DAMIR&SILVANA DESTILACIJA. Title goes here
|
|
- Ιωάννα Αλεξιάδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 DMIR&SILVN DESTILCIJ Je tehnološka oeracija kojom se tekuća smjesa hlaivih komonenata isaravanjem i naknadnim ukaljivanjem ara razdvaja na relativno čiste komonente Destilacija se zasniva na različitoj hlaivosti komonenata smjese kod iste temerature Radi toga se u u arnoj fazi nalaze sve komonente tekuće smjese Udio je ara lakše hlaive komonente u ari uvijek (osim kod azeotronih smjesa) VEĆI nego u tekućoj smjesi Isaravanje se dvojne tekuće smjese bitno razlikuje od isaravanja čiste tekućine Pregledno se isaravanje dvojne tekuće smjese može ratiti na t,-dijagramu Na tom dijagramu se daje ovisnost temerature ključanja (kondenzacije) o sastavu tekuće smjese ( ili are) kod konst. tlaka Na osi ordinata nanosi se tem. kjučanja tekuće smjese različitog sastava, a na osi ascisa molni udio lakše hlaive komonente u tekućoj smjesi i ari. Tako se dobivaju linije kondenzacije i linije ključanja tekuće smjese Još je regledniji,-dijagram na kojemu se ucrtavaju 1.linija tekuće smjese i 2.linija ukunog tlaka are 1. Predstavlja ovisnost tlaka are tekuće smjese o sastavu tekuće smjese ri tem. ključanja (t=konst.) 2. Predstavlja ovisnost sastava are nad tekućom smjesom o sastavu tekuće smjese Iz ovog dijagrama se može odrediti sastav tekuće smjese i are kod određenog tlaka i konst. tem. ili sastav are ako je oznat sastav tekuće smjese Na, dijagramu se na os ordinata nanose molni udjeli lakše hlaive komonente u ari, a na os ascisa molni udjeli lakše hlaive komonente u tekućoj fazi ri konst tlaku i tem. ključanja Ovdje se ucrtava ravnotežna krivulja koja rikazuje ovisnost sastava are o sastavu tekuće smjese kod određenog tlaka Ravnotežna krivulja i dijagonala kvadrata na, dijagramu omeđuje ostojanja dviju faza Isučenost ove krivulje u odnosu na dijagonalu kvadrata kod određenog tlaka ovisi o omjeru tolina isaravanja komonenata (r :r )
2 DMIR&SILVN ri r :r < 1; ovećanjem tlaka se smanjuje isučenost krivulje U stvarnosti idealnih tekućih smjesa NEM Međutim mnoge su tekuće smjese koje se destilacijom razdvajaju manje ili više slične idealnim tekućim smjesama PODJEL DVOJNIH TEKUĆIH SMJES Dijele se na tekuće smjese: 1. Čije se komonente međusobno miješaju u svim omjerima, tvoreći homogenu tekuću smjesu 2. Čije se komonente međusobno djelomično miješaju 3. Čije se komonente međusobno ne miješaju Tekuće smjese čije se komonente miješaju u svim omjerima dijele na IDELNE I RELNE PODJEL DVOJNIH TEKUĆIH SMJES Realne se tekuće smjese dijele na realne tekuće smjese s: 1. S ozitivnim i 2. Negativnim odstuanjem od Raoult-ovog zakona IDELNE TEKUĆE SMJESE Za idealne je tekuće smjese valjan ROULT-ov zakon Prema tom zakonu je arcijalni tlak are bilo koje komonente k jednak roduktu molnog udjela komonente u tekućoj smjesi k i tlaka are čiste komonente K ri istoj tem. = [ Pa] Parcijalni tlak komonente (isto vrijedi i za )
3 DMIR&SILVN IDELNE TEKUĆE SMJESE U oćem se obliku Raoult-ov zakon se može formulirati omoću ojma HLPIVOSTI koju je uveo LEWIS PRCIJLN je HLPIVOST bilo koje komonente idealne tekuće smjese α k jednaka roduktu hlaivosti čiste komonente kod tem. tekuće smjese α k i molnog udjela komonente u tekućoj smjesi k : α = α [ Pa] IDELNE TEKUĆE SMJESE Omjer je arcijalne hlaivosti komonente α k i hlaivosti komonente kod temerature smjese α k jednak KTIVITETU komonente a k u tekućoj smjesi: a K α = α Odstuanje od Raoultovog zakona je osljedica romjene aktiviteta molekula u tekućoj smjesi međusobno kemijsko djelovanje molekula, disocijacija, solvatacija IDELNE TEKUĆE SMJESE Za idealnu je linsku fazu valjan DLTON-ov zakon Prema jemu je arcijalni tlak bilo koje komonente u ari k jednak roduktu molnog udjela komonente u ari k i ukunog tlaka are : = [ Pa] IDELNE TEKUĆE SMJESE Omjer između tlaka are čistih komonenata i kod iste temerature je RELTIVN HLPIVOST komonenata α : = =α Relativnu hlaivost jedne komonente u odnosu na drugu može se ocijeniti i iz tlaka ara na istoj temeraturi Tlak i sastav tekuće smjese određuju temeraturu ključanja smjese i sastav are Temeratura ključanja i tlak smjese određuju sastav linske i tekuće faze množinski udjel komonente a u ari Ki= množinski udjel komonente b u ari K vrijednost mjera tendencije komonente da isari K vrijednost je funkcija temerature, tlaka i sastava i kada god su dvije od ove tri varijable zadane i treća je time određena Relativna hlaivost između komonenata a i b definirana je jednadžbom: α = a, b K K K vrijednost je mjera isarljivosti, a relativna hlaivost mjera lakoće ili teškoće searacije ko je relativna hlaivost između dvije komonente velika tada je razdvajanje komonenti destilacijom lako ko se vrijednost hlaivosti ribližava jedinici razdvajanje komonenti destilacijom vrlo teško a b
4 DMIR&SILVN Relativna je hlaivost komonenata α u realnoj tekućoj smjesi jednaka: α = : = γ γ Koeficijent aktiviteta γ i γ ovisi o molnom udjelu komonenata u tekućoj smjesi i i donekle o temeraturi Pozitivno odstuanje od Raoultovog zakona koeficijent aktiviteta veći od 1, a liniju arcijalnog tlaka i liniju ukunog tlaka isučenu rema gore Negativno odstuanje od Raoultovog zakona koeficijent aktiviteta manji od 1, a liniju arcijalnog tlaka i liniju ukunog tlaka isučenu rema dolje Krivulje se mogu ucrtati iz oznatih koeficijenata aktiviteta komonenata i iz ekserimentalno određenih sastava tekuća smjesa ara. zeotrone tekućine mogu imati jednu ili dvije tekuće faze zeotrona tekuća smjesa se s jednom tekućom fazom zovu HOMOGENI azeotroi, a s dvije tekuće faze HETEROGENI azeotroi zeotrona tekuća smjesa može nastati samo ako je omjer tlakova ara čistih komonenata kod iste temerature jedan 1 Odstuanje od Raoultovog zakona-nastaju azeotroi komonente s bliskim vrelištem različitog kemijskog tia komonente okazuju jake fizičke i kemijske interakcije TOPLINSKE POJVE KOD MIJEŠNJ Pomiješaju li se dvije tekućine iste temerature, nastala smjesa ima različitu temeraturu od temerature tekućina rije miješanja Ovisno o tekućinama koje se miješaju i temeraturi tekućina kao i omjerima u kojima se tekućine miješaju temeratura nastale smjese je VEĆ ili MNJ (rashladne smjese) od tem. tekućina koje se miješaju U vezi s tim uveden je ojam TOPLIN MIJEŠNJ
5 DMIR&SILVN JEDNOSTVN DESTILCIJ kod jednostavne (diferencijalne) se destilacije određena količina olazne smjese unosi u destilacioni kotao i grije do temerature ključanja ara koja se izdvaja iz tekuće smjese se nerekidno ukaljuje u kondenzatoru i kao destilat se odvodi van ostrojenja u rvim trenucima destilacije ima najviše lakše hlaive komonente, a kasnije se ta količina smanjuje kada je sastav destilata ostao jednak otrebnom molnom udjelu lakše hlaive komonente u destilatu, restaje destilacija radi toga ostatak u destilacionom kotlu nakon rovedene destilacije nije u ravnoteži s čitavom količinom destilata nego samo s onim dijelom are koja tog trenutka naušta destilacioni kotao JEDNOSTVN DESTILCIJ DESTILCIJ S DEFLEGMCIJOM destilacija se može rovoditi i tako da se jedan dio are koji naušta destilacioni kotao u deflegmatoru kondenzira kondenzat se vraća u destilacioni kotao, a reostali se dio are uvodi u kondenzator gdje se kondenzira i kao destilat izvodi iz ostrojenja kod destilacije s deflegmatorom može se odrediti stuanj kondenzacije kao omjer broja molova flegme koja se vraća kao kondenzat u destilacioni kotao i broja molova are koja se odiže iz destilacionog kotla DESTILCIJ S DEFLEGMCIJOM DESTILCIJ S VODENOM PROM ova destilacija rimjenjuje se za odjeljivanje hlaive komonente od nehlaive kod čega je uvjet da se hlaiva komonenta ne miješa s vodom rinci se sastoji u direktnom uvođenju regrijane vodene are u destilacioni kotao ri čemu se destilacija rovodi kod niže temerature nego što je temeratura ključanja komonente koja se odjeljuje
6 DMIR&SILVN komonente dobivene destilacijom s vodenom arom se ne miješaju destilat se sastoji iz dva sloja: vodeni sloj i sloj komonente koji se odjeljuje omoću dekantacije se može odijeliti jedan sloj od drugoga ukuni tlak are kod ove destilacije je jednak zbroju arcijalnog tlaka vodene are i arcijalnog tlaka komonenete koja se odjeljuje DESTILCIJ S VODENOM PROM Polazna smjesa Ogrijevna ara voda voda MOLEKULRN DESTILCIJ &Tvari osjetljive na ovišene temerature kao nr. vitamini, ne mogu se destilacijom ili rektifikacijom ri atmosferskom tlaku odijeliti iz tekuće smjese &destilacijom se kod sniženog tlaka smanjuje temeratura ključanja tekuće smjese & tekućine relaze u arovito stanje kod temerature znatno manje od vrelišta što je ISHLPLJIVNJE (ima manji intenzitet relaza tekućine u aru nego kao kod temerature ključanja) &također je oznato da je broj molekula koje s ovršine tekućine relaze u arovito stanje u jedinici vremena i kod relativno niske temerature veoma velik &veći se dio molekula are onovo ukaljuje zbog sudara s molekulama zraka ili are koje se nalaze nad ovršinom tekućine &koliko se molekula onovo ukalji ovisi ne samo o romjeni tlaka i temerature nego i o utu molekule are od ovršine ishlaljivanja do ovršine ukaljivanja &u industriji se učin ostrojenja može ovećati ako se tekuća smjesa miješa i na taj način izjednačava sastav o čitavom volumenu tekućine &molekularnom destilacijom moguće je odijeliti komonente iz azeotronim smjesa POSTROJENJ Z MOLEKULRNU DESTILCIJU &dijele se na: 1. Postrojenja s adajućim filmom (slojem) 2. Postrojenja s rotirajućim filmom glavni je dio ostrojenja uređaj za otlinjavanje, destilacioni kotao i uređaj za održavanje niskog tlaka u uređaju za otlinjavanje se iz olazne smjese uz grijanje izdvaja otoljeni lin destilacioni kotao ima romjer 0,5 m, visine je 2 do 10 m olazna tekuća smjesa se reko uređaja za doziranje uvodi na oliranu grijalicu destilacionog kotla o kojoj se giba u obliku tankog sloja grijalica se nalazi u staklenom laštu na čijim se ovršinama ukaljuje ara
7 DMIR&SILVN u međurostoru se između grijalice i staklenog lašta (kondenzatora) održava niski tlak vakuum umom ri dnu se destilacionog kotla osebnim umama odvodi dio neisarene tekuće smjese i dio destilata koji ada o stijenkama staklenog lašta P r i k l j u č a k n a v a k u u m u m u redgrijač rotametar Uređaj za otlinjavanje Priključak na vakuum Destilacioni kotao (grijalica) kondenzator DESTILCIJ S PDJUĆIM FILMOM Stakleni lašt Polazna smjesa ostatak destilat MOLEKULRN DESTILCIJ S ROTIRJUĆIM FILMOM ovo ostrojenje se sastoji od konusnog rotora o kome se uslijed centrifugalne sile inercije giba rema gore tanki sloj olazne tekuće smjese ovršina rotora se grije električnom strujom ara koja nastaje ukaljuje se na ovršini rotora, na način da se vodom hladi ovršina neokretnog kondenzatora destilat se reko žljebova i odvodne cijevi odvodi izvan uređaja niski se tlak održava omoću u seriji sojenih vakuum umi Sustav za održavanje vakuuma S voda kondenzator V grijalica Konusni rotor smjesa MOLEKULRN DESTILCIJ S ROTIRJUĆIM FILMOM RVNOTEŽN DESTILCIJ koristi se u naftnoj industriji za rethodno (rije rektifikacije) razdvajanje olazne tekuće smjese olazna se smjesa rovodi kroz cijevnu grijalicu, te uz grijanje se tekuća smjesa i ara nalaze u nerekidnom kontaktu nakon toga se odvode u searator gdje se odjeljuje ara od tekuće smjese rodukti dobiveni u searatoru se odvode u rektifikacionu kolonu i tamo se u otunosti vrši razdvajanje smjese UREĐJ Z RVNOTEŽNU DESTILCIJU grijalica Polazna smjesa searator destilat
Tako se dobivaju linije kondenzacije i linije ključanja tekuće smjese
DESTILCIJ Je tehnološka oeracija kojom se tekuća smjesa hlaivih komonenata isaravanjem i naknadnim ukaljivanjem ara razdvaja na relativno čiste komonente Destilacija se zasniva na različitoj hlaivosti
Definicija DESTILACIJA. T,XY - dijagram T,X,Y-dijagram za različite tlakove. px-dijagram
Definicija DESTILCIJ Inženjerstvo 3 Dr.sc.Branko Tripalo, red.prof. Destilacija je tehnološka operacija kojom se kapljevita smjesa hlapivih komponenata isparavanjem i naknadnim ukapljivanjem para razdvaja
DEFINICIJA APSORPCIJA. za proračun je važno znati ravnotežnu topivost plina iz plinske smjese u kapljevini
APSORPCIJA DEFINICIJA Asorcija je tehnološka oeracija kojom se lin otaa u kaljevini (asorbens) desorcija je oslobađanje lina iz kaljevine PREDAVANJA 2 za roračun je važno znati ravnotežnu toivost lina
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
REKTIFIKACIJA POSTROJENJE ZA DISKONTINUIRANU REKTIFIKACIJU
REKTIFIKACIJA je tehnološka operacija kojom se tekuća smjesa više puta djelomično isparava i pri tome dobivene pare kondenziraju provodi se u rektifikacionim kolonama višekratnim kontaktom pare i tekuće
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 06 Plinski zakoni dr. sc. Biserka Tkalčec dr. sc.
Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 06 Plinski zakoni dr. sc. Biserka Tkalčec dr. sc. Lidija Furač Pri normalnim uvjetima tlaka i temperature : 11 elemenata su plinovi
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)
(Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
=1), što znači da će duljina cijevi L odgovarati kritičnoj duljini Lkr. koji vlada u ulaznom presjeku, tako da vrijedi
Primjer. Zrak (R=87 J/(kg K), κ=,4) se iz atmosfere ( =, bar, T =88 K) usisava oz cijev romjera D = mm, duljine L = m, rema slici. Treba odrediti maksimalno mogući maseni rotok m max oz cijev uz retostavku
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića
Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A
Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja
9. DvokD. vokomponent. omponentni ni sistemi- RASTVORI 9.1. Potpuno mešljive tečnosti. Dijagram tečnost. Dijagram pritisakp Dijagram temperaturt
Fazni dijagram 9. DvokD vokomonent omonentni ni sistemi- RASTVORI 9.. Potuno mešljive tečnosti Tečnost nost-ara,, Idealni rastvori-raulov zakon - Dijagram ritisak itisak-sastavsastav - Dijagram temeraturt
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:
Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
TOPLINSKA BILANCA, GUBICI, ISKORISTIVOST I POTROŠNJA GORIVA U GENERATORU PARE
(Generatori are) List: TOPLINSKA BILANCA, GUBICI, ISKORISTIVOST I POTROŠNJA GORIVA U GENERATORU PARE Generator are je energetski uređaj u kojemu se u sklou Clausius-Rankineova kružnog rocesa redaje tolina
Grafičko prikazivanje atributivnih i geografskih nizova
Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :
PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 7 (Regenerativni zagrijači napojne vode) List: 1
(Regenerativni zagrijači napojne vode) List: 1 REGENERATIVNI ZAGRIJAČI NAPOJNE VODE Regenerativni zagrijači napojne vode imaju zadatak da pomoću pare iz oduzimanja turbine vrše predgrijavanje napojne vode
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
PT ISPITIVANJE PENETRANTIMA
FSB Sveučilišta u Zagrebu Zavod za kvalitetu Katedra za nerazorna ispitivanja PT ISPITIVANJE PENETRANTIMA Josip Stepanić SADRŽAJ kapilarni učinak metoda ispitivanja penetrantima uvjeti promatranja SADRŽAJ
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo
Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
12. SKUPINA ZADATAKA IZ FIZIKE I 6. lipnja 2016.
12 SKUPIN ZDK IZ FIZIKE I 6 linja 2016 Zadatak 121 U osudi - sremniku očetnog volumena nalazi se n molova dvoatomnog lina na temeraturi rema slici) Plin izobarno ugrijemo na temeraturu, adijabatski ga
1 bar (-197 C) Sl Područja primjene plinskog i parnog rashladnog procesa Parni rashladni proces s jednostupanjskom kompresijom
.. ARNI RASHLADNI ROCESI Korištenjem višesteene komresije i eksanzije mogli smo ribližiti Jouleov roces Carnotovu rocesu. eđutim, kod zraka kao radne tvari, roces se odvija daleko u regrijanom odručju.
MATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
OSNOVNA SVOJSTVA LEŽIŠNIH STIJENA i FLUIDA
OSNOVNA SVOJSTVA LEŽIŠNIH STIJENA i FLUIDA riremio D. Vulin (za korištenje uz skritu B.Goričnik, 2006. Termodinamika ugljikovodika ) Zagreb, 26.01.2015. Ova kratka skrita redstavlja minimum znanja otreban
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
4. Trigonometrija pravokutnog trokuta
4. Trigonometrij prvokutnog trokut po školskoj ziri od Dkić-Elezović 4. Trigonometrij prvokutnog trokut Formule koje koristimo u rješvnju zdtk: sin os tg tg ktet nsuprot kut hipotenuz ktet uz kut hipotenuz
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
6 Primjena trigonometrije u planimetriji
6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije
Periodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
omponentni ni sistemi- RASTVORI 9.1. Potpuno mešljive tečnosti itisak-sastavsastav emperatura-sastav Dijagram pritisakp Dijagram temperaturt
Fazni dijagram 9. DvokD vokomonent omonentni ni sistemi- RASTVORI 9.. Potuno mešljive tečnosti Tečnost nost-ara,, Idealni rastvori-raulov zakon - Dijagram ritisak itisak-sastavsastav - Dijagram temeraturt
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
6 Polinomi Funkcija p : R R zadana formulom
6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s
Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.
Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.
Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam
Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i
Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO
Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
BIPOLARNI TRANZISTOR Auditorne vježbe
BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje
5 Ispitivanje funkcija
5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente: