Štatistické riadenie procesov Regulačné diagramy 3-1
|
|
- Πατρίκιος Θεοτόκης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Charakteristika Štatistické riadenie procesov Regulačné diagramy Regulačné diagramy Cieľ kapitoly Po preštudovaní tejto kapitoly budete vedieť: čo je to regulačný diagram, aké je jeho teoretické pozadie na aký účel sa používa. Doba potrebná k preštudovaniu kapitoly: 40 minút Základné pojmy regulačný diagram, centrálna priamka, horná regulačná hranica, dolná regulačná hranica, Shewhartove regulačné diagramy, 3σ-regulačný diagram, rozsah výberu, priemerná dĺžka priebehu regulačného diagramu, logické podskupiny, zoskupenie bodov. 3.1 Regulačné diagramy Regulačný diagram je nástroj štatistického riadenia procesov, ktorý umožňuje určovať, či je proces stabilný alebo nie. Znázorňuje regulovanú charakteristiku procesu v závislosti na čísle výberu alebo čase. Sú to buď individuálne hodnoty alebo vypočítaná charakteristika (napr. výberový priemer z niekoľkých vzoriek). Základne časti diagramu sú: Centrálna priamka CL (Central Line) je očakávaná hodnota regulovanej veličiny. Horná regulačná hranica UCL (Upper Control Limit) Dolná regulačná hranica LCL (Lover Control Limit) Bod mimo regulačných hraníc signalizuje možnú nestabilitu procesu, teda prítomnosť vymedziteľných príčin Horná regulačná hranica UCL Centrálna priamka CL Dolná regulačná hranica LCL Číslo výberu Obr. 1 Regulačný diagram Rozptyl vnútri hraníc predstavuje prirodzenú variabilitu, ktorá nie je spôsobená inými príčinami. Na variabilitu procesu môžeme nazerať z pohľadu meraných výstupov procesu a tolerančných hraníc, ktoré určujú, či výrobok je dobrý alebo zlý a odzrkadľujú potreby zákazníka. Druhý pohľad je skúmanie vplyvu náhodných a vymedziteľných príčin a hľadanie možností znižovania variability výrobného procesu. Tu sa používajú regulačné diagramy. Peter Bober
2 Hustota pravdepodobnosti f(x) Štatistické riadenie procesov Regulačné diagramy Štatistický základ regulačných diagramov Regulačné diagramy vychádzajú zo štatistických testov hypotéz. Uvažujme prípad: vyrába sa súčiastka, ktorej dôležitý parameter X sa meria. Tento parameter bude predmetom štatistickej regulácie. Predpokladáme, že regulovaná veličina X má normálne rozdelenie s μ=46 a σ=0,3. Počas výroby chceme overiť, či stredná hodnota parametra X zostala nezmenená. Budeme testovať dvojicu hypotéz na hladine významnosti α: Vyberieme n súčiastok, zmeriame parameter každej súčiastky a vypočítame priemer: Vypočítaný priemer je bodový odhad strednej hodnoty μ a bude pre každý výber iný, teda je to náhodná veličina. Zaujíma nás stredná hodnota a smerodajná odchýlka tejto novej náhodnej veličiny. Priemer predstavuje súčet n hodnôt x i, pričom každá hodnota x i je náhodná veličina s normálnym rozdelením s μ=46 a σ=0,3. Pre strednú hodnotu a smerodajnú odchýlku súčtu náhodných veličín platí: V grafe je znázornená hustota pravdepodobnosti veličiny pre n=5: 3,5 3 2,5 2 1,5 1 0,5 0 45,5 45,6 45,7 45,8 45, ,1 46,2 46,3 46,4 46,5 Kritická oblasť testu α/2 α/2 1-α (α - hladina významnosti) Charakteristika x α/2 kvantil 1-α/2 kvantil Ak stále platí hypotéza H 0, potom priemer bude ležať v intervale ( ) s pravdepodobnosťou 1-α (citlivosť testu). Pravdepodobnosť, že by priemer ležal príliš ďaleko od stredu až v kritickej oblasti testu je malá (α sa zvykne voliť 0,0027). Preto prehlásime, že taká veľká odchýlka znamená posun strednej hodnoty μ a hypotézu H 0 zamietame. Musíme si však uvedomiť, že s pravdepodobnosťou α sa dopúšťame chyby (chyba prvého druhu). V opačnom prípade prijímame hypotézu H 0. Peter Bober
3 Štatistické riadenie procesov Regulačné diagramy 3-3 Kvantily určíme pomocou normovaného normálneho rozdelenia u. Náhodnú veličinu prerátame na u podľa vzťahu: Kritická oblasť testu (zamietnutie H 0 ) je pre čo je to isté ako a a pretože pre normálne normované rozdelenie s μ norm =0 a σ norm =1 platí: Nech, potom. Takto budú regulačné hranice vo vzdialenosti 3 sigma od centrálnej priamky: Pravdepodobnosť α sa nazýva riziko zbytočného signálu (mylné zamietnutie hypotézy H 0 ). V štatistických testoch poznáme aj pravdepodobnosť mylného prijatia hypotézy H 0 ak platí hypotéza H 1 (chyba druhého druhu), ktorá sa označuje ako β a nazýva sa riziko chýbajúceho signálu. Pre 3 sigma regulačné diagramy je riziko zbytočného signálu 0,0027. Diagramy založené na tomto princípe sa volajú aj Shewhartove regulačné diagramy podľa W. A. Shewharta. 3.3 Rozsah a frekvencia výberu Väčší rozsah výberu skôr zachytí aj menšiu zmenu regulovanej veličiny ale zvyšuje náklady na meranie. Vhodný rozsah výberu (počet meraní) je možné zvoliť podľa operatívnej charakteristiky testu (pozri obr.). Operatívna charakteristika testu vyjadruje pravdepodobnosť β pre rôzne hodnoty posunu regulovanej veličiny a rôzne hodnoty rozsahu n. β 1 0,5 n=15 n=10 n= ,01 46,02 46,03 46,04 Z operatívnej charakteristiky testu môžeme zvoliť rozsah výberu tak, aby pravdepodobnosť nesprávneho prijatia hypotézy H 0 bola známa a akceptovateľná. Zvolíme primeranú pravdepodobnosť chýbajúceho signálu β a posun hodnoty Peter Bober
4 Štatistické riadenie procesov Regulačné diagramy 3-4 parametra. Z operatívnej charakteristiky potom určíme požadovaný rozsah výberu n. Vysoká frekvencia výberu zvyšuje náklady na meranie, ale zvyšuje aj pravdepodobnosť včasného odhalenia posunu regulovanej veličiny. Priemerná dĺžka priebehu ARL (average run length) je priemerný počet výberov pred tým, ako dostaneme signál. Pre 3 sigma regulačné diagramy sa ARL vypočíta: Ak je proces stabilný, potom diagram vytvorí zbytočný signál priemerne raz za 370 výberov. Podobne môžeme určiť, ako často sa v priemere vyšle signál pri nestabilnom procese. Z operatívnej charakteristiky testu určíme pre rozsah výberu n a hodnotu posunu parametra pravdepodobnosť β. Priemerná dĺžka priebehu (počet výberov medzi vyslaním signálu) potom bude 3.4 Logické podskupiny Merania, použité vo výbere, majú byť zoskupené tak, aby v rámci skupiny pôsobili len náhodné príčiny variability. Napríklad: merania majú časovo nasledovať za sebou, merania sa zoskupujú podľa stroja alebo pracovníka. merania sa zoskupujú podľa dodávateľa surovín. Ak výber meraní nezohľadní uvedené podmienky, potom sa v meraniach prejavia okrem náhodných príčiny variability aj vymedziteľné príčiny, napr. vplyv konkrétneho pracovníka na výsledok procesu. 3.5 Zoskupenie bodov v regulačných diagramoch Určité zoskupenia bodov v regulačnom diagrame sú pri stabilnom procese málo pravdepodobné a preto je ich možné využiť na signalizáciu prítomnosti vymedziteľných príčin. Na nasledovnom obrázku je uvedený príklad šiestich za sebou ležiacich bodov, ktoré stále stúpajú: A B C C B A UCL CL LCL Niektoré typické zoskupenia bodov signalizujúce prítomnosť vymedziteľných príčin: 1. jeden bod leží za zónou A, 2. šesť bodov v rade za sebou stúpa alebo klesá, Peter Bober
5 Štatistické riadenie procesov Regulačné diagramy dva z troch bodov v rade za sebou ležia v zóne A alebo mimo nej, 4. pätnásť bodov v rade za sebou leží v zóne C (nad alebo pod CL), 5. deväť bodov v rade za sebou leží v zóne C alebo za ňou, 6. štrnásť bodov za sebou pravidelne kolíše hore a dolu, ale žiadny neleží v zóne C, 7. štyri body z piatich za sebou ležia v zóne B alebo nad ňou, 8. osem bodov v rade za sebou leží na oboch stranách od CL. Zhrnutie Regulačné diagramy sú nástroj pre sledovanie štatistickej stability procesu. Poskytujú výstražný signál o narušení stability. Regulačný diagram ma centrálnu priamku, hornú regulačnú hranicu a dolnú regulačnú hranicu a postupne sa doň zakresľuje nameraná charakteristika. Odvodenie regulačných hraníc je urobené na základe testovania hypotéz, kde sa volí hladina významnosti alfa. Ak charakteristika leží mimo regulačných hraníc diagramu, potom predpokladáme, že stabilita procesu bola narušená. Pravdepodobnosť falošného signálu je alfa. Pravdepodobnosť chýbajúceho signálu o narušení stability sa označuje beta. Regulačné hranice ležia pre tzv. 3 sigma diagramy vo vzdialenosti tri sigma od strednej hodnoty. Otázky 1. Na aký účel slúži regulačný diagram? 2. Čo obsahuje typický regulačný diagram? 3. Na akom štatistickom základe sú formulované regulačné hranice diagramu? 4. Vysvetlite interpretáciu chyby prvého druhu alfa a chybu druhého druhu beta štatistického testu. 5. Aký je 3 sigma regulačný diagram? 6. Aká je pravdepodobnosť falošného poplachu pre 3 sigma diagram? 7. Čo znamená hladina významnosti alfa pri regulačnom diagrame? 8. Čo znázorňuje operatívna charakteristika regulačného diagramu? 9. Vysvetlite význam pojmu priemerná dĺžka priebehu. 10. Čo je logická podskupina a ako sa vytvára? 11. Uveďte aspoň 4 typické zoskupenia bodov v diagrame, ktoré signalizujú prítomnosť vymedziteľných príčin. Miesto pre poznámky 3.6 Literatúra [1] Terek, Milan - Ľubica Hrnčiarová: Štatistické riadenie kvality. Bratislava: Iura Edition, ISBN , s :52 Peter Bober
KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky
Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.
4 Regulačné diagramy na reguláciu meraním
Štatistické riaenie procesov egulačné iagramy 4-1 4 egulačné iagramy na reguláciu meraním Cieľ kapitoly Po preštuovaní tejto kapitoly buete veieť: čo je to regulačný iagram na reguláciu meraním, ako sa
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Príručka ku kurzu SPÔSOBILOSŤ PROCESU
E+6 E+5 E+ E+ E+ E+ E+ E- Príručka ku kurzu SPÔSOBILOSŤ PROCESU E- E- E- E-5 E-6 E-7 E-8,5,7,9,,,5,7,9,,,5 ÚVOD Z noriem a inej literatúry je známych mnoho postupov, ako stanoviť spôsobilosť procesu. Existuje
Rôzne metódy manažérstva kvality/jakosti. Štatistika. Práca č.2: Štatistické riadenie procesu (SPC Statistical process control)
- Rôzne metódy manažérstva kvality/jakosti Štatistika Práca č.: Štatistické riadenie procesu (SPC Statistical process control) Dátum: 8.11.010 Martin Bažant Obsah Obsah... Zoznam obrázkov... Zoznam tabuliek...
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
2 Chyby a neistoty merania, zápis výsledku merania
2 Chyby a neistoty merania, zápis výsledku merania Akej chyby sa môžeme dopustiť pri meraní na stopkách? Ako určíme ich presnosť? Základné pojmy: chyba merania, hrubé chyby, systematické chyby, náhodné
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/27
8 Regulačné diagramy. 8.1 Štatistický základ regulačných diagramov ZABEZPEČOVANIE KVALITY PROCESOV
ZEZPEČOVNIE KVLITY POESOV 8 egulačné diagramy egulačné diagramy (ontrol harts), sú známe od r.194, keď ich princíp formuloval W.. Shewhart. egulačné diagramy sa používajú ako preventívny prostriedok riadenia
Základy metodológie vedy I. 9. prednáška
Základy metodológie vedy I. 9. prednáška Triedenie dát: Triedny znak - x i Absolútna početnosť n i (súčet všetkých absolútnych početností sa rovná rozsahu súboru n) ni fi = Relatívna početnosť fi n (relatívna
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
TESTOVANIE ŠTATISTICKÝCH HYPOTÉZ. Zdroje: Kompendium statistického zpracování dat, VPS s r. o.
TESTOVANIE ŠTATISTICKÝCH HYPOTÉZ Zdroje: Kompendium statistického zpracování dat, VPS s r. o. Témy prednášky ŠTATISTIKA, HYPOTÉZA TESTY ŠTATISTICKÝCH HYPOTÉZ (Testy štatistickej významnosti) t-test (STUDENTOV)
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
Motivácia pojmu derivácia
Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)
Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana.
Spojité rozdelenia pravdepodobnosti Pomôcka k predmetu PaŠ Strana z 7 RNDr. Aleš Kozubík, PhD. 6. marca 3 Zoznam obrázkov Rovnomerné rozdelenie Ro (a, b). Definícia.........................................
Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT
Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH
4. domáca úloha. distribučnú funkciu náhodnej premennej X.
4. domáca úloha 1. (rovnomerné rozdelenie) Električky idú v 20-minútových intervaloch. Cestujúci príde náhodne na zastávku. Určte funkciu hustoty rozdelenia pravdepodobnosti a distribučnú funkciu náhodnej
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
Inžinierstvo kvality produkcie. Štátnice
Inžinierstvo kvality produkcie Štátnice Dudlyk, Sifu a iní 3. 6. 2008 1 1. Historický vývoj riadenia kvality (USA, Japonsko, Slučka kvality) Začiatky historického vývoja sú v Londýne práve v období priemyselnej
,Zohrievanie vody indukčným varičom bez pokrievky,
Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.2 Vzdelávacia
Základy matematickej štatistiky
1. Náhodný výber, výberové momenty a odhad parametrov Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 6. mája 2015 1 Náhodný výber 2 Výberové momenty 3 Odhady parametrov
Určite vybrané antropometrické parametre vašej skupiny so základným (*úplným) štatistickým vyhodnotením.
Priezvisko a meno študenta: 216_Antropometria.xlsx/Pracovný postup Študijná skupina: Ročník štúdia: Antropometria Cieľ: Určite vybrané antropometrické parametre vašej skupiny so základným (*úplným) štatistickým
ANALÝZA VÝKONNOSTI CALL CENTRA POMOCÍ STATISTICKÝCH METOD
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV INFORMATIKY FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF INFORMATICS ANALÝZA VÝKONNOSTI CALL CENTRA POMOCÍ STATISTICKÝCH
PRIEMER DROTU d = 0,4-6,3 mm
PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda
11 Štatistická prebierka
11 Štatistická prebierka Štatistická prebierka patrí do skupiny stredne náročných štatistických metód používaných v oblasti riadenia kvality. Využíva sa na vstupnú, medzioperačnú, výstupnú výberovú kontrolu
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely
Cvičenia zo ŠTATISTIKY v Exceli Kurz IPA-Slovakia, september 2008, VYHNE
Cvičenia zo ŠTATISTIKY v Exceli Kurz IPA-Slovakia, september 2008, VYHNE doc. RNDr. Štefan PEŠKO, CSc. stefan.pesko@fri.uniza.sk, http://frcatel.fri.uniza.sk/pesko/ Katedra matematických metód, Fakulta
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
Teória pravdepodobnosti
2. Podmienená pravdepodobnosť Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 23. februára 2015 1 Pojem podmienenej pravdepodobnosti 2 Nezávislosť náhodných udalostí
AerobTec Altis Micro
AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp
HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S
PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv
Univerzita Karlova v Praze Matematicko-fyzikální fakulta
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Viktória Rusnáková Porovnání přesných a asymptotických testů Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
Odporníky. 1. Príklad1. TESLA TR
Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L
ÚLOHA Č.4 CHYBY A NEISTOTY MERANIA DĹŽKOMERY MERANIE DĹŽKOVÝCH ROZMEROV SO STANOVENÍM NEISTÔT MERANIA Chyby merania Všeobecne je možné povedať, že chyba = nesprávna hodnota správna hodnota (4.1) pričom
HANA LAURINCOVÁ KLASICKÝ VS. NEPARAMETRICKÝ PRÍSTUP Štatistika Poistná matematika
UNIVERZITA KOMENSKÉHO, BRATISLAVA FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY KATEDRA POISTNEJ MATEMATIKY A ŠTATISTIKY PARCIÁLNA A MNOHONÁSOBNÁ KORELÁCIA: KLASICKÝ VS. NEPARAMETRICKÝ PRÍSTUP (Bakalárska práca)
ÚLOHA Č.8 ODCHÝLKY TVARU A POLOHY MERANIE PRIAMOSTI A KOLMOSTI
ÚLOHA Č.8 ODCHÝLKY TVARU A POLOHY MERANIE PRIAMOSTI A KOLMOSTI 1. Zadanie: Určiť odchýlku kolmosti a priamosti meracej prizmy prípadne vzorovej súčiastky. 2. Cieľ merania: Naučiť sa merať na špecializovaných
REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických
REZISTORY Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických obvodoch. Základnou vlastnosťou rezistora je jeho odpor. Odpor je fyzikálna vlastnosť, ktorá je daná štruktúrou materiálu
24. Základné spôsoby zobrazovania priestoru do roviny
24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá
Testy hypotéz o parametroch normálneho rozdelenia.
Kapitola 7. A Tety hypotéz o parametroch normálneho rozdelenia. Predtavme i, že vyšetrujeme predpoklady o parametroch normálneho rozdelenia výberového úboru, pričom o normalite úboru nemáme pochybnoti
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
Vlastnosti regulátorov pri spätnoväzbovom riadení procesov
Kapitola 8 Vlastnosti regulátorov pri spätnoväzbovom riadení procesov Cieľom cvičenia je sledovať vplyv P, I a D zložky PID regulátora na dynamické vlastnosti uzavretého regulačného obvodu (URO). 8. Prehľad
Riadenie zásobníkov kvapaliny
Kapitola 9 Riadenie zásobníkov kvapaliny Cieľom cvičenia je zvládnuť návrh (syntézu) regulátorov výpočtovými (analytickými) metódami Naslinovou metódou a metódou umiestnenia pólov. Navrhnuté regulátory
Metódy vol nej optimalizácie
Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/28 Motivácia k metódam vol nej optimalizácie APLIKÁCIE p. 2/28 II 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Na základe dostupných
Meranie na jednofázovom transformátore
Fakulta elektrotechniky a informatiky TU v Košiciach Katedra elektrotechniky a mechatroniky Meranie na jednofázovom transformátore Návod na cvičenia z predmetu Elektrotechnika Meno a priezvisko :..........................
23. Zhodné zobrazenia
23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:
Model redistribúcie krvi
.xlsx/pracovný postup Cieľ: Vyhodnoťte redistribúciu krvi na začiatku cirkulačného šoku pomocou modelu založeného na analógii s elektrickým obvodom. Úlohy: 1. Simulujte redistribúciu krvi v ľudskom tele
Štatistické spracovanie experimentálnych dát
Štatistické spracovanie experimentálnych dát Štatistická analýza veľkých výberov Štatistická analýza malých výberov podľa Horna Štatistické testovanie Analýza rozptylu Dátum: 12. máj 2008 Vypracoval: Ing.
C. Kontaktný fasádny zatepľovací systém
C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový
7 Derivácia funkcie. 7.1 Motivácia k derivácii
Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických
Tomáš Madaras Prvočísla
Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
MIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523
Planárne a rovinné grafy
Planárne a rovinné grafy Definícia Graf G sa nazýva planárny, ak existuje jeho nakreslenie D, v ktorom sa žiadne dve hrany nepretínajú. D sa potom nazýva rovinný graf. Planárne a rovinné grafy Definícia
Margita Vajsáblová. ρ priemetňa, s smer premietania. Súradnicová sústava (O, x, y, z ) (O a, x a, y a, z a )
Mrgit Váblová Váblová, M: Dekriptívn geometri pre GK 101 Zákldné pom v onometrii Váblová, M: Dekriptívn geometri pre GK 102 Definíci 1: onometri e rovnobežné premietnie bodov Ε 3 polu prvouhlým úrdnicovým
Rozdiely vo vnútornej štruktúre údajov = tvarové charakteristiky
Veľkosť Varablta Rozdelene 0 00 80 n 60 40 0 0 0 4 6 8 Tredy 0 Rozdely vo vnútornej štruktúre údajov = tvarové charakterstky I CHARAKTERISTIKY PREMELIVOSTI Artmetcký premer Vzťahy pre výpočet artmetckého
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Úloha č.:...xviii... Název: Prechodové javy v RLC obvode Vypracoval:... Viktor Babjak... stud. sk... F.. dne... 6.. 005
6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu
6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis
16. Základne rovinné útvary kružnica a kruh
16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že
6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH
6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6. Otázky Definujte pojem produkčná funkcia. Definujte pojem marginálny produkt. 6. Produkčná funkcia a marginálny produkt Definícia 6. Ak v ekonomickom procese počet
Numerické metódy Učebný text pre bakalárske štúdium
Imrich Pokorný Numerické metódy Učebný text pre bakalárske štúdium Strana 1 z 48 1 Nepresnosť numerického riešenia úloh 4 1.1 Zdroje chýb a ich klasifikácia................... 4 1.2 Základné pojmy odhadu
Úvod do lineárnej algebry. Monika Molnárová Prednášky
Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc
Modul pružnosti betónu
f cm tan α = E cm 0,4f cm ε cl E = σ ε ε cul Modul pružnosti betónu α Autori: Stanislav Unčík Patrik Ševčík Modul pružnosti betónu Autori: Stanislav Unčík Patrik Ševčík Trnava 2008 Obsah 1 Úvod...7 2 Deformácie
Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003
Rozsah akreditácie 1/5 Názov akreditovaného subjektu: U. S. Steel Košice, s.r.o. Oddelenie Metrológia a, Vstupný areál U. S. Steel, 044 54 Košice Rozsah akreditácie Oddelenia Metrológia a : Laboratórium
Ing. Andrej Trnka, PhD. Základné štatistické metódy marketingového výskumu
Ing. Andrej Trnka, PhD. Základné štatistické metódy marketingového výskumu 2016 Základné štatistické metódy marketingového výskumu Autor: Recenzenti: Ing. Andrej Trnka, PhD. prof. Ing. Pavol Tanuška, PhD.
Reprezentácia dát. Ing. Martin Mariš, Katedra regionalistiky a rozvoja vidieka, SPU, NITRA
Reprezentácia dát Ing. Martin Mariš, Katedra regionalistiky a rozvoja vidieka, SPU, NITRA slovným opisom grafickým zobrazením Typy grafov a ich použitie Najčastejšie používané typy grafov: čiarový graf
x x x2 n
Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol
Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus
1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových
Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť
Baumit Prednástrek / Vorspritzer Vyhlásenie o parametroch č.: 01-BSK- Prednástrek / Vorspritzer 1. Jedinečný identifikačný kód typu a výrobku: Baumit Prednástrek / Vorspritzer 2. Typ, číslo výrobnej dávky
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
Deliteľnosť a znaky deliteľnosti
Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a
ŠTATISTICKÉ METÓDY VPRAXI
TECHNICKÁ UNIVERZITA V KOŠICIACH Strojnícka fakulta ŠTATISTICKÉ METÓDY VPRAXI Miriam Andrejiová Edícia vedeckej a odbornej literatúry Košice 2016 Technická univerzita v Košiciach, Strojnícka fakulta Miriam
Funkcie - základné pojmy
Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny
Reálna funkcia reálnej premennej
(ÚMV/MAN3a/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 18.10.2012 Úvod V každodennom živote, hlavne pri skúmaní prírodných javov, procesov sa stretávame so závislosťou veľkosti niektorých veličín od
Základy práce s ekonometrickým programom GRETL
Základy práce s ekonometrickým programom GRETL Martin Lukáčik, Viktor Slosiar GRETL je voľne dostupný softvérový produkt so zameraním na štatistické metódy podporujúci ekonometrické analýzy 1. Samotný
Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi
Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi Typy súvislostí javov a vecí: nepodstatné - vonkajšia súvislosť nevyplýva z vnútornej potreby (javy spoločne vznikajú, majú zhodný priebeh, alebo
PREHĽAD ÚDAJOV. 1. Početnosť
PREHĽAD ÚDAJOV 1. Početnosť. Miery centrálnej tendencie a. Aritmetický priemer b. Medián c. Modus 3. Miery rozptylu a. Tvar b. Rozdelenie, rozloženie údajov c. Rozsah d. Rozptyl - variancia e. Smerodatná
Elektrotechnické meranie III - teória
STREDNÁ PREMYSELNÁ ŠKOLA ELEKTROTECHNCKÁ Plzenská 1, 080 47 Prešov tel.: 051/775 567 fax: 051/773 344 spse@spse-po.sk www.spse-po.sk Elektrotechnické meranie - teória ng. Jozef Harangozo 008 Obsah 1 Úvod...5
METODICKÁ SMERNICA NA AKREDITÁCIU METHODICAL GUIDELINE FOR ACCREDITATION VYJADROVANIE NEISTÔT MERANIA PRI KALIBRÁCII (EA-4/02)
SLOVENSKÁ NÁRODNÁ AKREDITAČNÁ SLUŽBA METODICKÁ SMERNICA NA AKREDITÁCIU METHODICAL GUIDELINE FOR ACCREDITATION VYJADROVANIE NEISTÔT MERANIA PRI KALIBRÁCII (EA-4/0) EXPRESSION OF THE UNCERTAINTY OF MEASUREMENT
Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 %
Podnikateľ 90 Samsung S5230 Samsung C3530 Nokia C5 Samsung Shark Slider S3550 Samsung Xcover 271 T-Mobile Pulse Mini Sony Ericsson ZYLO Sony Ericsson Cedar LG GM360 Viewty Snap Nokia C3 Sony Ericsson ZYLO
Názov prednášky: Teória chýb; Osnova prednášky: Základné pojmy Chyby merania Zdroje chýb Rozdelenie chyba merania
Pozemné laserové skenovanie Prednáška 2 Názov prednášky: Teória chýb; Osnova prednášky: Základné pojmy Chyby merania Zdroje chýb Rozdelenie chyba merania Meranie accurancy vs. precision Polohová presnosť
Príklady na precvičovanie Fourierove rady
Príklady na precvičovanie Fourierove rady Ďalším významným typom funkcionálnych radov sú trigonometrické rady, pri ktorých sú jednotlivé členy trigonometrickými funkciami. Konkrétne, jedná sa o rady tvaru
Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.
Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [
Testy dobrej zhody. H 0 : f(x) = g(x) ; H 1 : f(x) g(x)
TESTY DOBREJ ZHODY Testy dobrej zhody = testy hypotéz zhody rozdelení (= testy dobrej zhody / ft testy / Goodness of Ft Tests) Overujeme, č emprcké rozdelene je štatstcky zhodné s nektorým z teoretckých
Základné poznatky molekulovej fyziky a termodynamiky
Základné poznatky molekulovej fyziky a termodynamiky Opakovanie učiva II. ročníka, Téma 1. A. Príprava na maturity z fyziky, 2008 Outline Molekulová fyzika 1 Molekulová fyzika Predmet Molekulovej fyziky