο δράσης (εργασίας proprioception Ανάστροφη κινηματική ανάλυση Θέση τελικού στοιχείου δράσης (p, R {q i } Ανάστροφη διαφορική κινηματική ανάλυση Ταχύτητα τελικού στοιχείου δράσης (v, ω {q i } Σχεδιασμός δρόμου ρομπότ 73 Ορθή κινηματική ανάλυση: ανοικτές κινηματικές αλυσίδες Σύνδεσμος Σύνδεσμος Άρθρωση q z y Βάση z Σύνδεσμος O O x x y Γεωμετρικό μοντέλο : q 3... pn (q = O O n (q Σύνδεσμος i... Άρθρωση i q q i Άρθρωση i+ q i+ Άρθρωση O i ανοικτή κινηματική αλυσίδα x n y n Σύνδεσμος n z n Τελικό στοιχείο δράσης Δοσμένων των μεταβλητών αρθρώσεων {q i, i=,,n} Υπολογισμός των : - Θέση: p n = Γ(q R(q p n (q - Προσανατολισμός: R n n(q A n(q = O n R = n x y z n n n συνημίτονα κατεύθυνσης 74

38 Ορθή κινηματική ανάλυση: ανοικτές κινηματικές αλυσίδες (συνέχεια Κινηματική εξίσωση (γεωμετρικό μοντέλο ρομποτικού βραχίονα: i- Συνδυασμός των διαδοχικών μετασχηματισμών Α i (i=, n (από τη βάση Ο -x y z προς τον καρπό Ο n -x n y n z n της σειριακής κινηματικής αλυσίδας. T = n i- i n- n Α (q = A (q A (q A (q i A (q n A (q y z O y z O x x y i- z i- x i- O i- i- A i (q i y i O i z i T = A (q n x i y n x n O n z n 75 Ορθή κινηματική ανάλυση: Παράδειγμα ( βαθμοί ελευθ. D, επίπεδο y O y O l q x l y Ε O Ε x q x Ε θ i- A (q i = Rot(z,q i Tra(x, l i = i T = A = A A E Κινηματική μοντέλο: ( ανεξ. μεταβλητές: q και q Θέση : p Ε = [(p Ε x,(p Ε y ] Τ Προσανατολισμός : θ (ως προς q και q (p Ε x = l cos(q + l cos(q + q (p Ε y = l sin(q + l sin(q + q θ = q + q cos(q i -sin(q i l i cos(q i sin(q i cos(q i l i sin(q i 76

39 Ορθή κινηματική ανάλυση: Παράδειγμα ( 3 βαθμοί ελευθ. D, επίπεδο y O y O l q x l y Ε l 3 q x Ε 3 q 3 y x x O O Ε θ Κινηματική μοντέλο: (p Ε x = l c + l c + l 3 c 3 (p Ε y = l s + l s + l 3 s 3 θ = q + q + q 3 όπου : c = cos(q c = cos(q + q c3 = cos(q + q + q 3 s = sin(q s = sin(q + q s3 = sin(q + q + q 3 77 Παράδειγμα : Ρομποτικός Βραχίονας -R--P z 3 O 3 y 3 x 3 Κινηματική Δομή: Διάγραμμα 3P Πίνακας Παραμέτρων Denavit-Hartenberg άρθρωση O d 3 x z q l l z y O x O άρθρωση z q x y O z x l l R q y O y x z z 3 O 3 y 3 x 3 z d 3 R Σύνδεσμος i 3 a i α i -9 o +9 o d i l l d 3 θ i q q q O x y Εύρεση κινηματικού μοντέλου 78

40 Παράδειγμα (-R--P (συνέχεια ( Πίνακας Παραμέτρων Denavit-Hartenberg Σύνδεσμος i 3 a i T = A 3 = α i -9 o +9 o d i l l d 3 R 3(q,q θ i q q p (q,q,d 3 3 c c -s c s -l s +d 3 c s s c c s s l c +d 3 s s -s c l +d 3 c A = A = A 3 = cosq -sinq sinq cosq - l cosq sinq sinq -cosq l d 3 79 Παράδειγμα (-R--P (συνέχεια ( Γεωμετρικό μοντέλο : «Εποπτική» (γεωμετρική λύση z p 3z l O q O 3 d 3z d l 3 d 3xy l q p 3y y O p 3z = l + d 3z p 3y = l cosq + d 3y όπου: d 3y = d 3xy sinq p 3x = -l sinq + d 3x όπου: d 3x = d 3xy cosq ( d 3xy = d 3 sinq l q d 3xy d 3y y όπου: d 3z = d 3 cosq Άρα: p 3x = -l s + d 3 s c p 3y = l c + d 3 s s p 3z = l + d 3 c x x p (q,q,d 3 3 8

41 Παράδειγμα : Ρομποτικός Βραχίονας 3-R 3 βαθμοί ελευθ. 3D, στο χώρο y q άρθρωση z l y O z y O l q q 3 άρθρωση x x q z O y z y E O E Ε l 3 άρθρωση 3 x x x E q 3 q q Ρομποτικός Βραχίονας 3-R (3 περιστροφικές αρθρώσεις: q, q, q 3 Κινηματικό (γεωμετρικό μοντέλο: O Ε l 3 O l O l O z y x A = Rot(z,q Tra(z,l A = Rot(y,q Tra(z,l A 3= Rot(y,q 3 Tra(z,l 3 3 A = A A A 3 8 Παράδειγμα (3-R (συνέχεια ( A (q = c -s s c l c s l s, A (q =, -s c l c A 3(q 3 = c 3 s 3 l 3 s 3 -s 3 c 3 l 3 c 3 O Ε q 3 l 3 O l A 3(q = c s l s -s c l c c 3 s 3 l 3 s 3 -s 3 c 3 l 3 c 3 = c 3 s 3 l s + l 3 s 3 -s 3 c 3 l c + l 3 c 3 q q O l O z y x A 3(q = c -s s c l c 3 s 3 l s + l 3 s 3 -s 3 c 3 l c + l 3 c 3 8

42 Παράδειγμα (3-R (συνέχεια ( z q Γεωμετρικό μοντέλο ρομπότ 3-R : O q 3 O 3 Αλγεβρικό γινόμενο διαδοχικών μετασχηματισμών: p (q,q,q 3 = 3 A 3[:3, 4 ] = (l s + l 3 s 3 c (l s + l 3 s 3 s l + l c + l 3 c 3 x l O l O q p 3xy p 3y «Εποπτική» (γεωμετρική λύση: y p 3z = l + l cosq + l 3 cos(q +q 3 p 3y = p 3xy sinq p 3x = p 3xy cosq όπου: p 3xy = l sinq + l 3 sin(q +q 3 p p 3x = (l s + l 3 s 3 c 3x p 3x = (l s + l 3 s 3 s p (q,q,q 3 3 p 3z = l + l c + l 3 c 3 83 Ανάστροφη Κινηματική Ανάλυση Ορθή κινηματική ανάλυση (γεωμετρικό μοντέλο: κινηματική εξίσωση ρομπότ, δηλ. από τις μετατοπίσεις q i (i=,..,n των n αρθρώσεων εύρεση θέσης και προσανατολισμού τελικού στοιχείου δράσης Ανάστροφη κινηματική ανάλυση: εύρεση των μετατοπίσεων q i (i=,..,n των αρθρώσεων που οδηγούν το τελικό στοιχείο δράσης σε επιθυμητή θέση και προσανατολισμό Για την τοποθέτηση του τελικού στοιχείου σε οποιαδήποτε θέση/προσανατολισμό μέσα στο χώρο εργασίας (workspace απαιτείται το ρομπότ να έχει τουλάχιστον 6 βαθμούς ελευθερίας 84

43 Ανάστροφη κινηματική ανάλυση: Ένα απλό παράδειγμα Σφαιρικός επίπεδος μηχανισμός (planar polar mechanism Δεδομένα: p x, p y Εύρεση: [q, q ] = [θ, d] Y (p x, p y d θ X p x = d cos(θ p y = d sin(θ tan(θ =p y / p x py Εύρεση θ : θ = arctan( ( ± k π rad p py Πιο συγκεκριμένα: θ = arctan ( p Εύρεση d : d = ( px + py x x 85 Ανάστροφη κινηματική ανάλυση: Παράδειγμα p y y O y O l q x l (p x, p y y Ε O Ε q x p x θ x Ε θ Δεδομένα: l, l, p x, p y Εύρεση: [q, q ] p x = l cos(q + l cos(q + q p y = l sin(q + l sin(q + q θ = q + q ( p + ( p = l c + l c + ll cc + x y + l s + l s + ll ss q ( px + ( py l l = ± arccos ll ( p + ( p = l + l + ll (cc + ss x y cosq 86

44 Ανάστροφη κινηματική ανάλυση: Παράδειγμα (συνέχεια p y η λύση y Ε O Ε x Ε θ q ( px + ( py l l = ± arccos ll y l q Γεωμετρική λύση για το q O l q x O p x [p x,p y ] Νόμος συνημιτόνων στο τρίγωνο Ο Ο Ο Ε : sinϕ = sinψ l d l sin(8 ο -q = d sinψ ψ = arcsin(l s /d όπου: d = sqrt((p x +(p y d q φ ψ q Άρα: tan(q +ψ = p y /p x q = arctan(p y /p x - ψ py l s = arctan arcsin px (p x + (p y q 87 O Ανάστροφη κινηματική ανάλυση: Ρομπότ 6 βαθμών ελευθερίας (5-R--P x z x z y d 3 sinq z -q x y Σφαιρικός Καρπός y O E n a Σ o d 3 -d 3 cosq a z x y l y l z y o Σ O 3 O 4 O 5 z 3 z 5 x 3 x 4 x 5 Παράμετροι D-H Σύνδεσμος l i -9 o l q z 4 +9 o l q 3 d 3 d o q 4 O 5 +9 o q 5 z 6 l q 6 a i α i d i θ i 88

45 Ανάστροφη κινηματική ανάλυση: Ρομπότ 5-R--P (συνέχεια ( A (q = c -s s c - l A (q = c s s -c l A 3(d 3 = d 3 3 A 4(q 4 = c 4 -s 4 s 4 c 4-4 A 5(q 5 = c 5 s 5 s 5 -c 5 5 A 6(q 6 = c 6 -s 6 s 6 c 6 l 3 T = A (q A (q A (d 3 A (q 4 A (q 5 A (q 6 Ανάστροφο κινηματικό πρόβλημα: δοσμένου Τ εύρεση {q i } Ανάστροφη κινηματική ανάλυση: Ρομπότ 5-R--P (συνέχεια ( l a o Έστω T = n x o x a x p x n y o y a y p y n z o z a z p z Σ O 3 O 4 O 5 z 3 z 5 p p * O d 3 z z x y l y l z y z 4 Έστω επίσης: (η θέση του σημείου Σ p * = p -l a p = p * = [p* x p* y p* z ] T Σ * p x * p y = * p z p x -l a x p y -l a y p z -l a z 9

46 Ανάστροφη κινηματική ανάλυση: Ρομπότ 5-R--P (συνέχεια (3 (A - (q = c s - l -s c A 3(q,d 3 = c s d 3 s s -c -d 3 c l A = 3 3 (A - A = c s - l -s c p * * * x p x c +p y s p * y -p* p * = z + l z -p* x s +p* y c * * * * * px± ( px + ( py l l = - p s c arctan x + p y q = l + p* y τ = tan(θ/ sinθ = (τ/(+τ cosθ =(-τ /(+τ * * pxc + py arctan p* z l q s = * * * d =± ( p c + p s + ( p l 3 x y z 9 Ανάστροφη κινηματική ανάλυση: Ρομπότ 5-R--P (συνέχεια ( Έστω T = (A A A - T = A = n x o x a x p x n y o y a y p y n z o z a z p z 3 A 4(q 4 = c 4 -s 4 s 4 c A 6(q 5,q 6 = A 5(q 5 A 6(q 6 = c 5 c 6 -c 5 s 6 s 5 l s 5 s 5 c 6 -s 5 s 6 -c 5 -l c 5 s 6 c A (q 5,q 6 = (A - T = a xc 4 +a ys 4 -n z -o z -a z -n xs 4 +n yc 4 -o xs 4 +o yc 4 -a xs 4 +a yc 4 9

47 Ανάστροφη κινηματική ανάλυση: Ρομπότ 5-R--P (συνέχεια (5 -a xs 4 +a yc 4 = q 4 = arctan(a y / a x a xc 4 +a ys 4 = s 5 -a z = -c 5 ac + as ' ' x 4 y 4 5 = arctan a' z q -n xs 4 +n yc 4 = s 6 -o xs 4 +o yc 4 = c 6 -n s + n c ' ' x 4 y 4 6 = arctan -o ' ' x s 4 o y c + 4 q 93 Διαφορική Κινηματική Ανάλυση Ορθή διαφορική κινηματική ανάλυση Γενικευμένες ταχύτητες αρθρώσεων {q i } Εύρεση ταχύτητας (v, ω (γραμμική/γωνιακή τελικού στοιχείου δράσης ρομπότ Μετασχηματισμός από το χώρο αρθρώσεων στο χώρο δράσης (εργασίας proprioception Ανάστροφη διαφορική κινηματική ανάλυση Ταχύτητα τελικού στοιχείου δράσης (v, ω Εύρεση {q i } Σχεδιασμός δρόμου ρομπότ 94

48 Διαφορικές κινηματικές ρομποτικές εξισώσεις: Παράδειγμα ( βαθμοί ελευθ. D, επίπεδο y y l (p x, p y y Ε O Ε q x Ε θ z Ορθό Κινηματικό μοντέλο: ( βαθμοί ελευθερίας: q και q Δεδομένα: «Ταχύτητες» αρθρώσεων q, q Εύρεση: Ταχύτητα (γραμμική/γωνιακή τελικού στοιχείου δράσης [p x,p y, ω z ] Τ O O l q x x p x = l cos(q + l cos(q + q p y = l sin(q + l sin(q + q θ z = q + q J(q,q p x =(dp x /dt = q (l s +l s q l s p y = (dp y /dt = q (l c +l c + q l c ω z = θ z = q + q p x p y θ z = (l s +l s l s (l c +l c l c q q 95 Ορθή διαφορική κινηματική ανάλυση: Παράδειγμα ( 3 βαθμοί ελευθ. D, επίπεδο y Ε l 3 x Ε O Ε q 3 θ z Κινηματική μοντέλο: Δεδομένα: «Ταχύτητες» αρθρώσεων q, q, q 3 Εύρεση: Ταχύτητα (γραμμική/γωνιακή τελικού στοιχείου δράσης [p x,p y, ω z ] Τ y y y x O 3 l q p x = l c + l c + l 3 c 3 p y = l s + l s + l 3 s 3 θ z = q + q + q 3 O O l q x x p x p y θ z = (l s +l s +l 3 s 3 (l s +l 3 s 3 l 3 s 3 (l c +l c +l 3 c 3 (l c +l 3 c 3 l 3 c q q q 3 J(q, q, q 3 96

49 Διαφορική Κινηματική: Ιακωβιανή Μήτρα Ρομποτικού Χειριστή Έστω: p(q,q,q 3 = [ p x (q,q,q 3,p y (q,q,q 3, θ z (q,q,q 3 ] Τ ϑ p ( q, q, q ϑp ( q, q, q ϑp ( q, q, q dp = dq + dq + dq x x 3 x 3 x 3 ϑq 3 ϑq ϑq3 ϑ p ( q, q, q ϑp ( q, q, q ϑp ( q, q, q dp = dq + dq + dq y y 3 y 3 y 3 ϑq 3 ϑq ϑq3 ϑθ ( q, q, q ϑθ ( q, q, q ϑθ ( q, q, q dθ = dq + dq + dq z z 3 z 3 z 3 ϑq 3 ϑq ϑq3 dp dp = dp J dq x y = dθ z όπου dq dq = dq dq 3 και J = ϑ p ϑp ϑp ϑq ϑq ϑq ϑp ϑp ϑ p ϑq ϑq ϑq ϑθ ϑθ ϑθ ϑq ϑq ϑq x x x 3 y y z 3 z z z 3 Ιακωβιανή Μήτρα (Jacobian 97 Μεταχηματισμοί απειροστών περιστροφών Μήτρα απειροστής περιστροφής (dθ x γύρω από τον άξονα x: Rx( dθx = cos( dθx sin( dθx dθx sin( dθ cos( dθ dθ Αντίστοιχα: dθ y Ry( dθ y = dθ x x x y dθ z Rz( dθz = dθz Ισχύει: dθz dθ y R( dθx, dθy, dθz = Rx( dθx Ry( dθy Rz( dθz = dθz dθx dθ dθ και: ( dθz+ dθz ( dθy dθ + y Rd ( θx, dθy, dθz Rd ( θx, dθ y, dθz = ( dθz+ dθz ( dθx+ dθx ( dθ + dθ ( dθ + dθ y y x x = R( dθ + dθ, dθ + dθ, dθ + dθ x x y y y x z z Διάνυσμα απειροστής στροφής dθ dθ = dθ dθ x y z 98

50 Υπολογισμός Ιακωβιανής Μήτρας ( Έστω: d dp = r dθ v p = E E E ω E το (6x διάνυσμα απειροστής μετατόπισης (μεταφοράς dr E και στροφής dθ E του τελικού στοιχείου δράσης Ε όπου v E, ω E : γραμμική και γωνιακή ταχύτητα του τελικού στοιχείου δράσης Ε Διαφορικό κινηματικό μοντέλο: p = J q όπου q =[q,, q n ] T : (nx διάνυσμα των ταχυτήτων των αρθρώσεων = J J... J L L Ln J όπου, J J... J J L J i A i A A A n Ιακωβιανή Μήτρα (6xn : (3x διανύσματα στήλης «συνεισφορά» του q i (ταχύτητα άρθρωσης i στη γραμμική και γωνιακή ταχύτητα του τελικού στοιχείου δράσης v = J iq +J iq + +J iq E L δηλαδή: L L n n ω =J iq+j iq+ +J iq E A A A n n 99 Υπολογισμός Ιακωβιανής Μήτρας ( J = b r L i J A i J b i i, E b i L i b i = J A i,..., i i : για στροφική άρθρωση όπου b i- :o άξονας της άρθρωσης i r i-,e : διάνυσμα Ο i- Ο Ε : για πρισματική άρθρωση = R i- ( q q b όπου: b = [,, ] T (στη μεθοδολογία Denavit-Hartenberg r = A ( q q r - A ( q q r όπου: r = [,,, ] T,..., n,..., i, E n i- i άρθρωση i b i- O i- z y O A( q, q = A( q A( q A ( q,, q = A ( q,, q Ai-( q i- i i- i i- i A ( q,, q = A ( q,, q A ( q x b i- r i-,e O E dr Ε n- n n n- n n dθ Ε n

51 Υπολογισμός Ιακωβιανής Μήτρας Παράδειγμα: Ρομποτικός Βραχίονας 3-R A (q = O Ε l 3 q 3 l z q l q z 3 y3 z x 3 b x O b x O z b O c -s s c l y x c s l s, A (q =, -s c l c A (q,q = A (q A (q = A 3(q = A (q,q A (q 3 = 3 A 3(q 3 = c 3 s 3 l 3 s 3 -s 3 c 3 l 3 c 3 c c -s c s l c s s c c s s l s s -s c l + l c c c 3 -s c s 3 c (l s + l 3 s 3 s c 3 c s s 3 s (l s + l 3 s 3 -s 3 c 3 l + l c + l 3 c 3 Υπολογισμός Ιακωβιανής Μήτρας Ρομποτικoύ Βραχίονα 3-R (συνέχεια ( T = b ( + l s ( ( c l s r = s l s + l s, E 3 3 l + l c + l c b r T = s c ( + l s 3 3 ( ls ( lc + lc c l s = s ls+, E b T = s c r ( lcs 33 ( lss ( lc =, E Υπενθύμιση : J = b r L i J A i i i, E b i : για στροφική άρθρωση i J L i b i = J A i : για πρισματική άρθρωση

52 Υπολογισμός Ιακωβιανής Μήτρας Ρομποτικoύ Βραχίονα 3-R (συνέχεια ( c l s + l s 3 3 s l s + l s 3 3 J = s l s l s c l s l s L b r =, E + 33 = + 33 l l c l c c l s + l s 3 3 c l c + l c 3 3 s c s l s l s s l c l c J = L b r =, E = lc + lc ls ls lcs lcc s J = c l ss l sc L b r = 3, E 33 = 33 lc ls J = A s J = c A s J = c A 3 3 Ανάστροφη Διαφορική Κινηματική Δεδομένης επιθυμητής ταχύτητας τελικού στοιχείου δράσης (v, ω Εύρεση {q i } (i=,,n v p = E = ( ω J q q E : ορθό διαφορικό κινηματικό μοντέλο Εάν η J(q είναι αντιστρέψιμη, δηλαδή: det(j(q, τότε : q = J-( q p q : ταχύτητες αρθρώσεων για να επιτύχουμε επιθυμητή ταχύτητα τελικού στοιχείου δράσης Εκφυλισμός διάταξης ρομποτικού βραχίονα. Ιδιόμορφες διατάξεις (singular configurations q για τις οποίες: det(j(q = Υπάρχει τουλάχιστον μία διεύθυνση κατά την οποία το ρομπότ δεν μπορεί να κινηθεί p 4

53 Ανάστροφη Διαφορική Κινηματική: Παράδειγμα ( βαθμοί ελευθ. D, επίπεδο y O y O l q x l (p x, p y y Ε O Ε q x x Ε θ z Ορθό Κινηματικό μοντέλο: ( βαθμοί ελευθερίας: q και q v x (l s +l s l s v y = (l c +l c l c J(q, q det( J(q, q = l l sin(q q q det( J(q, q =, όταν sin(q =, δηλαδή όταν : q = ή π (ιδιόμορφες διατάξεις q l c l s v vy x = q ll s ( lc + lc ( ls + l s J - (q, q : ανάστροφο κινηματικό μοντέλο 5 Έλεγχος αναλυμένης ταχύτητας q(t= (Resolved motion-rate control q(i Υπολογισμός j A j και A j (j=,,n Υπολογισμός Ιακωβιανής J( q Βρόχος διόρθωσης (correction loop p p *( i = A n :3,4 - p(i+ + p = p( i+ p * ( i dt επιθυμητή τροχιά Επίλυση ανάστροφης διαφορικής κινηματικής p = J( q q Εύρεση q q( i+ = q ( i + q ( i dt dt: sampling time i = i+ q( i+, q ( i προς ελεγκτή θέσης ρομπότ 6

54 Στατική Ανάλυση Ρομποτικών Χειριστών 7 Ανάλυση Δυνάμεων & Ροπών (/ Ni, i Σύνδεσμος (i- bˆi- O i- τ i Άρθρωση (i Σύνδεσμος (i fi, i τ = Κάθε άρθρωση εισάγει γεωμετρικούς (κινηματικούς περιορισμούς ως προς τη σχετική κίνηση των συνδέσμων τ τ τ n διάνυσμα γενικευμένων δράσεων στις αρθρώσεις q q = q q n διάνυσμα γενικευμένων ταχυτήτων στις αρθρώσεις τ ˆT i = i i, i b f : πρισματική άρθρωση τ ˆT i = i i, i b N : στροφική άρθρωση Γενικευμένη δράση (ροπή ή δύναμη, ασκούμενη στον (i σύνδεσμο από το σύνδεσμο (i-, δυνάμενη να παράγει έργο σε γενικευμένη μετατόπιση. 8

55 Ανάλυση Δυνάμεων & Ροπών (/ Ni, i O i- Άρθρωση i f ri, i i, i N ii+ ii+, r ici, Σύνδεσμος i f, O i Άρθρωση i+ Ισορροπία Δυνάμεων/Ροπών f f g i, i ii, + + m i = ( r r ( r ( N N f f i, i ii, + i, i + ici, i, i + ici, ii, + = nn, + nn, + F = f δράση από το ρομπότ πάνω στο N εξωτερικό περιβάλλον τ = τ τ τ n διάνυσμα γενικευμένων δράσεων στις αρθρώσεις b f : πρισματική άρθρωση τ ˆT i = i i, i b N : στροφική άρθρωση τ ˆT i = i i, i τ T = J F Στατική εξίσωση ρομποτικού χειριστή 9 Στατικό ρομποτικό μοντέλο Αρχή Δυνατών Έργων (virtual work principle: Μηχανικό Σύστημα σε στατική ισορροπία Δυνατό Έργο δε = που παράγεται σε τυχαία (επιτρεπτή στοιχειώδη γενικευμένη μετατόπιση δq δ q τ δ q i τ i τ δ q n F δ E =... n ext δ p δ = δ + δ τ T T E p Fext q δ p= J δ q T T ( J δq F + δq τ = δq J F + δq τ = δq ext T T T n ext Στατική εξίσωση ρομποτικού χειριστή τ T = J F τ = T J F ext όπου: F = F (n n+, δηλ.: F (robot external environment

56 Στατικό Μοντέλο Παράδειγμα ( βαθμοί ελευθ. D, επίπεδο F = F F x y y l q τ O l q x τ J = (l s +l s l s (l c +l c l c Ιακωβιανή Μήτρα Στατικό Μοντέλο ( ( ( ( l sin( q q l cos( q q l sin q l sin q + q l cos q + l cos q + q F τ = = τ x τ Fy + + Δυϊσμός κινηματικής / στατικής q R n J p R m R(J Κινηματική N(J τ R n p = J J Τ q F p = R m R(J: range space (σύνολο δυνατών ταχυτήτων στο χώρο εργασίας N(J: null space (μηδενικός χώρος N(J: ορθογώνιο συμπλήρωμα (R(J Τ R(J: ορθογώνιο συμπλήρωμα (N(J Τ R(J Τ N(J Τ Στατική τ T = J F

57 Μηχανική Αντίσταση (stiffness (α τ T = J F : Στατικό Μοντέλο (β δ p= J δ q : Κινηματικό Μοντέλο ( τ = k Δq i qi i τ = K Δq q (i=,,n : Μοντέλο «μηχανικής αντίστασης» (ακαμψίας αρθρώσεων T ( J K q J δ p= F T τ = J F δ p = Jδ q C Compliance matrix Μήτρα «μηχανικής συμμόρφωσης» K F = K p δ p K = J K J p q = T ( q kq kqn Stiffness matrix Μήτρα «μηχανικής αντίστασης» 3 Τέλος Εισαγωγικής Ενότητας 4

Ρομποτική Ι: Διαφορική Κινηματική Ανάλυση

Ρομποτική Ι: Διαφορική Κινηματική Ανάλυση Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 8-9, 7ο Εξάμηνο Ρομποτική Ι: Διαφορική Κινηματική Ανάλυση Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή Ηλεκτρ.

Διαβάστε περισσότερα

Ρομποτική Ι: Ανάλυση, Έλεγχος, Εργαστήριο Κινηματική/Στατική/Δυναμική Ανάλυση και Έλεγχος Ρομποτικών Χειριστών

Ρομποτική Ι: Ανάλυση, Έλεγχος, Εργαστήριο Κινηματική/Στατική/Δυναμική Ανάλυση και Έλεγχος Ρομποτικών Χειριστών Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος -, 7ο Εξάμηνο Ρομποτική Ι: Ανάλυση, Έλεγχος, Εργαστήριο Κινηματική/Στατική/Δυναμική Ανάλυση και Έλεγχος Ρομποτικών Χειριστών

Διαβάστε περισσότερα

Ρομποτικά Συστήματα Ελέγχου: Διαφορική Κινηματική Ανάλυση

Ρομποτικά Συστήματα Ελέγχου: Διαφορική Κινηματική Ανάλυση Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ» Ρομποτικά Συστήματα Ελέγχου: Διαφορική Κινηματική Ανάλυση Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή Ηλεκτρ. Μηχ/κών

Διαβάστε περισσότερα

Ρομποτικά Συστήματα Ελέγχου:

Ρομποτικά Συστήματα Ελέγχου: Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ» Ρομποτικά Συστήματα Ελέγχου: Κινηματική/Στατική/Δυναμική Ανάλυση και Έλεγχος Ρομποτικών Χειριστών Κων/νος Τζαφέστας Τομέας Σημάτων,

Διαβάστε περισσότερα

Περιεχόμενα Μαθήματος

Περιεχόμενα Μαθήματος Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 7-8, 8ο Εξάμηνο Ρομποτική II Ευφυή και Επιδέξια Ρομποτικά Συστήματα Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή

Διαβάστε περισσότερα

Ρομποτική II. Περιεχόμενα Μαθήματος

Ρομποτική II. Περιεχόμενα Μαθήματος Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 010-11, 8ο Εξάμηνο Ρομποτική II Ευφυή και Επιδέξια Ρομποτικά Συστήματα Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής

Διαβάστε περισσότερα

Ευφυή Κινούμενα Ρομπότ

Ευφυή Κινούμενα Ρομπότ Ευφυή Κινούμενα Ρομπότ Δρ Γιώργος Α. Δημητρίου Ακαδημία Ρομποτικής Τμήμα Πληροφορικής και Μηχανικών Υπολογιστών Σχολή Μηχανικής και Εφαρμοσμένων Επιστημών Πανεπιστήμιο Frederick, Λεμεσός, Κύπρος http://akrob.frederick.ac.cy

Διαβάστε περισσότερα

Ρομποτικός Έλεγχος Δύναμης / Μηχανικής Αντίστασης

Ρομποτικός Έλεγχος Δύναμης / Μηχανικής Αντίστασης Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 7-8, 7ο Εξάμηνο Μάθημα: Ρομποτική Ι Αυτόματος Έλεγχος Ρομπότ 3 (Έλεγχος Δύναμης) Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου &

Διαβάστε περισσότερα

Μάθημα: Ρομποτικός Έλεγχος

Μάθημα: Ρομποτικός Έλεγχος Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ» Ε.Μ.Π., Ακαδημαϊκό Έτος 011-1 Μάθημα: Ρομποτικός Έλεγχος Αυτόματος Έλεγχος Ρομπότ (Μη-Γραμμικός Ρομποτικός Έλεγχος Κων/νος Τζαφέστας

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Θέματα Εξετάσεων Ασκήσεις στο Mάθημα: "ΡΟΜΠΟΤΙΚΗ Ι: ΑΝΑΛΥΣΗ, ΕΛΕΓΧΟΣ, ΕΡΓΑΣΤΗΡΙΟ" 1 η Σειρά Θεμάτων Θέμα 1-1 Έστω ρομποτικός

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΣΥΝΟΨΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΣΥΝΟΨΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - Π. ΑΣΒΕΣΤΑΣ E MAIL: pasv@uniwa.gr Εφαρμογές ρομποτικής στην Ιατρική Κλασσική χειρουργική Ορθοπεδικές επεμβάσεις Νευροχειρουργική Ακτινοθεραπεία Αποκατάσταση φυσιοθεραπεία 2 Βασικοί

Διαβάστε περισσότερα

Έλεγχος Αλληλεπίδρασης με το. Έλεγχος «Συμμόρφωσης» ή «Υποχωρητικότητας» (Compliance Control)

Έλεγχος Αλληλεπίδρασης με το. Έλεγχος «Συμμόρφωσης» ή «Υποχωρητικότητας» (Compliance Control) Έλεγχος Αλληλεπίδρασης με το Περιβάλλον Έλεγχος «Συμμόρφωσης» ή «Υποχωρητικότητας» (Compliance Control) Έλεγχος Εμπέδησης (Impeance Control) Αλληλεπίδραση με το περιβάλλον Η αλληλεπίδραση με το περιβάλλον

Διαβάστε περισσότερα

Ροµποτικός Έλεγχος ύναµης / Μηχανικής Αντίστασης

Ροµποτικός Έλεγχος ύναµης / Μηχανικής Αντίστασης Ε.Μ.Π., ΣΗΜΜΥ, Ακαδηµαϊκό Έτος -5, ο Εξάµηνο Μάθηµα: Ροµποτική ΙΙ. ιδάσκων: Κ.Τζαφέστας Ροµποτικός Έλεγχος ύναµης / Μηχανικής Αντίστασης (Παράδειγµα Εφαρµογής Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή ΗΜ&ΜΥ.

Διαβάστε περισσότερα

Δυναµική των Ροµποτικών Βραχιόνων. Κ. Κυριακόπουλος

Δυναµική των Ροµποτικών Βραχιόνων. Κ. Κυριακόπουλος Δυναµική των Ροµποτικών Βραχιόνων Κ. Κυριακόπουλος Ροµποτική Αρχιτεκτονική: η Δυναµική Περιβάλλον u Ροµποτική Δυναµική q,!q Ροµποτική Κινηµατική Θέση, Προσανατολισµός και αλληλεπίδραση Η δυναµική ασχολείται

Διαβάστε περισσότερα

υναµ α ι µ κή τ ων Ρ οµ ο π µ ο π τ ο ικών Βραχιόνων

υναµ α ι µ κή τ ων Ρ οµ ο π µ ο π τ ο ικών Βραχιόνων υναµική των Ροµποτικών Βραχιόνων Ροµποτική Αρχιτεκτονική: η υναµική u Ροµποτική υναµική q, q& Ροµποτική Κινηµατική Περιβάλλον Θέση, Προσανατολισµός & και αλληλε ίδραση Η δυναµική ασχολείται µε την εξαγωγή

Διαβάστε περισσότερα

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ 3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ Η δυναµική ασχολείται µε την εξαγωγή και τη µελέτη του δυναµικού µοντέλου ενός ροµποτικού βραχίονα. Το δυναµικό µοντέλο συνίσταται στις διαφορικές εξισώσεις που περιγράφουν

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: Αυτόνομα Ευφυή Κινούμενα Ρομποτικά Συστήματα

ΕΝΟΤΗΤΑ 2: Αυτόνομα Ευφυή Κινούμενα Ρομποτικά Συστήματα Ε.Μ.Π., ΣΗΜΜΥ, Ακαδημαϊκό Έτος 2010-11, 8ο Εξάμηνο Μάθημα: Ρομποτική ΙΙ. Διδάσκων: Κ.Τζαφέστας ΕΝΟΤΗΤΑ 2: Αυτόνομα Ευφυή Κινούμενα Ρομποτικά Συστήματα Αρχιτεκτονικές Ελέγχου (mobile robot control architectures)

Διαβάστε περισσότερα

Σύμφωνα με το Ινστιτούτο Ρομποτικής της Αμερικής

Σύμφωνα με το Ινστιτούτο Ρομποτικής της Αμερικής ΡΟΜΠΟΤΙΚΗ: ΟΡΙΣΜΟΣ: Σύμφωνα με το Ινστιτούτο Ρομποτικής της Αμερικής, ρομπότ είναι ένας αναπρογραμματιζόμενος και πολυλειτουργικός χωρικός μηχανισμός σχεδιασμένος να μετακινεί υλικά, αντικείμενα, εργαλεία

Διαβάστε περισσότερα

9. ΕΛΕΓΧΟΣ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΜΕ ΤΟ ΠΕΡΙΒΑΛΛΟΝ. Εξετάζουµε διάφορα µοντέλα ελέγχου αλληλεπίδρασης του βραχίονα µε το περιβάλλον.

9. ΕΛΕΓΧΟΣ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΜΕ ΤΟ ΠΕΡΙΒΑΛΛΟΝ. Εξετάζουµε διάφορα µοντέλα ελέγχου αλληλεπίδρασης του βραχίονα µε το περιβάλλον. 9. ΕΛΕΓΧΟΣ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΜΕ ΤΟ ΠΕΡΙΒΑΛΛΟΝ 9.0 Εισαγωγικά Εξετάζουµε διάφορα µοντέλα ελέγχου αλληλεπίδρασης του βραχίονα µε το περιβάλλον. 9.1 Έλεγχος «Συµµόρφωσης» ή «Υποχωρητικότητας» (Comliance Control)

Διαβάστε περισσότερα

Α.2 Μαθησιακά Αποτελέσματα Έχοντας ολοκληρώσει επιτυχώς το μάθημα οι εκπαιδευόμενοι θα είναι σε θέση να:

Α.2 Μαθησιακά Αποτελέσματα Έχοντας ολοκληρώσει επιτυχώς το μάθημα οι εκπαιδευόμενοι θα είναι σε θέση να: ΒΑΣΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Τίτλος Μαθήματος Μεθοδολογίες και Συστήματα Βιομηχανικής Αυτοματοποίησης Κωδικός Μαθήματος Μ3 Θεωρία / Εργαστήριο Θεωρία + Εργαστήριο Πιστωτικές μονάδες 4 Ώρες Διδασκαλίας 2Θ+1Ε Τρόπος/Μέθοδοι

Διαβάστε περισσότερα

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ - Β. - Copyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο Δυναμικής και Κατασκευών - 06. Με επιφύλαξη παντός δικαιώµατος. All rights reserved. Απαγορεύεται

Διαβάστε περισσότερα

Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής:

Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής: ΑΝΩΤΑΤΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΤΟΜΕΑΣ ΙΙΙ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Π. Ράλλη & Θηβών 250, 12244 Αθήνα Καθηγητής Γ. Ε. Χαμηλοθώρης αρχείο: θέμα:

Διαβάστε περισσότερα

ΔΙΑΜΟΡΦΩΣΗ ΑΝΑΤΟΜΙΑΣ ΜΕΤΑΜΟΡΦΙΚΟΥ ΒΡΑΧΙΟΝΑ ΒΕΛΤΙΣΤΗ ΤΟΠΟΘΕΤΗΣΗ ΕΡΓΑΣΙΑΣ ΣΤΟ ΧΩΡΟ ΕΡΓΑΣΙΑΣ ΑΥΤΟΥ. ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ

ΔΙΑΜΟΡΦΩΣΗ ΑΝΑΤΟΜΙΑΣ ΜΕΤΑΜΟΡΦΙΚΟΥ ΒΡΑΧΙΟΝΑ ΒΕΛΤΙΣΤΗ ΤΟΠΟΘΕΤΗΣΗ ΕΡΓΑΣΙΑΣ ΣΤΟ ΧΩΡΟ ΕΡΓΑΣΙΑΣ ΑΥΤΟΥ. ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΔΙΑΜΟΡΦΩΣΗ ΑΝΑΤΟΜΙΑΣ ΜΕΤΑΜΟΡΦΙΚΟΥ ΒΡΑΧΙΟΝΑ ΒΕΛΤΙΣΤΗ ΤΟΠΟΘΕΤΗΣΗ ΕΡΓΑΣΙΑΣ ΣΤΟ ΧΩΡΟ ΕΡΓΑΣΙΑΣ ΑΥΤΟΥ. ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ Χ.Δ. Βάλσαμος α, Β.Χ. Μουλιανίτης β, Ν.Α. Ασπράγκαθος α α Τμήμα Μηχανολόγων Μηχανικών

Διαβάστε περισσότερα

ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ. Ενότητα 5 η : Παραδείγµατα 3 µηχανισµών. χώρο (3 )

ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ. Ενότητα 5 η : Παραδείγµατα 3 µηχανισµών. χώρο (3 ) ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ Ενότητα 5 η Παραδείγµατα µηχανισµών στο χώρο (3 ) Παράδειγµα 1 ο : Ροµποτικός βραχίονας RPPRR R: revolute pair P: prismatic pair Βραχίονας Τηλεσκοπικός βραχίονας

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΡΟΜΠΟΤΙΚΗΣ

ΕΙΣΑΓΩΓΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΡΟΜΠΟΤΙΚΗΣ ΕΙΣΑΓΩΓΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΡΟΜΠΟΤΙΚΗΣ 1 ΕΙΣΑΓΩΓΗ 1.1 Ορισµοί και Ιστορικά Στοιχεία Η Ροµποτική είναι εκείνος ο κλάδος της επιστήµης του µηχανικού που ασχολείται µε τη σύλληψη, το σχεδιασµό, την κατασκευή και

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επανάληψη: Κινηματική και Δυναμική

Δυναμική Μηχανών I. Επανάληψη: Κινηματική και Δυναμική Δυναμική Μηχανών I 2 2 Επανάληψη: Κινηματική και Δυναμική 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 3 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων Επανάληψη: Διακριτά στοιχεία μηχανικών δυναμικών συστημάτων Δυναμικά

Διαβάστε περισσότερα

ΕΠΙ ΡΑΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ ΣΕ ΕΛΕΥΘΕΡΑ ΑΙΩΡΟΥΜΕΝΑ ΡΟΜΠΟΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΕ ΤΡΟΧΙΑ

ΕΠΙ ΡΑΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ ΣΕ ΕΛΕΥΘΕΡΑ ΑΙΩΡΟΥΜΕΝΑ ΡΟΜΠΟΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΕ ΤΡΟΧΙΑ ΕΠΙ ΡΑΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ ΣΕ ΕΛΕΥΘΕΡΑ ΑΙΩΡΟΥΜΕΝΑ ΡΟΜΠΟΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΕ ΤΡΟΧΙΑ Κώστας Νάνος και Ευάγγελος Παπαδόπουλος Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ) Σχολή Μηχανολόγων Μηχανικών, Εργαστήριο Αυτοµάτου

Διαβάστε περισσότερα

Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής:

Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής: ΑΝΩΤΑΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΤΟΜΕΑΣ ΙΙΙ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Π. Ράλλη & Θηβών 250, 12244 Αθήνα Καθηγητής Γ. Ε. Χαμηλοθώρης αρχείο: θέμα:

Διαβάστε περισσότερα

Τεχνολογική έρευνα στο αντικείμενο των ελάχιστα επεμβατικών (ΕΕ) τεχνικών, στον ελληνικό χώρο

Τεχνολογική έρευνα στο αντικείμενο των ελάχιστα επεμβατικών (ΕΕ) τεχνικών, στον ελληνικό χώρο Τεχνολογική έρευνα στο αντικείμενο των ελάχιστα επεμβατικών (ΕΕ) τεχνικών, στον ελληνικό χώρο Κωνσταντίνος Τζαφέστας, Επίκ. Καθηγητής Γεώργιος Μούστρης, Μεταδιδακτορικός Ερευνητής Σχολή Ηλεκτρ. Μηχ/κών

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου. Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (ΗΜΜΥ)

Πανεπιστήμιο Κύπρου. Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (ΗΜΜΥ) Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (ΗΜΜΥ) 26/01/2014 Συνεισφορά του κλάδους ΗΜΜΥ Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ευρύ φάσμα γνώσεων και επιστημονικών

Διαβάστε περισσότερα

Οµάδα Ασκήσεων #3-Λύσεις

Οµάδα Ασκήσεων #3-Λύσεις Οµάδα Ασκήσεων #3-Λύσεις Πρόβληµα # (α) Ο βραχίονας είναι επίπεδος. Μπορούµε να βρούµε τον προσπελάσιµο χώρο εργασίας µε µια βήµα-προς-βήµα προσέγγιση. Πρώτα βρίσκουµε το χώρο που καλύπτεται όταν η άρθρωση-3

Διαβάστε περισσότερα

ΜΙΑ ΜΕΘΟΔΟΣ ΕΠΙΛΥΣΗΣ ΤΗΣ ΕΥΘΕΙΑΣ ΚΙΝΗΜΑΤΙΚΗΣ ΤΩΝ ΕΠΙΠΕΔΩΝ ΠΑΡΑΛΛΗΛΩΝ ΡΟΜΠΟΤ 3-RRP KAI 3-PRP

ΜΙΑ ΜΕΘΟΔΟΣ ΕΠΙΛΥΣΗΣ ΤΗΣ ΕΥΘΕΙΑΣ ΚΙΝΗΜΑΤΙΚΗΣ ΤΩΝ ΕΠΙΠΕΔΩΝ ΠΑΡΑΛΛΗΛΩΝ ΡΟΜΠΟΤ 3-RRP KAI 3-PRP ΜΙΑ ΜΕΘΟΔΟΣ ΕΠΙΛΥΣΗΣ ΤΗΣ ΕΥΘΕΙΑΣ ΚΙΝΗΜΑΤΙΚΗΣ ΤΩΝ ΕΠΙΠΕΔΩΝ ΠΑΡΑΛΛΗΛΩΝ ΡΟΜΠΟΤ 3-RRP KAI 3-PRP Σ. Μήτση 1, Κ.-Δ. Μπουζάκης 1, Γκ. Μανσούρ 1, I. Popescu 1 Εργαστήριο Εργαλειομηχανών και Διαμορφωτικής Μηχανολογίας,

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2015-2016 Περίοδος Σεπτεμβρίου 2016 ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1-2o ΕΞΑΜΗΝΟ 3-4ο ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ

ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ Καθηγητής Δρ.Δ.Σαγρής ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Στοχαστικά Συστήματα & Επικοινωνίες Ηλ. Αμφ. 1, 2 Ηλ. Αιθ. 001, 002. Γλώσσες Προγραμματισμού Ι Ηλ. Αμφ.

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Στοχαστικά Συστήματα & Επικοινωνίες Ηλ. Αμφ. 1, 2 Ηλ. Αιθ. 001, 002. Γλώσσες Προγραμματισμού Ι Ηλ. Αμφ. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2015-2016 Περίοδος Ιουνίου 2016 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος , 8ο Εξάμηνο. Ρομποτική II. Ευφυή και Επιδέξια Ρομποτικά Συστήματα

Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος , 8ο Εξάμηνο. Ρομποτική II. Ευφυή και Επιδέξια Ρομποτικά Συστήματα Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 009-0, 8ο Εξάμηνο Ρομποτική II Ευφυή και Επιδέξια Ρομποτικά Συστήματα Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής

Διαβάστε περισσότερα

Σχεδιασμός Τροχιάς Ρομποτικών Χειριστών

Σχεδιασμός Τροχιάς Ρομποτικών Χειριστών Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 00809, 7ο Εξάμηνο Μάθημα: Ρομποτική Ι Αυτόματος Έλεγχος Ρομπότ Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή Ηλεκτρ.

Διαβάστε περισσότερα

Οµάδα Ασκήσεων #1-Λύσεις

Οµάδα Ασκήσεων #1-Λύσεις Οµάδα Ασκήσεων #-Λύσεις Πρόβληµα # (α) (β) Τουλάχιστον Β.Ε. (Βαθµοί Ελευθερίας) χρειάζονται για αυθαίρετη τοποθέτηση στο χώρο (x,y,z) και επιπλέον Β.Ε. απαιτούνται για αυθαίρετο προσανατολισµό (στη δεδοµένη

Διαβάστε περισσότερα

Εισαγωγή στην Ρομποτική

Εισαγωγή στην Ρομποτική Τμήμα Μηχανολογίας Τ.Ε.Ι. Κρήτης Εισαγωγή στην Ρομποτική 1 Γενική περιγραφή ρομποτικού βραχίονα σύνδεσμοι αρθρώσεις αρπάγη Περιστροφική Πρισματική Βάση ρομποτικού βραχίονα 3 Βασικές ρομποτικές αρθρώσεις

Διαβάστε περισσότερα

Αυτόματη προσγείωση τετρακόπτερου με χρήση κάμερας

Αυτόματη προσγείωση τετρακόπτερου με χρήση κάμερας Διπλωματική εργασία Αυτόματη προσγείωση τετρακόπτερου με χρήση κάμερας Τζιβάρας Βασίλης Επιβλέπων: Κ. Κωνσταντίνος Βλάχος Τμήμα Μηχανικών Η/Υ και Πληροφορικής Ιωάννινα Φεβρουάριος 2018 Περιεχόμενα Εισαγωγή

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2016-2017 Περίοδος Σεπεμβρίου 2017 ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Έκδοση 05.07.2017 ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 3-4ο

Διαβάστε περισσότερα

Ρομποτική Σύντομη Εισαγωγή

Ρομποτική Σύντομη Εισαγωγή Ρομποτική Σύντομη Εισαγωγή Ευτύχιος Χριστοφόρου Τι είναι ένα Ρομπότ; 1 Ιστορία Τάλος: Κατασκευή του Ήφαιστου που δόθηκε δώρο στο βασιλιά τηςκρήτης Μίνωα για να προστατεύει το νησί. Πρώτη χρήση της λέξης

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ Ακαδημαϊκό Έτος 2017-2018 Περίοδος Σεπτεμβρίου 2018 Έκδοση 17/07/2018 ΗΜΕΡΟΜΗΝΙΑ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΑΣΚΗΣΕΙΣ. Π. Ασβεστάς Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Βιοϊατρικής Πανεπιστήμιο Δυτικής Αττικής

ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΑΣΚΗΣΕΙΣ. Π. Ασβεστάς Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Βιοϊατρικής Πανεπιστήμιο Δυτικής Αττικής ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΑΣΚΗΣΕΙΣ Π. Ασβεστάς Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Βιοϊατρικής Πανεπιστήμιο Δυτικής Αττικής E-mail: pasv@uniwa.gr ΑΣΚΗΣΗ 1 1. Έστω δύο 3Δ καρτεσιανά συστήματα συντεταγμένων,

Διαβάστε περισσότερα

p& i m p mi i m Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα i,

p& i m p mi i m Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα i, Κινητική Ενέργεια Κινητήρων Περνάµε τώρα στη συνεισφορά κινητικής ενέργειας λόγω της κίνησης & ϑ m του κινητήρα που κινεί την άρθρωση µε q& και, προφανώς όπως φαίνεται στο παρακάτω σχήµα, ευρίσκεται στον

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Διατάξεις Ημιαγωγών. Ηλ. Αιθ. 013. Αριθμητικές Μέθοδοι Διαφορικών Εξισώσεων Ηλ. Αιθ. 013

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Διατάξεις Ημιαγωγών. Ηλ. Αιθ. 013. Αριθμητικές Μέθοδοι Διαφορικών Εξισώσεων Ηλ. Αιθ. 013 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2014-2015 Περίοδος Φεβρουαρίου 2015 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εργαστηριακή και Βιομηχανική Ηλεκτρονική Ηλ. Αμφ. 2, 3. Γλώσσες Προγραμματισμού Ι. Ηλ. Αμφ. 1, 2, 3, 4, 5

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εργαστηριακή και Βιομηχανική Ηλεκτρονική Ηλ. Αμφ. 2, 3. Γλώσσες Προγραμματισμού Ι. Ηλ. Αμφ. 1, 2, 3, 4, 5 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ Ακαδημαϊκό Έτος 2016-2017 Περίοδος Ιουνίου 2017 Έκδοση 08.06.2017 ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εφαρμοσμένος & Υπολογιστικός Ηλεκτρομαγνητισμός Ηλ. Αιθ. 012, 013. Στοχαστικά Συστήματα & Επικοινωνίες Ηλ. Αμφ.

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εφαρμοσμένος & Υπολογιστικός Ηλεκτρομαγνητισμός Ηλ. Αιθ. 012, 013. Στοχαστικά Συστήματα & Επικοινωνίες Ηλ. Αμφ. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2014-2015 Περίοδος Ιουνίου 2015 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εφαρμοσμένος & Υπολογιστικός Ηλεκτρομαγνητισμός Ηλ. Αιθ. 012, 013. Εργαστήριο Ψηφιακών Συστημάτων Ηλ. Εργ.

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εφαρμοσμένος & Υπολογιστικός Ηλεκτρομαγνητισμός Ηλ. Αιθ. 012, 013. Εργαστήριο Ψηφιακών Συστημάτων Ηλ. Εργ. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2014-2015 Περίοδος Ιουνίου 2015 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Ακαδημαϊκό Έτος 2018-2019 Περίοδος Σεπεμβρίου 2019 Έκδοση 17/07/2019 26/08/2019 27/08/2019

Διαβάστε περισσότερα

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 16. Ανάστροφο εκκρεμές (ανάδραση κατάστασης) Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Ρομποτική II. Περιεχόμενα Μαθήματος

Ρομποτική II. Περιεχόμενα Μαθήματος Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 1-11, 8ο Εξάμηνο Ρομποτική II Ευφυή και Επιδέξια Ρομποτικά Συστήματα Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή

Διαβάστε περισσότερα

ΔΠΜΣ «ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ» «ΕΡΓΑΣΤΗΡΙΟ ΡΟΜΠΟΤΙΚΗΣ» Άσκηση 2. Έλεγχος Pendubot

ΔΠΜΣ «ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ» «ΕΡΓΑΣΤΗΡΙΟ ΡΟΜΠΟΤΙΚΗΣ» Άσκηση 2. Έλεγχος Pendubot Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρ. Μηχ/κών και Μηχ/κών Υπολογιστών Τομέας Σημάτων, Ελέγχου και Ρομποτικής ΔΠΜΣ «ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ» «ΕΡΓΑΣΤΗΡΙΟ ΡΟΜΠΟΤΙΚΗΣ» Άσκηση 2. Έλεγχος Pendubot Υπεύθυνος

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Αρχιτεκτονική Υπολογιστών Ηλ. Αιθ. 001, 002. Ηλ. Αιθ. 003, 004 Ηλεκτρονική ΙΙΙ Ηλ. αιθ. 003, 004. Θεωρία Δικτύων & Κυκλωμάτων

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Αρχιτεκτονική Υπολογιστών Ηλ. Αιθ. 001, 002. Ηλ. Αιθ. 003, 004 Ηλεκτρονική ΙΙΙ Ηλ. αιθ. 003, 004. Θεωρία Δικτύων & Κυκλωμάτων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ Ακαδημαϊκό Έτος 2017-2018 Περίοδος Ιουνίου 2018 v20180517 ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

Μηχανική Πετρωμάτων Τάσεις

Μηχανική Πετρωμάτων Τάσεις Μηχανική Πετρωμάτων Τάσεις Δρ Παντελής Λιόλιος Σχολή Μηχανικών Ορυκτών Πόρων Πολυτεχνείο Κρήτης http://minelabmredtucgr Τελευταία ενημέρωση: 28 Φεβρουαρίου 2017 Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ, ΚΑΤΑΣΚΕΥΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ

ΣΧΕΔΙΑΣΜΟΣ, ΚΑΤΑΣΚΕΥΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΣΧΕΔΙΑΣΜΟΣ, ΚΑΤΑΣΚΕΥΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ Καθ. Αριστομένης Αντωνιάδης Καθ. Νικόλαος Μπιλάλης Καθ. Γεώργιος Σταυρουλάκης Δεληκωνσταντίνου Βασίλης Πολυτεχνείο Κρήτης Χανιά 2016 3 ΔΟΜΗ

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Ηλ. Αιθ. 003, 004 Ηλεκτρονική ΙΙΙ Ηλ. αιθ. 003, 004

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Ηλ. Αιθ. 003, 004 Ηλεκτρονική ΙΙΙ Ηλ. αιθ. 003, 004 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2017-2018 Περίοδος Ιουνίου 2018 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

ΒΕΛΤΙΣΤΟΣ ΓΕΩΜΕΤΡΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΧΩΡΙΚΟΥ ΒΡΑΧΙΟΝΑ RRR ΜΕ ΧΡΗΣΗ ΥΒΡΙΔΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ

ΒΕΛΤΙΣΤΟΣ ΓΕΩΜΕΤΡΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΧΩΡΙΚΟΥ ΒΡΑΧΙΟΝΑ RRR ΜΕ ΧΡΗΣΗ ΥΒΡΙΔΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ ΒΕΛΤΙΣΤΟΣ ΓΕΩΜΕΤΡΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΧΩΡΙΚΟΥ ΒΡΑΧΙΟΝΑ RRR ΜΕ ΧΡΗΣΗ ΥΒΡΙΔΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ Δ. Σαγρής, Σ. Μήτση, Κ.-Δ. Μπουζάκης, Γκ. Μανσούρ Εργαστήριο Εργαλειομηχανών και Διαμορφωτικής Μηχανολογίας, Τμήμα Μηχανολόγων

Διαβάστε περισσότερα

Εισαγωγή στη Ροµποτική

Εισαγωγή στη Ροµποτική Εισαγωγή στη Ροµποτική Νίκος Βλάσσης Τµήµα Μηχανικών Παραγωγής και ιοίκησης Πολυτεχνείο Κρητης Ροµποτική, 9ο εξάµηνο ΜΠ, 2007 Modern Times (1936) 1 Modern Times (c. 2000) 2 Ροµπότ και αυτοµατισµοί: Ιστορική

Διαβάστε περισσότερα

«Εικονική Πραγματικότητα» Φυσική Αποκατάσταση

«Εικονική Πραγματικότητα» Φυσική Αποκατάσταση «Εικονική Πραγματικότητα» Φυσική Αποκατάσταση Κωνσταντίνος Λουκάς Εργαστήριο Ιατρικής Φυσικής Ιατρική Σχολή ΕΚΠΑ e-mail: cloukas@med.uoa.gr Περίγραμμα Συνεισφορά VR στη φυσική αποκατάσταση Παραδείγματα

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ

ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ Καθηγητής Δρ.Δ.Σαγρής ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ

Διαβάστε περισσότερα

Εθνικο Μετσοβιο Πολυτεχνειο Σχολη Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων Τομεας Τεχνολογιας Πληροφορικης και Υπολογιστων

Εθνικο Μετσοβιο Πολυτεχνειο Σχολη Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων Τομεας Τεχνολογιας Πληροφορικης και Υπολογιστων Εθνικο Μετσοβιο Πολυτεχνειο Σχολη Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων Τομεας Τεχνολογιας Πληροφορικης και Υπολογιστων Τηλεχειρισμός Τροχοφόρου Ρομπότ από Ρομποτικό Βραχίονα Μέσω Οπτικής Ανατροφοδότησης

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ

ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ Καθηγητής Δρ.Δ.Σαγρής ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΝΟΣ ΕΙΚΟΝΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΤΥΠΟΥ SCARA

ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΝΟΣ ΕΙΚΟΝΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΤΥΠΟΥ SCARA ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΝΟΣ ΕΙΚΟΝΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΤΥΠΟΥ SCARA Δρ. Φασουλάς Ιωάννης, jfasoula@ee.auth.gr jfasoulas@teemail.gr Τμήμα Πληροφορικής και Επικοινωνιών Τεχνολογικό

Διαβάστε περισσότερα

7. ΠΡΟΓΡΑΜΜΑ ΚΟΡΜΟΥ ο ΕΞΑΜΗΝΟ. Θεωρ. - Εργ.

7. ΠΡΟΓΡΑΜΜΑ ΚΟΡΜΟΥ ο ΕΞΑΜΗΝΟ. Θεωρ. - Εργ. 7. ΠΡΟΓΡΑΜΜΑ ΚΟΡΜΟΥ 7.1. 1ο ΕΞΑΜΗΝΟ Υποχρεωτικά 9.2.32.1 Μαθηματική Ανάλυση (Συναρτήσεις μιας μεταβλητής) 5 0 9.2.04.1 Γραμμική Άλγεβρα 4 0 9.4.31.1 Φυσική Ι (Μηχανική) 5 0 3.4.01.1 Προγραμματισμός Ηλεκτρονικών

Διαβάστε περισσότερα

ΕΡΠΥΣΤΡΙΕΣ: ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΕΡΠΥΣΤΡΙΕΣ ΘΕΩΡΙΑ

ΕΡΠΥΣΤΡΙΕΣ: ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΕΡΠΥΣΤΡΙΕΣ ΘΕΩΡΙΑ ΕΡΠΥΣΤΡΙΕΣ ΕΡΠΥΣΤΡΙΕΣ: ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΕΡΠΥΣΤΡΙΕΣ ΘΕΩΡΙΑ ΘΕΩΡΙΑ Τι είναι οι ερπύστριες Ιστορία τους Πλεονεκτήματα Μειονεκτήματα ROVER 5 CHASSIS MULTI CHASSIS (RESCUE PLATFORM BIG) ΕΡΕΥΝΑ ΑΓΟΡΑΣ KIT TRACKED

Διαβάστε περισσότερα

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 04-05 ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ - 5. - Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 04-05 opyight ΕΜΠ - Σχολή

Διαβάστε περισσότερα

Τα ρομπότ στην βιομηχανία

Τα ρομπότ στην βιομηχανία Τεχνολογικό Eκπαιδευτικό Ίδρυμα Kρήτης Διατμηματικό Μεταπτυχιακό Πρόγραμμα "Προηγμένα συστήματα παραγωγής, αυτοματισμού και ρομποτικής" Βιομηχανική Ρομποτική «Κινηματική στερεών σωμάτων» Δρ. Φασουλάς Γιάννης

Διαβάστε περισσότερα

Χωρικές Περιγραφές και Μετασχηµατισµοί

Χωρικές Περιγραφές και Μετασχηµατισµοί Χωρικές Περιγραφές και Μετασχηµατισµοί Νίκος Βλάσσης Τµήµα Μηχανικών Παραγωγής και ιοίκησης Πολυτεχνείο Κρητης Ροµποτική, 9ο εξάµηνο ΜΠ, 2007 Ροµπότ SCR 1 Περιεχόµενα Στοιχεία γραµµικής άλγεβρας Χωρικές

Διαβάστε περισσότερα

ΒΙΟΜΙΜΗΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΑΝΤΙΣΤΡΟΦΗΣ ΚΙΝΗΜΑΤΙΚΗΣ ΓΙΑ ΡΟΜΠΟΤΙΚΟ ΒΡΑΧΙΟΝΑ ΜΕ ΠΛΕΟΝΑΖΟΝΤΕΣ ΒΑΘΜΟΥΣ ΕΛΕΥΘΕΡΙΑΣ

ΒΙΟΜΙΜΗΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΑΝΤΙΣΤΡΟΦΗΣ ΚΙΝΗΜΑΤΙΚΗΣ ΓΙΑ ΡΟΜΠΟΤΙΚΟ ΒΡΑΧΙΟΝΑ ΜΕ ΠΛΕΟΝΑΖΟΝΤΕΣ ΒΑΘΜΟΥΣ ΕΛΕΥΘΕΡΙΑΣ ΒΙΟΜΙΜΗΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΑΝΤΙΣΤΡΟΦΗΣ ΚΙΝΗΜΑΤΙΚΗΣ ΓΙΑ ΡΟΜΠΟΤΙΚΟ ΒΡΑΧΙΟΝΑ ΜΕ ΠΛΕΟΝΑΖΟΝΤΕΣ ΒΑΘΜΟΥΣ ΕΛΕΥΘΕΡΙΑΣ ΠΕΡΙΛΗΨΗ Παναγιώτης Αρτεμιάδης, Παντελής Κατσιάρης 1, Μηνάς Λιαροκάπης 1, Κωνσταντίνος Κυριακόπουλος

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία μετασχηματισμών. Τα ρομπότ στην βιομηχανία

Εισαγωγή στη θεωρία μετασχηματισμών. Τα ρομπότ στην βιομηχανία Τεχνολογικό Eκπαιδευτικό Ίδρυμα Kρήτης Διατμηματικό Μεταπτυχιακό Πρόγραμμα "Προηγμένα συστήματα παραγωγής, αυτοματισμού και ρομποτικής" Βιομηχανική Ρομποτική «Κινηματική στερεών σωμάτων» Τα ρομπότ στην

Διαβάστε περισσότερα

Θέση και Προσανατολισμός

Θέση και Προσανατολισμός Κεφάλαιο 2 Θέση και Προσανατολισμός 2-1 Εισαγωγή Προκειμένου να μπορεί ένα ρομπότ να εκτελέσει κάποιο έργο, πρέπει να διαθέτει τρόπο να περιγράφει τα εξής: Τη θέση και προσανατολισμό του τελικού στοιχείου

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

εν υπάρχει συµφωνία ως προς τον ορισµό. 1949 Μηχανή Αριθµητικού Ελέγχου (MIT Servo Lab) Βραχίονες για χειρισµό πυρηνικού υλικού (Master Slave, 1948)

εν υπάρχει συµφωνία ως προς τον ορισµό. 1949 Μηχανή Αριθµητικού Ελέγχου (MIT Servo Lab) Βραχίονες για χειρισµό πυρηνικού υλικού (Master Slave, 1948) Κεφάλαιο 1 Εισαγωγή 1-1 Τι είναι Ροµπότ; εν υπάρχει συµφωνία ως προς τον ορισµό. Σύµφωνα µε το Αµερικανικό Ινστιτούτο Ροµποτικής (Rbt Institute f America, RIA) είναι ένας επαναπρογραµµατιζόµενος βραχίονας

Διαβάστε περισσότερα

ΔΕΙΚΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΑΝΑΤΟΜΙΩΝ ΜΕΤΑΜΟΡΦΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΣ ΑΥΤΟΥ ΜΕΣΩ ΣΥΣΤΗΜΑΤΟΣ ANFIS

ΔΕΙΚΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΑΝΑΤΟΜΙΩΝ ΜΕΤΑΜΟΡΦΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΣ ΑΥΤΟΥ ΜΕΣΩ ΣΥΣΤΗΜΑΤΟΣ ANFIS ΔΕΙΚΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΑΝΑΤΟΜΙΩΝ ΜΕΤΑΜΟΡΦΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΣ ΑΥΤΟΥ ΜΕΣΩ ΣΥΣΤΗΜΑΤΟΣ ANFIS Χ.Δ. Βάλσαμος α, Β.Χ. Μουλιανίτης β, Ν.Α. Ασπράγκαθος α α Τμήμα Μηχανολόγων Μηχανικών και Αεροναυπηγών,

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 4. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 4. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 4 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Μοντελοποίηση Μηχανικών Συστημάτων Ν Βαθμών Ελευθερίας Μηχανικά δυναμικά συστήματα πολλών Β.Ε. Μοντελοποίηση

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εισαγωγή στα Συστήματα Ηλεκτρικής Ενέργειας (ΣΗΕ) Ηλ. Αμφ. 1, 2, 3. Ηλεκτρομαγνητικά Πεδία Β. Ηλ. Αμφ.

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εισαγωγή στα Συστήματα Ηλεκτρικής Ενέργειας (ΣΗΕ) Ηλ. Αμφ. 1, 2, 3. Ηλεκτρομαγνητικά Πεδία Β. Ηλ. Αμφ. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ Ακαδημαϊκό Έτος 2018-19 Περίοδος Ιουνίου 2019 'Εκδοση 20/05/2019 03/06/2019 04/06/2019 05/06/2019 06/06/2019

Διαβάστε περισσότερα

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 214-215 ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ -A.1 - Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 214-215 Copyright ΕΜΠ

Διαβάστε περισσότερα

ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ. Ενότητα 2 η Βαθµοί Ελευθερίας Στερεού Σώµατος & Κινηµατικοί Περιορισµοί

ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ. Ενότητα 2 η Βαθµοί Ελευθερίας Στερεού Σώµατος & Κινηµατικοί Περιορισµοί ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ Ενότητα 2 η Βαθµοί Ελευθερίας Στερεού Σώµατος & Κινηµατικοί Περιορισµοί Αναπαράσταση µηχανισµού Η µονογραµµική απεικόνιση χρησιµοποιείται για την απλοποιηµένη

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εισαγωγή στα Συστήματα Ηλεκτρικής Ενέργειας (ΣΗΕ) (επί πτυχίω) Ηλ. Αμφ. 1, 2, 3

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εισαγωγή στα Συστήματα Ηλεκτρικής Ενέργειας (ΣΗΕ) (επί πτυχίω) Ηλ. Αμφ. 1, 2, 3 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ Ακαδημαϊκό Έτος 2018-19 Περίοδος Ιουνίου 2019 Έκδοση 21/05/2019 03/06/2019 04/06/2019 05/06/2019 06/06/2019

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εισαγωγή στα Συστήματα Ηλεκτρικής Ενέργειας (ΣΗΕ) (επί πτυχίω) Ηλ. Αμφ. 1, 2, 3

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εισαγωγή στα Συστήματα Ηλεκτρικής Ενέργειας (ΣΗΕ) (επί πτυχίω) Ηλ. Αμφ. 1, 2, 3 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ Ακαδημαϊκό Έτος 2018-19 Περίοδος Ιουνίου 2019 Έκδοση 24/05/2019 03/06/2019 04/06/2019 05/06/2019 06/06/2019

Διαβάστε περισσότερα

Δραστηριότητες Έρευνας και Ανάπτυξης του Εργαστηρίου Αυτοματικής Ρομποτικής του Τμήματος Μηχανολογίας του ΤΕΙ Κρήτης

Δραστηριότητες Έρευνας και Ανάπτυξης του Εργαστηρίου Αυτοματικής Ρομποτικής του Τμήματος Μηχανολογίας του ΤΕΙ Κρήτης Δραστηριότητες Έρευνας και Ανάπτυξης του Εργαστηρίου Αυτοματικής Ρομποτικής του Τμήματος Μηχανολογίας του ΤΕΙ Κρήτης των Δρ. Μανόλη Καββουσανού και Δρ. Γιάννη Φασουλά Το Εργαστήριο Αυτοματικής Ρομποτικής

Διαβάστε περισσότερα

Μοντελοποίηση Μηχανικών Συστημάτων Πολλών Βαθμών Ελευθερίας

Μοντελοποίηση Μηχανικών Συστημάτων Πολλών Βαθμών Ελευθερίας Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Μοντελοποίηση Μηχανικών Συστημάτων Πολλών Βαθμών Ελευθερίας Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Μοντελοποίηση Μηχανικών Συστημάτων Πολλών

Διαβάστε περισσότερα

3.6 Ευθεία και Αντίστροφη υναµική

3.6 Ευθεία και Αντίστροφη υναµική 3.6 Ευθεία και Αντίστροφη υναµική Στη δυναµική µας απασχολούν δύο ειδών προβλήµατα, το ευθύ δυναµικό πρόβληµα και το αντίστροφο δυναµικό πρόβληµα. Το αντίστροφο πρόβληµα αφορά στον προσδιορισµό των ροπών

Διαβάστε περισσότερα

Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης

Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης Σύστημα ονομάζουμε ένα σύνολο στοιχείων κατάλληλα συνδεδεμένων μεταξύ τους για να επιτελέσουν κάποιο έργο Είσοδο ονομάζουμε τη διέγερση, εντολή ή αιτία η οποία

Διαβάστε περισσότερα

1 f. d F D x m a D x m D x dt. 2 t. Όλες οι αποδείξεις στην Φυσική Κατεύθυνσης Γ Λυκείου. Αποδείξεις. d t dt dt dt. 1. Απόδειξη της σχέσης.

1 f. d F D x m a D x m D x dt. 2 t. Όλες οι αποδείξεις στην Φυσική Κατεύθυνσης Γ Λυκείου. Αποδείξεις. d t dt dt dt. 1. Απόδειξη της σχέσης. Αποδείξεις. Απόδειξη της σχέσης N t T N t T. Απόδειξη της σχέσης t t T T 3. Απόδειξη της σχέσης t Ικανή και αναγκαία συνθήκη για την Α.Α.Τ. είναι : d F D ma D m D Η εξίσωση αυτή είναι μια Ομογενής Διαφορική

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων

1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων 3 1.1 Διανύσματα 1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων ΑΣΚΗΣΗ 1.1 Να βρεθεί η γωνία που σχηματίζουν τα διανύσματα î + ĵ + ˆk και î + ĵ ˆk. z k i j y x Τα δύο διανύσματα που προκύπτουν από

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΗΛΕΚΤΡΟΫ ΡΑΥΛΙΚΩΝ ΣΕΡΒΟΣΥΣΤΗΜΑΤΩΝ ΒΑΣΙΣΜΕΝΟΣ ΣΤΗ ΥΝΑΜΙΚΗ

ΕΛΕΓΧΟΣ ΗΛΕΚΤΡΟΫ ΡΑΥΛΙΚΩΝ ΣΕΡΒΟΣΥΣΤΗΜΑΤΩΝ ΒΑΣΙΣΜΕΝΟΣ ΣΤΗ ΥΝΑΜΙΚΗ ΕΛΕΓΧΟΣ ΗΛΕΚΤΡΟΫ ΡΑΥΛΙΚΩΝ ΣΕΡΒΟΣΥΣΤΗΜΑΤΩΝ ΒΑΣΙΣΜΕΝΟΣ ΣΤΗ ΥΝΑΜΙΚΗ Ιωάννης Νταβλιάκος, Ευάγγελος Παπαδόπουλος Σχολή Μηχανολόγων Μηχανικών ΕΜΠ, Εργαστήριο Αυτοµάτου Ελέγχου email: gdavliak@central.ntua.gr,

Διαβάστε περισσότερα

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ - 8. - opyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο Δυναμικής και Κατασκευών - 202. Με επιφύλαξη παντός δικαιώµατος. ll rights reserved. Απαγορεύεται

Διαβάστε περισσότερα

Ροµποτική. είτε µε το ανυσµατικό άθροισµα. όπου x = αποτελούν τα µοναδιαία ανύσµατα του

Ροµποτική. είτε µε το ανυσµατικό άθροισµα. όπου x = αποτελούν τα µοναδιαία ανύσµατα του Ροµποτική Ο χειρισµός αντικειµένων και εργαλείων από ένα ροµποτικό βραχίονα σηµαίνει ότι το ροµπότ πρέπει να είναι ικανό να τοποθετεί και να προσανατολίζει κατάλληλα το άκρο του στο χώρο εργασίας π.χ.

Διαβάστε περισσότερα

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Προπτυχιακό Πρόγραμμα Σπουδών 2018-2019 (ΓΣ 29.5.2018) ΣΗΜΜΥ ΕΜΠ, έκδοση 1.00-20190226 ΠΡΟΓΡΑΜΜΑ ΚΟΡΜΟΥ 1 ο ΕΞΑΜΗΝΟ Υποχρεωτικά

Διαβάστε περισσότερα

Underwater Explorer for Flooded Mines

Underwater Explorer for Flooded Mines Underwater Explorer for Flooded Mines Δρ. Σταύρος Καλαϊτζίδης Τμήμα Γεωλογίας, Πανεπιστήμιο Πατρών e-mail: skalait@upatras.gr Εργαστήριο Κοιτασματολογίας, Τομέας Ορυκτών Πρώτων Υλών, Τμήμα Γεωλογίας, UP

Διαβάστε περισσότερα

Ισχύει μόνο για φοιτητές που εισήχθησαν στο Τμήμα από το ακαδ. έτος και πριν

Ισχύει μόνο για φοιτητές που εισήχθησαν στο Τμήμα από το ακαδ. έτος και πριν Ισχύει μόνο για φοιτητές που εισήχθησαν στο Τμήμα από το ακαδ. έτος 2003-04 και πριν Βασικός Κύκλος ΕΞΑΜΗΝΟ 1 Λογισμός Ι 11 4 Φυσική Ι 13 5 Γραμμική Αλγεβρα 15 4 Προγραμματισμός 17 4+2 Τεχνικό Σχέδιο 19

Διαβάστε περισσότερα

Σχεδιασμός Κίνησης σε Δισδιάστατα Περιβάλλοντα που Περιλαμβάνουν Εμπόδια Άγνωστης Τροχιάς

Σχεδιασμός Κίνησης σε Δισδιάστατα Περιβάλλοντα που Περιλαμβάνουν Εμπόδια Άγνωστης Τροχιάς Σχεδιασμός Κίνησης σε Δισδιάστατα Περιβάλλοντα που Περιλαμβάνουν Εμπόδια Άγνωστης Τροχιάς Ηλίας Κ. Ξυδιάς, Φίλιππος Ν. Αζαριάδης Τμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων, Πανεπιστήμιο Αιγαίου,

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3A: ΔΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΓΕΝΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3A: ΔΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΓΕΝΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3A: ΔΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΓΕΝΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συστήματα αξόνων του αεροσκάφους Κίνηση αεροσκάφους στην ατμόσφαιρα Απαιτούνται κατάλληλα συστήματα αξόνων για την περιγραφή

Διαβάστε περισσότερα

RobotArmy Περίληψη έργου

RobotArmy Περίληψη έργου RobotArmy Περίληψη έργου Στην σημερινή εποχή η ανάγκη για αυτοματοποίηση πολλών διαδικασιών γίνεται όλο και πιο έντονη. Συνέχεια ακούγονται λέξεις όπως : βελτιστοποίηση ποιότητας ζωής, αυτοματοποίηση στον

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΧΩΡΙΚΑ ΠΛΑΙΣΙΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση

Διαβάστε περισσότερα

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System 6 (5..9) 6 An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System Kazuya Yoshida, Hiromitsu Watanabe * *Tohoku University : (Macro-micro manipulator system) (Flexible base), (Vibration

Διαβάστε περισσότερα