Automatizácia technologických procesov
|
|
- Ἄμμων Βενιζέλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Téma: Logické obvody. Základné pojmy. Logická algebra,logické funkcie. Znázornenie logických funkcií a základy ich minimalizácie. - sú častým druhom riadenia, ktoré sa vyskytujú ako samostatné ako aj v kombinácii (ohrievače vetra) - základné pojmy : - logický systém je systém, ktorého funkcia môže byť opísaná súborom logických veličín vzájomne viazaných logickými vzťahmi - pritom logická premenná je premenná, ktorá môže nadobúdať len konečný počet hodnôt - logický obvod je determinovaný fyzikálny systém - logické systémy (obvody) : 1. kombinačný systém je taký, ktorého výstupy sú dané kombináciou vstupov v danom čase 2. sekvenčný systém je taký, ktorého výstupy sú dané nielen od kombinácie vstupov v danom čase ale aj od jeho výstupov v minulosti, ktorí sa prejavia v jeho vnútorných vzťahoch, čiže má pamäť a) synchrónny (zmeny nastávajú v definovaných časoch) b) asynchrónny - výrok je tvrdenie o ktorom má zmysel vyhlásiť, či platí alebo neplatí ( Zem sa otáča okolo svojej osi - pravda ) ( = 4 - nepravda ) ( Aká je vonku teplota? - nie je výrok ) - logická premenná nadobúda dve hodnoty (, 1) a označuje platnosť výroku - oolova algebra: - slúži na matematický opis zákonov a pravidiel výrokovej logiky, ktorá rieši vzťahy medzi pravdivými a nepravdivými výrokmi - pravdivému výroku prideľujeme logickú hodnotu 1 a nepravdivému výroku logickú hodnotu. - nositeľom elementárnej informácie o pravdivosti alebo nepravdivosti výroku je logická premenná, ktorá môže nadobúdať dve hodnoty a 1 - základné operácie: 1. logický súčin 2. logický súčet 3. logická negácia 1. logický súčin : - majme jednoduché boolovské premenné A,,Y - AND: Y=A. - logický súčin AND je charakterizovaný tím, že funkčná hodnota Y nadobúda jednotky len vtedy, ak obidve premenné A, sú jednotky. 15
2 - pravdivostná tabuľka : A Y=A kontaktová realizácia : - logická hodnota 1 predstavuje zopnutý spínač a logická hodnota predstavuje rozopnutý spínač - obvodom môže tiecť prúd iba ak sú zopnuté spínače 2. logický súčet : - majme jednoduché boolovské premenné A,,Y - OR : Y = A+ - logický súčet OR je charakterizovaný tím, že funkčná hodnota Y nadobúda hodnotu jednotky práve vtedy ak, aspoň jedna z premenných A, je jednotka. - pravdivostná tabuľka : A Y=A
3 - kontaktová realizácia : 3. logická negácia : - majme jednoduché boolovské premenné A,Y - NOT : Y = A - logická negácia NOT je charakterizovaná tím, že funkčná hodnota Y nadobúda hodnotu jednotky práve vtedy, ak premenná A je nula - pravdivostná tabuľka : A y=a kontaktová realizácia : 17
4 - pr: zostrojte pravdivostnú tabuľku pre funkciu Y = A.(+C) - poznámka : počet riadkov v PT zodpovedá vzorcu : 2n, kde n je počet vstupných premenných. A C Y de Morganov zákon : A + + C +... = A.. C... A.. C... = A + + C dokážte platnosť de Morganovych pravidiel pomocou PT. Y1 = A + Y2 = A. Y1 = Y2 - formy zápisu logických funkcií : 1. Karnaughova mapa 2. pravdivostná tabuľka 3. algebraický výraz 1. Karnaughova mapa - skladá sa z určitého počtu štvorcov (políčok), pričom každej kombinácií nezávislých vstupných premenných v KM zodpovedá jeden štvorec do ktorého vypisujeme zodpovedajúcu hodnotu výstupnej funkcie 18
5 - počet štvorcov v KM sa musí rovnať počtu riadkov v PT budeme sa držať najčastejšieho spôsobu značenia máp, podľa ktorého riadky alebo stĺpce v ktorých je príslušná premenná rovná jednotke, označíme vedľa mapy zvislou alebo vodorovnou čiarou, ku ktorej pripíšeme meno príslušnej logickej premennej - v riadkoch alebo v stĺpcoch, ktoré nie sú označené, je príslušná premenná rovná nule - KM pre funkciu jednej vstupnej premennej Y = f(a) Y = A PT: A Y 1 1 A KM: 1 - KM pre funkciu dvoch vstupných premenných Y = f(a, ) Y = A. + A. PT: A Y KM : A
6 2. výpis funkcie z pravdivostnej tabuľky : - 2 formy : a) UNDF : úplná normálna disjunktívna forma - súčet základných súčinov Y n 2 1 = Σ yimi ( x) = i= y m ( x) + y m ( x) +... y 1 1 n 2 1 m n 2 1 ( x) - minterm : mi(x) = x1. x2. x3... xn - yi - hodnota funkcie v í tom riadku PT - mi - je logický súčin všetkých vstupných premenných v priamom tvare, ak premenná má hodnotu 1 a v inverznom tvare ak premenná má hodnotu. - pr : zostavte PT a jej výpis pomocou formy UNDF... Y = A. S A Y mi(a,) A. 1 1 A. 2 1 A A. - S - poradie riadkov...s = 2n negácia namiesto čiary pre lepšiu prehľadnosť v tabuľke Y = y - m ) + y1m1 ) + y2m2 ) + y3m3 ) - Y =. A. +. A. +. A A. = A. b) UNKF : úplná normálna konjuktívna forma - súčin základných súčtov Y n 2 1 = Π ( y i= i + M ( x)) = ( y i + M ( x)).( y 1 + M 1 ( x))...( y n M n 2 1 ( x)) - maxterm : mi(x) = x1 + x2 + x3+...xn - mi(x) - logický súčet všetkých vstupných premenných v priamom tvare, ak premenná má hodnotu a v inverznom tvare ak premenná má hodnotu 1. 2
7 - pr : zostavte PT a jej výpis pomocou formy UNKF... Y = A. S A Y Mi(A,) A+ 1 1 A+ 2 1 A A + Y = ( y + M )).( y1 + M 1( A, )).( y2 + M 2 )).( y3 + M 3 Y = ( + A + ).( + A + ).( + A + ).(1 + A + ) Y = ( A + ).( A + ).( A + ).1 )) - pr : zostrojte výpis UNDF a UNKF funkcie z PT a ak je daná PT: S A C Y minimalizácia logickej funkcie - danú LF môžeme zapísať v rôznych tvaroch - všetky tvary sú matematický rovnocenné, pretože predstavujú rovnakú závislosť aj keď sú tvarovo dosť odlišné - nie sú však rovnocenné z hľadiska technického a ekonomického - pre technickú realizáciu je nutné vždy funkciu upraviť do najjednoduchšieho tvaru, minimalizovať ju - minimalizáciou funkcií dosiahneme, že pri jej realizácií budeme potrebovať najmenší počet logických prvkov a tým sa logický obvod stane jednoduchším a samozrejme aj lacnejším z ekonomického hľadiska 21
8 - pre minimalizáciu existujú rôzne metódy ako napríklad : - algebraická - logickú funkciu zjednodušíme pomocou zákonov a pravidiel oolovej algebry : A+ = +A A+(+C)=(A+)+C A+.C=(A+).(A+C) A =A A+A=A A+A =1 A+1=1 A+=A A.A.=A+ (A+) =A. A.+.A=A A.=.A A.(.C)=(A.).C A.(+C)=A.+A.C A.A=A A.A = A.1=A A.= A.(A +)=A. (A.) =A + (A+).(A+ )=A - grafická - v KM - systém v KM je založený na skutočnosti že dva členy výrazu ktoré obsahujú tie isté premenné a líšia sa iba v jednej premennej - sú redukovateľné, tj. možno ich zjednodušiť tak, že vynecháme premennú v ktorej sa líšia - dva členy, ktoré sa líšia iba v jednej premennej nazývajú sa susediacimi členmi v KM a nachádzajú sa vedľa seba. - podstata minimalizácie v KM spočíva v zoskupovaní susediacich jednotiek do konfigurácií pričom platí : - jednotky musia byť susedné - počet susediacich jednotiek v danej konfigurácií je daný vzorcom 2n - každá jednotka sa môže vyskytovať aj vo viacerých konfiguráciách - v mape musíme pokryť konfiguráciami všetky jednotky - pr : minimalizujte v KM : 1. C 1 1 A UNDF: Y= A..C +A..C Y=A.(C +C) Y=A. 1 22
9 2. C 1 A 1 UNDF: Y=A..C+A..C Y=.C.(A +A) Y=.C 3. C 1 1 A 1 UNDF : Y1=A. Y2=.C Y=A. +.C 4. D C 1 1 A
10 - susediace políčka sú aj políčka na okrajoch mapy - predstavme si, že mapu zrolujeme tak, že ľavý okraj bude susediaci s pravým a súčasne dolný s horným UNDF: Y =.C - schéma logického obvodu - realizácia : a) kontaktovými členmi (kontakty, relé, stykače) b) logickými členmi (AND, OR, NOT, NAND, NOR) c) programovými automatmi (Simatic, LOGO! 23RC ) - kontaktová realizácia logickej funkcie : - pr : kontaktovo zrealizujte logickú funkciu : Y = (A.) + (A. ) - pr : kontaktovo zrealizujte logickú funkciu Y = A.( +C) 24
11 Základy analýzy a syntézy logických obvodov. Kombinačné logické obvody, ich analýzy a syntéza. Úvod do sekvenčných logických obvodov. - realizácia logickej funkcie členmi AND, OR, NOT - logický člen je elementárny číslicový systém, ktorý realizuje niektorú boolovskú funkciu (operáciu) nad vstupnými premennými a jej výsledok poskytuje na svojom výstupe. Názov logickej funkcie Algebraické vyjadrenie Schematická značka Negácia (NOT) Y = A Súčet (OR) Y = A+ Súčin (AND) Y= A. - pr : zrealizujte pomocou logických členov funkciu : Y=A.+A. 25
12 - pr : realizujte pomocou logických členov funkciu : Y=(A+).(+C).(A +C ) - realizácia logickej funkcie členmi NAND - logická funkcia : Y = (A.) (Schefferová funkcia) Y = (A..C) Y = (A..C.D) - schematická značka : - pr : zrealizujte pomocou hradla NAND funkciu Y = A - pr : realizujte pomocou hradla NAND funkciu Y = A. 26
13 - realizácia logickej funkcie členmi NOR - logická funkcia : Y = (A+) (Pierceova funkcia) Y = (A++C) - schematická značka : - pr : zrealizujte pomocou hradla NOR funkciu Y = A - pr : zrealizujte pomocou hradla NOR funkciu Y = A + 27
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
9. kapitola Boolove funkcie a logické obvody
9. kapitola Boolove funkcie a logické obvody Priesvitka 1 Boolova algebra Elektronické obvody v počítačoch a v podobných zariadeniach sú charakterizované binárnymi vstupmi a výstupmi (rovnajúcimi sa 0
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
Zbierka úloh z VÝROKOVEJ LOGIKY
Zbierka úloh z VÝROKOVEJ LOGIKY Martin Šrámek 0 OBSAH Úvod...2 Výrok...3 Výroková premenná...3 Logické spojky...4 Formula výrokovej logiky...4 Logická ekvivalencia...4 Tabuľková metóda riešenia úloh...4
4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti
4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti Výroková funkcia (forma) ϕ ( x) je formálny výraz (formula), ktorý obsahuje znak x, pričom x berieme z nejakej množiny M. Ak za x zvolíme
6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu
6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis
Funkcie - základné pojmy
Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny
ZÁKLADY MATEMATIKY 1 UNIVERZITA KONŠTANTÍNA FILOZOFA V NITRE FAKULTA PRÍRODNÝCH VIED
UNIVERZITA KONŠTANTÍNA FILOZOFA V NITRE FAKULTA PRÍRODNÝCH VIED ZÁKLADY MATEMATIKY 1 Kitti Vidermanová, Júlia Záhorská Eva Barcíková, Michaela Klepancová NITRA 2013 Názov: Základy matematiky 1 Edícia Pírodovedec.
,Zohrievanie vody indukčným varičom bez pokrievky,
Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
Výroky, hypotézy, axiómy, definície a matematické vety
Výroky, hypotézy, axiómy, definície a matematické vety Výrok je každá oznamovacia veta (tvrdenie), o ktorej má zmysel uvažovať, či je pravdivá alebo nepravdivá. Výroky označujeme pomocou symbolov: A, B,
- vychádza z úplnej DNF a slúži pre získanie skrátenej DNF. Princíp metódy - aplikovanie modifikovaného pravidla spojovania. y + x y = y (5.
5.6 QUINOVA - McCLUSKEYHO METÓDA MINIMALIZÁCIE - vychádza z úplnej DNF a slúži pre získanie skrátenej DNF. Princíp metódy - aplikovanie modifikovaného pravidla spojovania x y + x y = x y + x y + y (5.41)
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
Kompilátory. Cvičenie 6: LLVM. Peter Kostolányi. 21. novembra 2017
Kompilátory Cvičenie 6: LLVM Peter Kostolányi 21. novembra 2017 LLVM V podstate sada nástrojov pre tvorbu kompilátorov LLVM V podstate sada nástrojov pre tvorbu kompilátorov Pôvodne Low Level Virtual Machine
Ú V O D Z Á K L A D N É L O G I C K É Č L E N Y
Ú V O D Z Á K L A D N É L O G I C K É Č L E N Y Všetky logické integrované obvody (IO) pracujú v dvojkovej sústave; sú citlivé len na dva druhy diskrétnych signálov. a) Tzv. log.1 prestavuje vstupný signál
Pravdivostná hodnota negácie výroku A je opačná ako pravdivostná hodnota výroku A.
7. Negácie výrokov Negácie jednoduchých výrokov tvoríme tak, že vytvoríme tvrdenie, ktoré popiera pôvodný výrok. Najčastejšie negujeme prísudok alebo použijeme vetu Nie je pravda, že.... Výrok A: Prší.
Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana.
Spojité rozdelenia pravdepodobnosti Pomôcka k predmetu PaŠ Strana z 7 RNDr. Aleš Kozubík, PhD. 6. marca 3 Zoznam obrázkov Rovnomerné rozdelenie Ro (a, b). Definícia.........................................
MERANIE NA IO MH7493A
MERANIE NA IO MH7493A 1.ÚLOHA: a,) Overte platnosť pravdivostnej tabuľky a nakreslite priebehy jednotlivých výstupov IO MH7493A pri čítaní do 3, 5, 9, 16. b,) Nakreslite zapojenie pre čítanie podľa bodu
ŽILINSKÁ UNIVERZITA V ŽILINE Elektrotechnická fakulta Katedra telekomunikácií. Optimalizácia informačného obsahu v systéme LMS Moodle.
ŽILINSKÁ UNIVERZITA V ŽILINE Katedra telekomunikácií Optimalizácia informačného obsahu v systéme LMS Moodle Martin Nottný 2007 Optimalizácia informačného obsahu v systéme LMS Moodle DIPLOMOVÁ PRÁCA MARTIN
Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014
Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk
Tomáš Madaras Prvočísla
Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
Výrazy a ich úpravy. -17x 6 : -17 koeficient; x premenná; 6 exponent premennej x. 23xy 3 z 5 = 23x 1 y 3 z 5 : 23 koeficient; x; y; z premenné;
Výrazy a ich úpravy Počtový výraz je matematický zápis, ktorým vyjadrujeme počtové operácie s číslami a poradie v akom majú byť prevedené. Napr.: ( (5 1,76)+5):0,4. Počtové výrazy sa pomenovávajú podľa
KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
Gramatická indukcia a jej využitie
a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)
Vladimír Kvasnička. Úvod do logiky pre informatikov
Vladimír Kvasnička Úvod do logiky pre informatikov Ústav aplikovanej informatiky Fakulta informatiky a informačných technológií Slovenská technická univerzita v Bratislave 202 2 Úvod V tejto knihe, ktorá
Riešenie rovníc s aplikáciou na elektrické obvody
Zadanie č.1 Riešenie rovníc s aplikáciou na elektrické obvody Nasledujúce uvedené poznatky z oblasti riešenia elektrických obvodov pomocou metódy slučkových prúdov a uzlových napätí je potrebné využiť
3. Výroková logika. Princíp dvojhodnotovosti (bivalencie): Existujú práve dve pravdivostné hodnoty pravda a nepravda.
3. Výroková logika Výroková logika patrí do klasickej logiky - do jednej z dvoch oblastí, na ktoré môžeme rozdeliť súčasnú logiku. 22 Sochor (2011, 21) prirovnáva výrokovú logiku ku gramatickému rozboru
Logické systémy. doc. RNDr. Jana Galanová, PhD. RNDr. Peter Kaprálik, PhD. Mgr. Marcel Polakovič, PhD.
Logické systémy doc. RNDr. Jana Galanová, PhD. RNDr. Peter Kaprálik, PhD. Mgr. Marcel Polakovič, PhD. KAPITOLA 1 Úvodné pojmy V tejto časti uvádzame základné pojmy, prevažne z diskrétnej matematiky, ktoré
Kontrolné otázky z jednotiek fyzikálnych veličín
Verzia zo dňa 6. 9. 008. Kontrolné otázky z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej odpovede sa môže v kontrolnom teste meniť. Takisto aj znenie nesprávnych odpovedí. Uvedomte si
HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S
PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
23. Zhodné zobrazenia
23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:
Návrh vzduchotesnosti pre detaily napojení
Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely
Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.
Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [
Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky
Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.
Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus
1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových
Číslo a číslica. Pojem čísla je jedným zo základných pojmov matematiky. Číslo je abstraktná entita (fil. niečo existujúce) používaná na opis množstva.
Číslo a číslica Pojem čísla je jedným zo základných pojmov matematiky. Číslo je abstraktná entita (fil. niečo existujúce) používaná na opis množstva. Číslica (cifra) je grafický znak, pomocou ktorého zapisujeme
UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.2 Vzdelávacia
Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich
Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:
ÚVOD DO MATEMATICKEJ LOGIKY Podporné učebné texty pre vyučovanie matematiky v 1.ročníku gymnázia
ÚVOD DO MATEMATICKEJ LOGIKY Podporné učebné texty pre vyučovanie matematiky v 1.ročníku gymnázia 1. VÝROKY Pod pojmom "výrok" rozumieme v bežnom živote čosi ako VÝsledok ROKovania ( napr. súdu, alebo komisie
7. Dokážte, že z každej nekonečnej množiny môžeme vydeliť spočítateľnú podmnožinu.
Teória množín To, že medzi množinami A, B existuje bijektívne zobrazenie, budeme symbolicky označovať A B alebo A B. Vtedy hovoríme, že množiny A, B sú ekvivalentné. Hovoríme tiež, že také množiny A, B
VLADIMÍR KVASNIČKA JIŘÍ POSPÍCHAL. Matematická logika
Matematická logika VLADIMÍR KVASNIČKA JIŘÍ POSPÍCHAL Matematická logika Slovenská technická univerzita v Bratislave 2006 prof. Ing. Vladimír Kvasnička, DrSc., doc. RNDr. Jiří Pospíchal, DrSc. Lektori:
9. kapitola. Viachodnotové logiky trojhodnotová Łukasiewiczova logika a Zadehova fuzzy logika. priesvitka
9. kapitola Viachodnotové logiky trojhodnotová Łukasiewiczova logika a Zadehova fuzzy logika 1 Úvodné poznámky o viachodnotových logikách V klasickej logike existujú prípady, keď dichotomický pravdivostný
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
Úvod do lineárnej algebry. Monika Molnárová Prednášky
Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc
3. kapitola. Axiomatická formulácia modálnej logiky Vzťah medzi syntaxou a sémantikou. priesvitka 1
3. kapitola Axiomatická formulácia modálnej logiky Vzťah medzi syntaxou a sémantikou priesvitka 1 Axiomatická výstavba modálnej logiky Cieľom tejto prednášky je ukázať axiomatickú výstavbu rôznych verzií
2 Chyby a neistoty merania, zápis výsledku merania
2 Chyby a neistoty merania, zápis výsledku merania Akej chyby sa môžeme dopustiť pri meraní na stopkách? Ako určíme ich presnosť? Základné pojmy: chyba merania, hrubé chyby, systematické chyby, náhodné
TECHNICKÁ UNIVERZITA V KOŠICIACH FAKULTA ELEKTROTECHNIKY A INFORMATIKY. Katedra teoretickej elektrotechniky a elektrického merania.
TECHNICKÁ UNIVERZITA V KOŠICIACH FAKULTA ELEKTROTECHNIKY A INFORMATIKY Katedra teoretickej elektrotechniky a elektrického merania Miroslav Mojžiš : ČÍSLICOVÉ MERANIE ( Prednášky ) K o š i c e 2 0 1 0 Doc.
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH
6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6. Otázky Definujte pojem produkčná funkcia. Definujte pojem marginálny produkt. 6. Produkčná funkcia a marginálny produkt Definícia 6. Ak v ekonomickom procese počet
Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi
Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi Typy súvislostí javov a vecí: nepodstatné - vonkajšia súvislosť nevyplýva z vnútornej potreby (javy spoločne vznikajú, majú zhodný priebeh, alebo
Goniometrické substitúcie
Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať
Deliteľnosť a znaky deliteľnosti
Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a
Reprezentácia informácií v počítači
Úvod do programovania a sietí Reprezentácia informácií v počítači Ing. Branislav Sobota, PhD. 2007 Informácia slovo s mnohými významami, ktoré závisia na kontexte predpis blízky pojmom význam poznatok
Odporníky. 1. Príklad1. TESLA TR
Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L
24. Základné spôsoby zobrazovania priestoru do roviny
24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá
Univerzálny virtuálny verifikačný panel logických obvodov
Slovenská technická univerzita v Bratislave FAKULTA INFORMATIKY A INFORMAČNÝCH TECHNOLÓGIÍ Študijný program: Počítačové a komunikačné systémy a siete Tím č. 8 Univerzálny virtuálny verifikačný panel logických
7 Derivácia funkcie. 7.1 Motivácia k derivácii
Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických
PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz
KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)
Technická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach
Technická univerzita v Košiciach Zbierka riešených a neriešených úloh z matematiky pre uchádzačov o štúdium na TU v Košiciach Martin Bača Ján Buša Andrea Feňovčíková Zuzana Kimáková Denisa Olekšáková Štefan
REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických
REZISTORY Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických obvodoch. Základnou vlastnosťou rezistora je jeho odpor. Odpor je fyzikálna vlastnosť, ktorá je daná štruktúrou materiálu
LOGIKA, DÔVODENIE, DÔKAZY VÝROK A JEHO PRAVDIVOSTNÁ HODNOTA
1 LOGIKA, DÔVODENIE, DÔKAZY VÝROK A JEHO PRAVDIVOSTNÁ HODNOTA Termíny výrok, pravdivostná hodnota výroku, pravdivý výrok, nepravdivý výrok, zložený výrok označujú základné pojmy logiky. Význam slov každý,
Integrovanie racionálnych funkcií
Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie
3. prednáška. Komplexné čísla
3. predáška Komplexé čísla Úvodé pozámky Vieme, že existujú také kvadratické rovice, ktoré emajú riešeie v obore reálych čísel. Študujme kvadratickú rovicu x x + 5 = 0 Použitím štadardej formule pre výpočet
AerobTec Altis Micro
AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp
Úvod do diskrétnych matematických štruktúr. Daniel Olejár Martin Škoviera
Úvod do diskrétnych matematických štruktúr Daniel Olejár Martin Škoviera 24. augusta 2007 i This book was developed during the project Thematic Network 114046-CP-1-2004-1-BG- ERASMUS-TN c Daniel Olejár,
Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =.
Súčtové vzorce Súčtové vzorce sú goniometrické hodnoty súčtov a rozdielov dvoch uhlov Sem patria aj goniometrické hodnoty dvojnásobného a polovičného uhla a pridám aj súčet a rozdiel goniometrických funkcií
Derivácia funkcie. Pravidlá derivovania výrazov obsahujúcich operácie. Derivácie elementárnych funkcií
Derivácia funkcie Derivácia funkcie je jeden z najužitočnejších nástrojov, ktoré používame v matematike a jej aplikáciách v ďalších odboroch. Stručne zhrnieme základné informácie o deriváciách. Podrobnejšie
SLOVENSKO maloobchodný cenník (bez DPH)
Hofatex UD strecha / stena - exteriér Podkrytinová izolácia vhodná aj na zaklopenie drevených rámových konštrukcií; pero a drážka EN 13171, EN 622 22 580 2500 1,45 5,7 100 145,00 3,19 829 hustota cca.
RIEŠENIE WHEATSONOVHO MOSTÍKA
SNÁ PMYSLNÁ ŠKOL LKONKÁ V PŠŤNO KOMPLXNÁ PÁ Č. / ŠN WSONOVO MOSÍK Piešťany, október 00 utor : Marek eteš. Komplexná práca č. / Strana č. / Obsah:. eoretický rozbor Wheatsonovho mostíka. eoretický rozbor
2. prednáška. Teória množín I. množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin
2. prednáška Teória množín I množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin Verzia: 27. 9. 2009 Priesvtika: 1 Definícia množiny Koncepcia množiny patrí medzi
PRIEMER DROTU d = 0,4-6,3 mm
PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda
VLADIMÍR KVASNIČKA JIŘÍ POSPÍCHAL. Matematická logika
VLADIMÍR KVASNIČKA JIŘÍ POSPÍCHAL Matematická logika Slovenská technická univerzita v Bratislave 2006 prof. Ing. Vladimír Kvasnička, DrSc., doc. RNDr. Jiří Pospíchal, DrSc. Lektori: doc. PhDr. Ján Šefránek,
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom
x x x2 n
Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol
ALGEBRA. Číselné množiny a operácie s nimi. Úprava algebrických výrazov
ALGEBRA Číselné množiny a operácie s nimi. Úprava algebrických výrazov Definícia Množinu považujeme za určenú, ak vieme o ľubovoľnom objekte rozhodnúť, či je alebo nie je prvkom množiny. Množinu určujeme
( Návody na cvičenia )
TEHNIKÁ UNIVEZITA V KOŠIIAH FAKULTA ELEKTOTEHNIKY A INFOMATIKY Katedra teoretickej elektrotechniky a elektrického merania doc. Ing. Miroslav Mojžiš, Sc. ČÍSLIOVÉ MEANIE ( Návody na cvičenia ) K o š i c
Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003
Rozsah akreditácie 1/5 Názov akreditovaného subjektu: U. S. Steel Košice, s.r.o. Oddelenie Metrológia a, Vstupný areál U. S. Steel, 044 54 Košice Rozsah akreditácie Oddelenia Metrológia a : Laboratórium
Maturita z matematiky T E S T Y
RNr. Mário oroš Maturita z matematiky príprava na prijímacie skúšky na vysokú školu T E S T Y Všetky práva sú vyhradené. Nijaká časť tejto knihy sa nesmie reprodukovať mechanicky, elektronicky, fotokopírovaním
Základné vzťahy medzi hodnotami goniometrických funkcií
Ma-Go-2-T List Základné vzťahy medzi hodnotami goniometrických funkcií RNDr. Marián Macko U: Predstav si, že ti zadám hodnotu jednej z goniometrických funkcií. Napríklad sin x = 0,6. Vedel by si určiť
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že
Vybrané partie z logiky
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO Katedra informatiky Vybrané partie z logiky poznámky z prednášok martin florek 22. mája 2004 Predhovor Vďaka nude a oprášeniu vedomostí z
TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT. k predmetu Matematika pre
TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT k predmetu Matematika pre 2. ročník SOŠ v Strážskom, študijný odbor 3760 6 00 prevádzka a ekonomika dopravy Operačný program: Vzdelávanie Programové obdobie:
Základy automatického riadenia
Základy automatického riadenia Prednáška 1 doc. Ing. Anna Jadlovská, PhD., doc. Ing. Ján Jadlovský, CSc. Katedra kybernetiky a umelej inteligencie Fakulta elektrotechniky a informatiky Technická univerzita
Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT
Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH