Vplyv inhibície na priebeh reakcie vo vsádzkovom reaktore

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Vplyv inhibície na priebeh reakcie vo vsádzkovom reaktore"

Transcript

1 plyv inhibície na priebeh reakcie vo vádzkovo reaktore TEORETICÝ ÚOD Enzýové inhibítory ú látky, ktoré poaľujú alebo pôobujú zatavenie cheických reakcií. Enzýy katalyzujú prakticky všetky bunkové procey, preto nie je prekvapujúce, že enzýové inhibítory patria k najdôležitejší látka pri výkue, vo výrobe aj aplikácii. Z hľadika echanizu pôobenia rozoznávae štyri typy inhibície. Pri kopetitívnej inhibícii inhibítor úťaží o ubtráto o aktívne ieto enzýu. Ak inhibítor obadí aktívne ieto, zabraňuje tak väzbe ubtrátu do enzýu. opetitívne inhibítory ú štruktúrne čato veľi podobné ubtrátu a interagujú enzýo za vzniku koplexu EI, avšak bez naledujúcej katalytickej reakcie. opetetívnyi inhibítori bývajú čato i produkty enzýovej reakcie. opetitívna inhibícia ôže byť analyzovaná kvantitatívne rovnovážnou kinetikou. prítonoti kopetetívneho inhibítora, vyzerá ichaeli-entenovej rovnica naledovne: r p c (1) + c kde r P rýchloť vzniku produktu, je axiálna rýchloť neinhibovanej reakcie a je zdanlivá ichaeliova konštanta pre kopetetívnu inhibíciu pre ktorú platí: c (1 + ) (2) I 1 kde je ichaeliova konštanta neinhibovanej reakcie, c je koncentrácia ubtrátu a I 1 je ihibičná konštanta.. Pretože a inhibítor viaže reverzibilne do enzýu, ôže byť kopetitívne vytlačený ubtráto zvýšení koncentrácie ubtrátu. eď [S] >> [I], pravdepodobnoť, že olekula inhibítora bude viazaná do enzýu je inializovaná a reakcia vykazuje norálnu hodnotu. Jednoduchý príklado kopetetívnej inhibície je otrava etanolo. ax Alkoholdehydrogenáza ení etanol na foraldehyd, ktorý je škodlivý pre nohé tkanivá Etanol ako alternatívny ubtrát je účinný v kopetícii o aktívne ieto na

2 alkoholdehydrogenáze a terapia počíva v intravenóznej infúzii etanolu, ktorý poalí tvorbu foraldehydu a zníži tak riziko vážneho poškodenia itých tkanív, zatiaľ čo obličky odfiltrujú etanol do oču. Pri nekopetetívnej inhibícii a inhibítor viaže io aktívneho ieta a neovplyvní afinitu ubtrátu k enzýu, avšak zníži a rýchloť enzýovej reakcie. Pri toto type inhibície a teda ení a hodnota a neení... Pre čito nekopetetívneho inhibíciu, vyzerá ichaeli-entenovej rovnica naledovne: r p c + c a zdanlivá axiálna rýchloť inhibovanej reakcie je vyjadrená: 1 c 1+ I I2 (3) (4) kde je zdanlivá axiálna rýchloť inhibovanej reakcie, I2 je inhibičná konštanta. Avšak takýto typ čitej nekopetetívnej inhibície je veľi zriedkavý a zväčša väzba inhibítora ovplyvňuje aj štruktúru aktívneho ieta a teda aj afinitu ubtrátu k enzýu a teda aj hodnotu. Pre takúto ziešanú inhibíciu vyzerá ichaeli-entenovej rovnica naledovne: r p c + c (5) Pri akopetetívnej inhibícii a inhibítory viažu až na koplex enzý-ubtrát a tý zabraňujú rozpadu na produkt. Paraetre a a znižujú rovnakou ierou, takže ich poer je rovnaký ako v prípade neinhibovanej reakcie a je ju ožné ľahko odhaliť pretože platí: (6) Cieľo tejto laboratórnej práce je navrhnúť vhodný ateatický odel opiujúci inhibíciu invertázy CuSO 4 a zitiť jeho kinetické paraetre na základe naeraných údajov, pričo rozhodujúci teto vhodnoti navrhovaného ateatického odelu bude priliehavoť naeraných (experient) a vypočítaných údajov (ateatický odel). Typický experient na eranie enzýovej kinetiky ôže byť vykonaný naledujúci pôobo.

3 čae nula a do zei vodného roztoku ubtrátu inhibítoro pridá enzý a vo vzorkách odoberaných v prených čaových intervaloch a zitia koncentrácie potrebovaného ubtrátu rep. produktu vhodnou analytickou etódou. Pri vyhodnocovaní kinetických paraetrov, a použijú len začiatočné údaje zeny koncentrácie od čau (rýchloť vzniku rep. zániku zložky diferenciálne údaje) keď ú oni ešte tále lineárnou záviloťou. Z naeraných údajov, koncentrácie ubtrátu/produktu ako funkcia čau, a vypočíta ernica priakovej záviloti pre danú začiatočnú koncentráciu ubtrátu: dcp dcs dt dt t 0 t 0 ( ri ) t 0 a vyneie a grafická záviloť rp f(c). Avšak rovnica v toto tvare (7) charakterizujúca yté inhibíciou ( rovnice 1,3,5 ) nie je veľi vhodná na zíkanie kinetických paraetrov, pretože funkcia r P nezávií na paraetroch lineárne (je to nelineárna funkcia). Preto je potrebné rovnice pre inhibície upraviť (zlinearizovať) tak, aby nová závile preenná (y new y) záviela na nových (odifikovaných) paraetroch k 1, k 2 lineárne. Jednou z ožných úprav používaných v enzýovej kinetike je Lineweaver-Burkova linearizácia, kde napríklad pre kopetetívnu inhibíciu je ichaeli-entenovej rovnica upravená do tvaru: 1 r p 1 + I I (8) c c Avšak kinetické paraetre zitené lineárnou regreiou ú neprené a linearizácia a používa iba na prvotný odhad hodnôt kinetickýchparaetrov. Prenejšou etódou na vyhodnotenie paraetrov ateatického odelu je nelineárna regreia. Zitenie kinetických paraetrov je dôležité pre kalkuláciu produktivity reakčného ytéu. Produktivita a niekde definuje aj ako špecifický výkon reaktora. Optiálna produktivita je jedný z najdôležitejších kritérií pri návrhu a prevádzkovaní reaktora. yjadruje koľko žiadaného produktu a vyprodukuje za jednotku čau v dano objee v dano reakčno čae. ypočíta a podľa vzťahu : c p *L Pr (3.33) R ( t + t ) op i kde Pr je produktivita ytéu, R je obje reaktora, L je obje kvapalnej fázy v reaktore, t op je operačný ča, t i je reakčný ča. Operačný ča predtavuje ča na vyprázdnenie,

4 vyčitenie a znovu naplnenie reaktora. Z čaového priebehu produktivity a zití axiálna produktivita pre danú vtupnú koncentráciu ubtrátu. Avšak axiálne produktivita nie je jediný kritério pri návrhu reaktora, do úvahy treba brať aj náklady na doiahnutie ax. produktivity (napr. náklady na iešadlo, náklady na ubtrát, katalyzátor, náklady na doiahnutie reakčnej teploty). Náklady na iešadlo, vyjadrené ako celkový príkon na iešadlo pre doiahnutie ax. produktivity, ú čato dôležitý prevádzkový náklado. Ak je na hriadeli viac ako jedno iešadlo na výpočet príkonu ožno aplikovať naledujúci vzťah: P 3 5 ni N pρ L N d (2.28) kde P je príkon na iešadlo v neaerovano ytée, n I je počet iešadiel, N P je príkonové čílo pre Ruhtonovu turbínu N P 5.2, ρ L je hutota iešanej kvapaliny, N je počet otáčok iešadla, d je prieer iešadla.

5 2. CIEĽ PRÁCE 1. Ukutočniť erania rýchloti enzýovej reakcie etódou začiatočných rýchlotí v ytée invertáza-acharóza inhibítoro. 1. Na základe porovnania experientálnych závilotí r p f(c 0 ) inhibíciou a bez (výledky z práce č.5) určiť o aký typ inhibície ide. 2. etódou lineárnej regreie vypočítať približné hodnoty paraetrov,,i1, I 2 z experientálnych údajov závilotí / r f (1/ c ). 1 p 0 3. Prenoť vypočítaných paraetrov overiť ich výpočto etódou nelineárnej regreie (atlab, Athéna). 4. Overiť platnoť identifikovaného inhibičného odelu grafický porovnaní experientálnych a vypočítaných hodnôt závilotí r p f(c 0 ). 5. Poocou vypočítaných kinetických paraetrov naiulovať čaové priebehy produktu pre rôzne začiatočné koncentrácie ubtrátu Pre jednotlivé vtupné koncentrácie ubtrátu zitiť axiálne produktivity. 6. Určiť koncentráciu ubtrátu pri ktorej a doahuje axiálna produktivita vztiahnutá na celkové nožtvo energie dodané na iešadlo. 7. Ako ovplyvní priebeh reakcie a produktivitu zvýšená koncentrácia katalyzátora -vyvetli na iulácii. 8. Ak by te ako technológ ali k dipozícii 2 katalyzátory katalyzujúce rovnakú reakciu ktoré a líšia iba v hodnote, ktorý katalyzátor by te i te i vybrali a prečo? yvetli na iulácii. 9. Exitujú podienky za akých a dá doiahnuť rovnaká produktivita v inhibovano a neinhibovano ytée? yvetli na iulácii.

6 EXPERIENTÁLNA ČASŤ 3.1 ateriály Použitý enzý Ako experientálny yté používae enzý kvaničnú invertázu (E.C ) ktorá katalyzuje hydrolýzu acharózy za vzniku glukózy a fruktózy podľa naledujúcej reakcie: C 12 Η 22 Ο 11 + Η 2 Ο C 6 Η 12 Ο 6 + C 6 Η 12 Ο 6 (21) Použité roztoky 1. acetátový pufor ph 4,8 koncentráciou 0,1 ol/l 2. záobný roztok enzýu 4 g/l vo vode (kvaničná invertáza, Frakcia, aktivita 44U/g, Siga) l záobný roztok acharózy koncentráciou 0,2 ol/l v 0,1 ol/l acetátovo pufri ph 4, l z roztokov acharózy rôznou koncentráciou (záobný roztok acharózy riediť veľi prene!!! acetátový pufro podľa rozpiu uvedeno v Tabuľke č.1) 3. inhibítor - roztok CuSO 4 koncentráciou 0,16 ol/l (25 l) 3.2 Enzýová reakcia 1. Enzýová reakcia prebieha v uzavretých 1,5 l Ependorfových kúavkách. Do 740 µl acharózového roztoku rôznou koncentráciou ( Tabuľka 2, vzorky č ) pridáe 10µl inhibítora, ependorfky uzavriee a v terotate teperuje 15 inút pri teplote 30 C. 2. Po vyteperovaní naštartujee enzýovú reakciu tak, že pridáe do každej vzorky po 50 µl záobného roztoku enzýu v čaových intervaloch uvedených v Tabuľke 3.

7 Eppfendorovu kúavku tene uzavriee, ze ihneď preiešae na vortexe a vrátie do terotatu. Na topkách ledujee ča reakcie. 3. Prene po 50 inútach reakciu v Ependorfových kúavkách zatavíe prídavko 100µl roztoku NaOH koncentráciou 2 ol/l a ze zhoogenizujee na vortexe (čaový rozpi v Tabuľke č. 2). 4. nožtvo uvoľneného produktu enzýovej reakcie (glukózy) tanovíe glukózový teto pektrofotoetricky. 3.3 Stanovenie glukózy glukózový teto Princíp Na tanovenie produktu enzýovej reakcie glukózy a používa glukózový tet GLU GOD 6 x250. Základo tanovenia glukózy je vytvorenie farebného koplexu ktorého aborbancia a eria pektrofotoetricky. Tento koplex vzniká pri elektívnej oxidácii glukózy na peroxid vodíka a glukonát poocou glukózooxidázy. zniknutý peroxid vodíka a tanovuje oxidačnou reakciou o ubtituovaný fenolo a 4-ainoantipyríno katalyzovano peroxidázou, pričo vzniká červeno farbený produkt. Princíp tanovenia uvoľnenej glukózy: β D glukóza + H (22) glukóza oxidáza 2O2 + O2 D glukonát + H 2O2 peroxidáza H 2 O2 + farbivoredukované farbivooxidáza + H 2O (23) Potup 1. Roztok glukózového tetu predhrejee na 30 C. Do ependorfiek pipetujee po 1 l tohto roztoku. Počet ependorfiek je rovný počtu štandardov glukózy + 3 x počet vzoriek. 2. Do glukózového tetu pridáe kvantitatívne po10 µl dobre zhoogenizovaných vzoriek alebo štandardov glukózy. Ependofove kúavky tene uzavriee, ze dôkladne preiešae na vortexe. 3. Stojan ependorfkai odložíe na tavé ieto a necháe 30 in inkubovať.

8 4. Po ukončení inkubácie vzorky vyberiee, preiešae na vortexe a v každej zeriae aborbanciu pri aborpčno axie produktu tanovenia (500 n) oproti vode. zorka č.1 je lepý pokuo. 5. Na zotrojenie kalibračnej čiary použijee už vopred pripravené štandardné roztoky glukózy koncentráciou: ol/l. 3. YHODNOTENIE NAERANÝCH ÚDAJO 1. Z eraní aborbancie štandardných roztokov glukózy zhotovíe kalibračnú záviloť, vypočítae paraetre kalibračnej rovnice a regrený koeficient. 2. ypočítae koncentráciu uvoľnenej glukózy vo vzorkách poocou kalibračnej čiary. 3. Rýchloť vzniku produktu pre jednotlivé začiatočné koncentrácie acharózy vypočítae podľa vzťahu: c GL Celk r p (24) t RZ kde r p je rýchloť enzýovej reakcie (rýchloť vzniku produktu), c GL koncentrácia produktu - glukózy (ol/l), t reakčný ča, Celk je celkový obje po zatavení reakcie, RZ je obje reakčnej zei (ach+enzýu). 4. Na základe porovnania experientálnych závilotí r p f(c S0 ) inhibíciou a bez (výledky z práce č.5) určíe o aký typ inhibície ide. 5. Zo záviloti etódou lineárnej a nelineárnej regreie vypočítae zdanlivé paraetre,., I 6. Správnoť vypočítaných paraetrov overíe graficky porovnaní experientálnych a vypočítaných hodnôt závilotí.

9 5. ZOZNA POUŽITÝCH SYBOLO Sybol Ab Názov veličiny aborbancia pri 500 n c koncentrácia produktu - glukózy GL c 0 dc dcp D D 1 D 2 začiatočná koncentrácia ubtrátu zena koncentrácie ubtrátu zena koncentrácie produktu deterinant ubdeterinant ubdeterinant k vektor paraetrov k 1, k 2 k 1 odifikovaný paraeter k 2 odifikovaný paraeter konštanta icheali-entenovej zdanlivá konštanta icheali-entenovej pre inhibovanú reakciu r p t rýchloť enzýovej reakcie reakčný ča celkový obje po zatavení reakcie Celk axiálna rýchloť enzýovej reakcie zdanlivá axiálna rýchloť enzýovej reakcie pre inhibovanú reakciu obje reakčnej zei RZ I 1, I2 x inhibičné konštanty vektor nezávile preenných x odifikovaná nezávile preenná x 1/c 0 x i exp y y i cal y i exp experientálne hodnoty nezávile preennej odifikovaná závile preenná y 1/r P vypočítané hodnoty závile preennej experientálne hodnoty závile preennej

10

11 6. PRÍLOHY TABUĽA 2 Príprava roztokov ubtrátu vzorka č záobný. roztok acharózy (l) pufor (l) výledná koncentrácia ubtrátu (ol/l) TABUĽA 3 Čaový rozpi erania priebehu enzýovej reakcie vzorka č štart reakcie ča/in top reakcie ča/in 12

Zisťovanie kinetických parametrov katalyzovanej reakcie vo vsádzkovom reaktore TEORETICKÝ ÚVOD

Zisťovanie kinetických parametrov katalyzovanej reakcie vo vsádzkovom reaktore TEORETICKÝ ÚVOD Zisťovanie kinetických parametrov katalyzovanej reakcie vo vsádzkovom reaktore TEORETICKÝ ÚVOD Dôležitou súčasťou pri navrhovaní ale aj prevádzkovaní všetkých typov chemických reaktorov je znalosť kinetiky

Διαβάστε περισσότερα

Zisťovanie kinetických parametrov katalyzovanej reakcie vo vsádzkovom reaktore TEORETICKÝ ÚVOD

Zisťovanie kinetických parametrov katalyzovanej reakcie vo vsádzkovom reaktore TEORETICKÝ ÚVOD Zisťovanie kinetických parametrov katalyzovanej reakcie vo vsádzkovom reaktore TEORETICKÝ ÚVOD Dôležitou súčasťou pri navrhovaní ale aj prevádzkovaní všetkých typov chemických reaktorov je znalosť kinetiky

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

,Zohrievanie vody indukčným varičom bez pokrievky,

,Zohrievanie vody indukčným varičom bez pokrievky, Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

IZOLÁCIA KVASNIČNEJ INVERTÁZY Z PEKÁRENSKÝCH KVASNÍC

IZOLÁCIA KVASNIČNEJ INVERTÁZY Z PEKÁRENSKÝCH KVASNÍC IZOLÁCIA KVASNIČNEJ INVERTÁZY Z PEKÁRENSKÝCH KVASNÍC 1 1. TEORETICKÝ ÚVOD 1.1 Izolácia enzýmov Enzýmy sú katalyzátory biochemických reakcií. Skoro vždy ide o katalyticky aktívne bielkoviny, ktoré urýchľujú

Διαβάστε περισσότερα

3. Striedavé prúdy. Sínusoida

3. Striedavé prúdy. Sínusoida . Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

CHÉMIA Ing. Iveta Bruončová

CHÉMIA Ing. Iveta Bruončová Výpočet hmotnostného zlomku, látkovej koncentrácie, výpočty zamerané na zloženie roztokov CHÉMIA Ing. Iveta Bruončová Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov

Διαβάστε περισσότερα

Príklad 2 - Neutralizácia

Príklad 2 - Neutralizácia Príklad 2 - Neutralizácia 3. Bilančná schéa 1. Zadanie príkladu 3 = 1 + 2 1 = 400 kg a k = 1 3 = 1600 kg w 1 = 0.1 w 3 =? w 1B = 0.9 w 3B =? w 3 =? 1 - vodný H 2SO w 3D =? roztok 4 V zariadení prebieha

Διαβάστε περισσότερα

Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili

Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.2 Vzdelávacia

Διαβάστε περισσότερα

Praktikum z biochémie 2. vydanie, Sedlák, Danko, Varhač, Paulíková, Podhradský, 2007

Praktikum z biochémie 2. vydanie, Sedlák, Danko, Varhač, Paulíková, Podhradský, 2007 Praktikum z biochémie 2. vydanie, Sedlák, Danko, arhač, Paulíková, Podhradský, 2007 5 ENZÝMY Enzýmy (z gréckeho enzymon = v droždí), katalyzátory v biologických systémoch, sú pozoruhodné molekulové prístroje,

Διαβάστε περισσότερα

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

PRIEMER DROTU d = 0,4-6,3 mm

PRIEMER DROTU d = 0,4-6,3 mm PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda

Διαβάστε περισσότερα

S ohadom na popis vektorov a matíc napr. v kap. 5.1, majú normálne rovnice tvar

S ohadom na popis vektorov a matíc napr. v kap. 5.1, majú normálne rovnice tvar 6. STREDNÁ ELIPSA CHÝ Na rozdiel od kaitoly 4.4 uebnice itterer L.: Vyrovnávací oet kde ú araetre eliy trednej chyby odvodené alikáciou zákona hroadenia tredných chýb v tejto kaitole odvodíe araetre trednej

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

Ústav chemického a biochemického inžinierstva Zadanie 1

Ústav chemického a biochemického inžinierstva Zadanie 1 Ústav cheického a biocheického inžinierstva Zadanie Zadanie: Zistite podiel objeu pórov koerčnej γ-aluiny (Saint-Gobain NorPro, SA 6647), ktoré sú zaplnené adsorbovaný acetóno. Parciálny tlak acetónu vo

Διαβάστε περισσότερα

Stanovenie objemového koeficientu prestupu kyslíka v mechanicky miešanom reaktore

Stanovenie objemového koeficientu prestupu kyslíka v mechanicky miešanom reaktore Stanovenie objemového koeficientu prestupu kyslíka v mechanicky miešanom reaktore 1. TEORETICKÝ ÚVOD Úlohou prevzdušňovania fermentorov je dodávať mikroorganizmom kyslík, ktorý je akceptorom voľných elektrónov

Διαβάστε περισσότερα

Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie,

Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie, Kapitola Riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie, keď charakteritická rovnica má rôzne

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

Návrh vzduchotesnosti pre detaily napojení

Návrh vzduchotesnosti pre detaily napojení Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová

Διαβάστε περισσότερα

SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. 54. ročník, školský rok 2017/2018 Kategória C. Študijné kolo

SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. 54. ročník, školský rok 2017/2018 Kategória C. Študijné kolo SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 5. ročník, školský rok 017/018 Kategória C Študijné kolo RIEŠENIE A HODNOTENIE PRAKTICKÝCH ÚLOH RIEŠENIE A HODNOTENIE ÚLOH PRAKTICKEJ ČASTI Chemická

Διαβάστε περισσότερα

Názov projektu: CIV Centrum Internetového vzdelávania FMFI Číslo projektu: SOP ĽZ 2005/1-046 ITMS: Matematické kyvadlo

Názov projektu: CIV Centrum Internetového vzdelávania FMFI Číslo projektu: SOP ĽZ 2005/1-046 ITMS: Matematické kyvadlo Názov projektu: CIV Centru Internetového vzdelávania FMFI Číslo projektu: SOP ĽZ 005/1-046 ITMS: 113010011 Úvod Mateatické kvadlo Miroslav Šedivý FMFI UK Poje ateatické kvadlo sa síce nenachádza v povinných

Διαβάστε περισσότερα

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

AerobTec Altis Micro

AerobTec Altis Micro AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp

Διαβάστε περισσότερα

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita 132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:

Διαβάστε περισσότερα

Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003

Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003 Rozsah akreditácie 1/5 Názov akreditovaného subjektu: U. S. Steel Košice, s.r.o. Oddelenie Metrológia a, Vstupný areál U. S. Steel, 044 54 Košice Rozsah akreditácie Oddelenia Metrológia a : Laboratórium

Διαβάστε περισσότερα

Modul pružnosti betónu

Modul pružnosti betónu f cm tan α = E cm 0,4f cm ε cl E = σ ε ε cul Modul pružnosti betónu α Autori: Stanislav Unčík Patrik Ševčík Modul pružnosti betónu Autori: Stanislav Unčík Patrik Ševčík Trnava 2008 Obsah 1 Úvod...7 2 Deformácie

Διαβάστε περισσότερα

6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH

6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6. Otázky Definujte pojem produkčná funkcia. Definujte pojem marginálny produkt. 6. Produkčná funkcia a marginálny produkt Definícia 6. Ak v ekonomickom procese počet

Διαβάστε περισσότερα

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom

Διαβάστε περισσότερα

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523

Διαβάστε περισσότερα

Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S

Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S 1 / 5 Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S Identifikačný kód typu výrobku PROD2141 StoPox GH 205 S Účel použitia EN 1504-2: Výrobok slúžiaci na ochranu povrchov povrchová úprava

Διαβάστε περισσότερα

100626HTS01. 8 kw. 7 kw. 8 kw

100626HTS01. 8 kw. 7 kw. 8 kw alpha intec 100626HTS01 L 8SplitHT 8 7 44 54 8 alpha intec 100626HTS01 L 8SplitHT Souprava (tepelná čerpadla a kombivané ohřívače s tepelným čerpadlem) Sezonní energetická účinst vytápění tepelného čerpadla

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

MPV PO 16/2013 Stanovenie kovov v rastlinnom materiáli ZÁVEREČNÁ SPRÁVA

MPV PO 16/2013 Stanovenie kovov v rastlinnom materiáli ZÁVEREČNÁ SPRÁVA REGIONÁLNY ÚRAD VEREJNÉHO ZDRAVOTNÍCTVA so sídlom v Prešove Národné referenčné centrum pre organizovanie medzilaboratórnych porovnávacích skúšok v oblasti potravín Hollého 5, 080 0 Prešov MEDZILABORATÓRNE

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Kinetika fyzikálno-chemických procesov

Kinetika fyzikálno-chemických procesov Kinetika fyzikálno-chemických procesov Chemická a biochemická kinetika Reálne biologické a fyzikálno-chemické procesy sú závislé na čase. Termodynamika poskytuje informácie len o možnostiach priebehu procesov,

Διαβάστε περισσότερα

u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.

u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore. Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.

Διαβάστε περισσότερα

URČENIE KOEFICIENTU DYNAMICKEJ VISKOZITY TELIESKOVÝMI VISKOZIMETRAMI

URČENIE KOEFICIENTU DYNAMICKEJ VISKOZITY TELIESKOVÝMI VISKOZIMETRAMI 74 URČENIE KOEICIENTU DYNAMICKEJ VISKOZITY TELIESKOVÝMI VISKOZIMETRAMI Doc. RNDr. D. Vajda, CSc., RNDr. B. Trpišová, Ph.D. Teoretický úvod: Vnútorné trenie alebo viskozita kvapaliny je ierou jej vlastnosti

Διαβάστε περισσότερα

6.4 Otázky na precvičenie. Test 1

6.4 Otázky na precvičenie. Test 1 6.4 Otázky na precvičenie Test 1 Pre každú otázku vyznačte všetky správne odpovede; kde je na zistenie správnej odpovede potrebný výpočet, uveďte ho. 1. V galvanickom článku redukcia prebieha na elektróde:

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.5 Vzdelávacia

Διαβάστε περισσότερα

Výpočet. grafický návrh

Výpočet. grafický návrh Výočet aaetov a afcký návh ostuu vtýčena odobných bodov echodníc a kužncových obúkov Píoha. Výočet aaetov a afcký návh ostuu vtýčena... Vtýčene kajnej echodnce č. Vstuné údaje: = 00 ; = 8 ; o = 8 S ohľado

Διαβάστε περισσότερα

C. Kontaktný fasádny zatepľovací systém

C. Kontaktný fasádny zatepľovací systém C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový

Διαβάστε περισσότερα

Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 %

Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 % Podnikateľ 90 Samsung S5230 Samsung C3530 Nokia C5 Samsung Shark Slider S3550 Samsung Xcover 271 T-Mobile Pulse Mini Sony Ericsson ZYLO Sony Ericsson Cedar LG GM360 Viewty Snap Nokia C3 Sony Ericsson ZYLO

Διαβάστε περισσότερα

IZOLÁCIA KVASNIČNEJ INVERTÁZY Z PEKÁRENSKÝCH KVASNÍC

IZOLÁCIA KVASNIČNEJ INVERTÁZY Z PEKÁRENSKÝCH KVASNÍC IZOLÁCIA KVASNIČNEJ INVERTÁZY Z PEKÁRENSKÝCH KVASNÍC Izolácia kvasničnej invertázy 1. TEORETICKÝ ÚVOD 1.1 Využitie bioseparačných procesov na prípravu enzýmov Enzýmy sú katalyzátory biochemických reakcií.

Διαβάστε περισσότερα

SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. 51. ročník, školský rok 2014/2015 Kategória C. Domáce kolo

SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. 51. ročník, školský rok 2014/2015 Kategória C. Domáce kolo SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 51. ročník, školský rok 014/015 Kategória C Domáce kolo RIEŠENIE A HODNOTENIE PRAKTICKÝCH ÚLOH RIEŠENIE A HODNOTENIE ÚLOH PRAKTICKEJ ČASTI Chemická

Διαβάστε περισσότερα

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,

Διαβάστε περισσότερα

ANALYTICKÁ CHÉMIA V PRÍKLADOCH

ANALYTICKÁ CHÉMIA V PRÍKLADOCH SPŠ CHEMICKÁ A POTRAVINÁRSKA HUMENNÉ ANALYTICKÁ CHÉMIA V PRÍKLADOCH Humenné 2005 Ing. Renáta Mariničová OBSAH ÚVOD... 2 1 ROZTOKY... 1.1 Hmotnostný a objemový zlomok... 4 1.2 Látková koncentrácia... 8

Διαβάστε περισσότερα

Pevné ložiská. Voľné ložiská

Pevné ložiská. Voľné ložiská SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu

Διαβάστε περισσότερα

SLOVENSKO maloobchodný cenník (bez DPH)

SLOVENSKO maloobchodný cenník (bez DPH) Hofatex UD strecha / stena - exteriér Podkrytinová izolácia vhodná aj na zaklopenie drevených rámových konštrukcií; pero a drážka EN 13171, EN 622 22 580 2500 1,45 5,7 100 145,00 3,19 829 hustota cca.

Διαβάστε περισσότερα

Meranie na jednofázovom transformátore

Meranie na jednofázovom transformátore Fakulta elektrotechniky a informatiky TU v Košiciach Katedra elektrotechniky a mechatroniky Meranie na jednofázovom transformátore Návod na cvičenia z predmetu Elektrotechnika Meno a priezvisko :..........................

Διαβάστε περισσότερα

Odporníky. 1. Príklad1. TESLA TR

Odporníky. 1. Príklad1. TESLA TR Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L

Διαβάστε περισσότερα

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF K PRAKTIKM III Úloha č.: 07 Název: Overenie Frenelových vzorcov Vypracoval: Viktor Babjak...tud. k. F 11...dne: 11. 04. 006 Odevzdal dne:...

Διαβάστε περισσότερα

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Úloha č.:...xviii... Název: Prechodové javy v RLC obvode Vypracoval:... Viktor Babjak... stud. sk... F.. dne... 6.. 005

Διαβάστε περισσότερα

RIEŠENIE WHEATSONOVHO MOSTÍKA

RIEŠENIE WHEATSONOVHO MOSTÍKA SNÁ PMYSLNÁ ŠKOL LKONKÁ V PŠŤNO KOMPLXNÁ PÁ Č. / ŠN WSONOVO MOSÍK Piešťany, október 00 utor : Marek eteš. Komplexná práca č. / Strana č. / Obsah:. eoretický rozbor Wheatsonovho mostíka. eoretický rozbor

Διαβάστε περισσότερα

RIEŠENIE A HODNOTENIE ÚLOH Z ANORGANICKEJ A ANALYTICKEJ CHÉMIE

RIEŠENIE A HODNOTENIE ÚLOH Z ANORGANICKEJ A ANALYTICKEJ CHÉMIE RIEŠENIE A DNTENIE ÚL Z ANRGANIKEJ A ANALYTIKEJ ÉMIE hemická olympiáda kategória A 47. ročník školský rok 010/011 eloštátne kolo Maximálne 18 bodov (b), resp. 54 pomocných bodov (pb). Pri prepočte pomocných

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Moderné vzdelávanie pre vedomostnú spoločnosť. Vzdelávacia oblasť:

UČEBNÉ TEXTY. Moderné vzdelávanie pre vedomostnú spoločnosť. Vzdelávacia oblasť: Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Vzdelávacia oblasť: Predmet:

Διαβάστε περισσότερα

Rozsah chemickej reakcie

Rozsah chemickej reakcie Rozsah chemickej reakcie Ing. Miroslav Tatarko, PhD. Katedra anorganickej chémie FChPT STU Bratislava 1. Jednoduché stechiometrické výpočty Chémia je exaktná veda. Preto k nej patria aj presné a jednoznačné

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A. 1. písomná práca z matematiky Skupina B

1. písomná práca z matematiky Skupina A. 1. písomná práca z matematiky Skupina B . písoá pác z tetik Skpi A. Zjedodšte výz : ) z 8 ) c). Doplňte, pltil ovosť : ) ). Vpočítjte : ) ) c). Vpočítjte : ) ( ) ) v v v c). Upvte výz ovete spávosť výsledk pe : 6. Zostojte tojholík ABC, k c

Διαβάστε περισσότερα

Metódy vol nej optimalizácie

Metódy vol nej optimalizácie Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/28 Motivácia k metódam vol nej optimalizácie APLIKÁCIE p. 2/28 II 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Na základe dostupných

Διαβάστε περισσότερα

Margita Vajsáblová. ρ priemetňa, s smer premietania. Súradnicová sústava (O, x, y, z ) (O a, x a, y a, z a )

Margita Vajsáblová. ρ priemetňa, s smer premietania. Súradnicová sústava (O, x, y, z ) (O a, x a, y a, z a ) Mrgit Váblová Váblová, M: Dekriptívn geometri pre GK 101 Zákldné pom v onometrii Váblová, M: Dekriptívn geometri pre GK 102 Definíci 1: onometri e rovnobežné premietnie bodov Ε 3 polu prvouhlým úrdnicovým

Διαβάστε περισσότερα

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008) ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/27

Διαβάστε περισσότερα

Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť

Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť Baumit Prednástrek / Vorspritzer Vyhlásenie o parametroch č.: 01-BSK- Prednástrek / Vorspritzer 1. Jedinečný identifikačný kód typu a výrobku: Baumit Prednástrek / Vorspritzer 2. Typ, číslo výrobnej dávky

Διαβάστε περισσότερα

Staromlynská 29, Bratislava tel: , fax: http: //www.ecssluzby.sk SLUŽBY s. r. o.

Staromlynská 29, Bratislava tel: , fax: http: //www.ecssluzby.sk   SLUŽBY s. r. o. SLUŽBY s. r. o. Staromlynská 9, 81 06 Bratislava tel: 0 456 431 49 7, fax: 0 45 596 06 http: //www.ecssluzby.sk e-mail: ecs@ecssluzby.sk Asynchrónne elektromotory TECHNICKÁ CHARAKTERISTIKA. Nominálne výkony

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. 48. ročník, školský rok 2011/2012 Kategória C. Krajské kolo RIEŠENIE A HODNOTENIE

SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. 48. ročník, školský rok 2011/2012 Kategória C. Krajské kolo RIEŠENIE A HODNOTENIE SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 48. ročník, školský rok 011/01 Kategória C Krajské kolo RIEŠENIE A HODNOTENIE TEORETICKÝCH A PRAKTICKÝCH ÚLOH RIEŠENIE A HODNOTENIE ÚLOH Z TEORETICKEJ

Διαβάστε περισσότερα

Riadenie zásobníkov kvapaliny

Riadenie zásobníkov kvapaliny Kapitola 9 Riadenie zásobníkov kvapaliny Cieľom cvičenia je zvládnuť návrh (syntézu) regulátorov výpočtovými (analytickými) metódami Naslinovou metódou a metódou umiestnenia pólov. Navrhnuté regulátory

Διαβάστε περισσότερα

(1 ml) (2 ml) 3400 (5 ml) 3100 (10 ml) 400 (25 ml) 300 (50 ml)

(1 ml) (2 ml) 3400 (5 ml) 3100 (10 ml) 400 (25 ml) 300 (50 ml) CPV 38437-8 špecifikácia Predpokladané Sérologické pipety plastové -PS, kalibrované, sterilné sterilizované γ- žiarením, samostne balené, RNaza, DNaza, human DNA free, necytotoxické. Použiteľné na prácu

Διαβάστε περισσότερα

Riadenie elektrizačných sústav

Riadenie elektrizačných sústav Riaenie elektrizačných sústav Paralelné spínanie (fázovanie a kruhovanie) Pomienky paralelného spínania 1. Rovnaký sle fáz. 2. Rovnaká veľkosť efektívnych honôt napätí. 3. Rovnaká frekvencia. 4. Rovnaký

Διαβάστε περισσότερα

1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2

1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.7. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.7. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.7 Vzdelávacia

Διαβάστε περισσότερα

PROMO AKCIA. Platí do konca roka 2017 APKW 0602-HF APKT PDTR APKT 0602-HF

PROMO AKCIA. Platí do konca roka 2017 APKW 0602-HF APKT PDTR APKT 0602-HF AKCIA Platí do konca roka 2017 APKW 0602-HF APKT 060204 PDTR APKT 0602-HF BENEFITY PLÁTKOV LAMINA MULTI-MAT - nepotrebujete na každú operáciu špeciálny plátok - sprehľadníte situáciu plátkov vo výrobe

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι

Διαβάστε περισσότερα

Ročník: šiesty. 2 hodiny týždenne, spolu 66 vyučovacích hodín

Ročník: šiesty. 2 hodiny týždenne, spolu 66 vyučovacích hodín OKTÓBER SEPTEMBER Skúmanie vlastností kvapalín,, tuhých látok a Mesiac Hodina Tematic ký celok Prierezo vé témy Poznám ky Rozpis učiva predmetu: Fyzika Ročník: šiesty 2 hodiny týždenne, spolu 66 vyučovacích

Διαβάστε περισσότερα

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH

Διαβάστε περισσότερα

SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. Kategória EF, úroveň F. Celoštátne kolo

SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. Kategória EF, úroveň F. Celoštátne kolo SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 49. ročník, školský rok 01/01 Kategória EF, úroveň F Celoštátne kolo RIEŠENIE A HODNOTENIE TEORETICKÝCH A PRAKTICKÝCH ÚLOH 1 RIEŠENIE A HODNOTENIE

Διαβάστε περισσότερα

Πίνακας ρυθμίσεων στο χώρο εγκατάστασης

Πίνακας ρυθμίσεων στο χώρο εγκατάστασης 1/8 Κατάλληλες εσωτερικές μονάδες *HVZ4S18CB3V *HVZ8S18CB3V *HVZ16S18CB3V Σημειώσεις (*5) *4/8* 4P41673-1 - 215.4 2/8 Ρυθμίσεις χρήστη Προκαθορισμένες τιμές Θερμοκρασία χώρου 7.4.1.1 Άνεση (θέρμανση) R/W

Διαβάστε περισσότερα

STANOVENIE KONCENTRÁCIE Fe 2+ IÓNOV V SÉRE POMOCOU ANALYTICKEJ KRIVKY

STANOVENIE KONCENTRÁCIE Fe 2+ IÓNOV V SÉRE POMOCOU ANALYTICKEJ KRIVKY FYZIKÁLNO CHEMICKÉ METÓDY LABORATÓRNE CVIČENIE Č.1 STANOVENIE KONCENTRÁCIE Fe 2+ IÓNOV V SÉRE POMOCOU ANALYTICKEJ KRIVKY Roztok batofenantrolínu tvorí s iónmi Fe 2+ stabilný, červeno sfarbený komplex,

Διαβάστε περισσότερα

Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana.

Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana. Spojité rozdelenia pravdepodobnosti Pomôcka k predmetu PaŠ Strana z 7 RNDr. Aleš Kozubík, PhD. 6. marca 3 Zoznam obrázkov Rovnomerné rozdelenie Ro (a, b). Definícia.........................................

Διαβάστε περισσότερα

REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických

REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických REZISTORY Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických obvodoch. Základnou vlastnosťou rezistora je jeho odpor. Odpor je fyzikálna vlastnosť, ktorá je daná štruktúrou materiálu

Διαβάστε περισσότερα

Toto nariadenie je záväzné v celom rozsahu a priamo uplatniteľné vo všetkých členských štátoch.

Toto nariadenie je záväzné v celom rozsahu a priamo uplatniteľné vo všetkých členských štátoch. 10.2.2010 Úradný vestník Európskej únie L 37/21 NARIADENIE KOMISIE (EÚ) č. 118/2010 z 9. februára 2010, ktorým sa mení a dopĺňa nariadenie Komisie (ES) č. 900/2008, ktorým sa ustanovujú metódy analýzy

Διαβάστε περισσότερα

2 Chyby a neistoty merania, zápis výsledku merania

2 Chyby a neistoty merania, zápis výsledku merania 2 Chyby a neistoty merania, zápis výsledku merania Akej chyby sa môžeme dopustiť pri meraní na stopkách? Ako určíme ich presnosť? Základné pojmy: chyba merania, hrubé chyby, systematické chyby, náhodné

Διαβάστε περισσότερα

7 Derivácia funkcie. 7.1 Motivácia k derivácii

7 Derivácia funkcie. 7.1 Motivácia k derivácii Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických

Διαβάστε περισσότερα

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση. (, ) =,, = : = = ( ) = = = ( ) = = = ( ) ( ) = = ( ) = = = = (, ) =, = = =,,...,, N, (... ) ( + ) =,, ( + ) (... ) =,. ( ) = ( ) = (, ) = = { } = { } = ( ) = \ = { = } = { = }. \ = \ \ \ \ \ = = = = R

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα