3.8 Čiarový charakter atómových spektier a kvantovanie energie atómov

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "3.8 Čiarový charakter atómových spektier a kvantovanie energie atómov"

Transcript

1 Rutherford po rokoch spomínal na objav jadra takto: Raz ku mne prišiel veľmi vzrušený Geiger a vraví: Zdá sa, že sme videli niekoľko prípadov rozptylu častice α dozadu. Toto bola najnepravdepodobnejšia udalosť v celom mojom živote. Je to tak málo pravdepodobné, ako keby ste 15-palcovým delostreleckým granátom strieľali do tenkého cigaretového papiera, náboj by sa odrazil od papiera a vletel rovno do vás. Keď sme to všetko analyzovali, pochopil som, že prevažná väčšina hmotnosti atómu je sústredená v maličkom jadre, ktoré zaberá iba omrvinku z celého objemu atómu. 3.8 Čiarový charakter atómových spektier a kvantovanie energie atómov Úvodná poznámka Trinásta generálna konferencia pre miery a váhy (CGPM) v roku 1967 prijala štandard pre sekundu odvodený od frekvencie atómov atómových césiových hodín. Sekunda je doba trvania periód žiarenia, ktoré prislúchajú prechodu medzi dvomi presne definovanými hladinami atómu cézia 133. Pretože presnosť atómových hodín je zhruba 0,000 2 Hz a z definície sekundy môžeme ľahko určiť frekvenciu žiarenia ( Hz), definícia sekundy pomocou atómových hodín je najpresnejšou definíciou jednotky, akú ľudstvo kedy dosialo. Prečo? Ak by ste nechali pracovať dvoje hodín rokov, tak sa navzájom môžu oneskoriť nanajvýš asi 1 sekundu. V súvislosti s definíciou sekundy si možno položiť otázky: Čo sú to hladiny v atóme? S čím súvisia? Prečo dosahujú atómové hodiny takú fenomenálnu presnosť? Odpoveď je opäť v kvantovej fyzike. Atómy v zohriatom plyne vysielajú iba žiarenie s istými vlnovými dĺžkami. Hovoríme o čiarovom spektre. Vysvetliť čiarové spektrum bolo v klasickej fyzike vážnym problémom. Po Rutherfordovom objave atómového jadra atómu vznikol celkom prirodzene planetárny model atómu. Ťažké jadro malo úlohu podobnú úlohe Slnka a ľahké elektróny úlohu planét. Výpočty založené na klasickej teórii elektromagnetického poľa však ukázali, že v takomto modeli atómu by elektróny strácali vyžarovaním energiu a padali by za zlomky sekundy do jadra atóm by nebol stabilný. Navyše spektrum žiarenia 96

2 vysielaného elektrónmi by nebolo čiarové, ale spojité 14). Prvý krok k riešeniu problému čiarového spektra spravil dánsky fyzik NIELS BOHR (nils bor, ; Nobelova cena za výskumy štruktúry atómu v roku 1922), ktorý v roku 1913 vypracoval prvý kvantový model atómu vodíka. Bohr (obr. 3-11) vychádzal z dvoch myšlienok, potvrdených neskôr rozvojom kvantovej teórie: Obr Niels Bohr 1. Atóm sa môže nachádzať len v istých kvantových stavoch. Každý z týchto stavov má presne určenú hodnotu energie. 2. Pri prechode atómu zo stavu s energiou E n do stavu s nižšou energiou E m vysiela atóm žiarenie s frekvenciou f nm danou vzťahom E n E m = hf nm (1) Vzťah (1) možno vysvetliť na základe predstavy o fotónoch. Energiu E n E m uvoľnenú pri prechode atómu z jedného stavu do druhého odnáša jediný fotón s energiou hf nm. Vzťah (1) je z tohto hľadiska zákonom zachovania energie. Istej frekvencii f nm zodpovedá aj istá vlnová dĺžka λ nm, pričom c λ nm = (2) f Toto vysvetľuje čiarový charakter spektra. Meraním vlnových dĺžok pre rôzne n, m môžeme určiť rozdiely energií E n E m. nm 14) Spojitosť spektra znamená, že atómy vysielajú žiarenie ľubovoľných vlnových dĺžok z nejakého intervalu. 97

3 Na obr sú znázornené energetické hladiny atómu vodíka. Na prvý pohľad prekvapuje, že energie sú záporné. Je to tým, že za nulovú energiu sme zvolili energiu systému protón elektrón, keď sú obidva v pokoji a veľmi ďaleko od seba. Stav atómu s najnižšou hodnotou energie nazývame základný stav, stavy s vyššími hodnotami energie nazývame excitované stavy. Energia E 1 je potom energia potrebná na to, aby sme ionizovali atóm vodíka v stave s najnižšou energiou. 98 Obr Časť energetických hladín atómu vodíka So zápornými energiami sa stretávame aj v klasickej fyzike. Potenciálna energia kameňa vo výške h nad povrchom zeme je mgh, kde m je hmotnosť kameňa a g veľkosť gravitačného zrýchlenia. Ak je kameň v studni, bude h záporné a potenciálna energia bude tiež záporná. Práca potrebná na vybratie kameňa zo studne bude mg h a to je analógia ionizačnej energie. Kvantovanie energie je celkom cudzie klasickej fyzike. Preto teória, ktorá kvantovanie energie vysvetľuje, musí vychádzať z princípov podstatne odlišných od toho, čo poznáme z klasickej fyziky. Kvantovanie energie je univerzálnou vlastnosťou objektov mikrosveta. Vyskytuje sa pri všetkých atómoch, molekulách, jadrách atómov, aj pri energiách elektrónov v pevných látkach. Na obr je znázornená časť energetických hladín atómu ortuti, na obr časť energetických hladín jadra bóru. Všimnite si, že energie atómov udávame v jednotkách

4 ev a energie jadier v jednotkách MeV = 10 6 ev. O tom ešte budeme hovoriť v časti venovanej jadru. Obr Obr Časť energetických hladín Časť energetických hladín atómu ortuti jadra bóru 11 5B (energie sú dané v MeV = 10 6 ev) Obr Náčrt energetických hladín elektrónu v kove Na obr sú zjednodušene znázornené energetické hladiny elektrónu v kove. Ako sa kvantovanie energie prejavuje v atómových céziových hodinách, jedného z najpresnejších meracích prístrojov vôbec, aké máme k dispozícii? Kvalitatívne možno stručne opísať funkciu atómových hodín takto: Energetické hladiny sú aj v atómoch cézia. Na zväzok céziových atómov svietime elektromagnetickým žiarením. Ak pôsobením tohto žiarenia dôjde k prechodu atómov cézia z hladiny s nižšou energiou na hladinu s vyššou energiou, tak atómy s elektrónmi na vyššej hladine sú odfiltrované a registrované elektrónovým zosilňovačom. Frekvencia žiarenia sa reguluje dovtedy, kým výstupný elektrický prúd elektrónového zosilňovača nie je maximálny. Keďže hladiny sú presne definované a kvantované, vzbudenie nastáva len v prípade splnenia Bohrovej 99

5 podmienky (1), vďaka ktorej pracujú len na jednej presnej frekvencii. Kvantová teória tak dala základ najpresnejšiemu meraniu času doteraz. Úlohy 1. V spektre atómu vodíka sú čiary s vlnovými dĺžkami λ = 656 nm a λ' = 486 nm. Pri ktorých prechodoch vznikajú tieto čiary? [pri prechodoch E 3 E 2, E 4 E 2 ] 2. a) Vypočítajte vlnovú dĺžku žiarenia pri prechode E 2 E 1 v atóme vodíka. Leží toto žiarenie vo viditeľnej oblasti spektra? [121,6 nm, žiarenie leží v ultrafialovej oblasti, nie je viditeľné] b) Vypočítajte vlnovú dĺžku žiarenia pre atómové hodiny. V akej časti spektra leží toto žiarenie? 3. Na príkladoch jednoduchých situácií ukážte, že v klasickej fyzike sa energia vždy môže meniť spojito. Uvažujte o jednoduchých situáciách v klasickej fyzike, napr. o kinetickej energii guľôčky kotúľajúcej sa po stole, potenciálnej energii guľôčky v gravitačnom poli Zeme, o energii oscilátora. Téma na referát alebo diskusiu 1. Atómové hodiny: Viete, že komerčné atómové hodiny majú veľkosť kufra? Vyhľadajte si informácie o atómových hodinách. Aké majú použitie? Aká je história týchto hodín? Ukážte, že dvoje hodín sa môže oneskoriť približne o sekundu za rokov. Kedy vznikli prvé atómové hodiny, kedy prvé komerčné? [Návod: Významnými aplikáciami sú GPS alebo synchronizácia INTERNETU. Zistite viac o GPS a o synchronizácii INTERNETU a na čo sú dobré.] 2. Presnosť kvantovej teórie: Kvantová teória je najúspešnejšou teóriou, ktorú človek vymyslel. Jej platnosť preverilo obrovské množstvo experimentov. Do akých detailov súhlasí teória s experimentom? Uveďme po atómových hodinách druhý príklad. Aby sme dokázali vyraziť jeden z elektrónov v atóme hélia, musíme atóm vystaviť žiareniu s istou minimálnou vlnovou dĺžkou. Experiment dáva hodnotu tejto vlnovej dĺžky s vysokou presnosťou: 50, ± 0, nm. Kvantová mechanika dáva predpoveď 50, ± 0, nm. a) Porovnajte presnosti oboch hodnôt. Ak by sme chceli zmerať s takou presnosťou vzdialenosť Bratislava a Košice, približne akú odchýlku by sme si mohli dovoliť pri takej presnosti? Stretli ste sa s veličinami, ktoré boli zmerané s takou presnosťou? Skúste vyhľadať potrebné informácie. b) Patrí daný fotón do viditeľnej časti spektra elektromagnetického vlnenia? Aká je veľkosť energie (v ev) zodpovedajúca fotónu 100

6 tohto žiarenia a ako nazývame túto energiu? Vysvetlite na základe Bohrových postulátov tento výsledok z pohľadu energetických hladín. Niels Bohr napísal základné práce o štruktúre atómu vodíka v roku 1913, zanedlho potom ako sa vrátil zo študijného pobytu u Rutherforda v Manchestri. V dvadsiatych rokoch založil v Kodani Ústav teoretickej fyziky, v ktorom pracovali viacerí vynikajúci mladí fyzici, napr. Heisenberg, Pauli, Dirac, Landau. Bohr veľmi prispel k objasneniu základných otázok kvantovej fyziky, utvoril jeden z úspešných modelov ťažších jadier. Už v posledných rokoch druhej svetovej vojny sa usiloval utvoriť podmienky na spoluprácu veľmocí pri mierovom využití jadrovej energie. 3.9 Spontánna a stimulovaná emisia žiarenia Princíp lasera Úvodná poznámka V roku 1999 tínedžer Shawn Fanning realizoval nevinnú myšlienku, ktorá definitívne zmenila svet Internetu, hudobného priemyslu a všetko to, čomu hovoríme intelektuálne vlastníctvo. Vymyslel program s názvom Napster, ktorý dokázal navzájom prepojiť počítače záujemcov o hudbu. Prostredníctvom tohto programu, stačilo zaslať názov interpreta a pesničky, ktorú ste chceli získať, a niekto iný, napr. kamarát, ale aj človek na druhej strane zemegule, vám dovolil túto pesničku 15) stiahnuť zo svojho počítača, opäť pomocou Napsteru. S týmto programom tak hocikto a hocikde mohol získať akúkoľvek pesničku. Zadarmo!! Bez čakania!! Na svojom vrchole bol server Napster, cez ktorý program Napster fungoval, pravdepodobne najpopulárnejšou internetovou stránkou na svete. Jej návštevnosť stúpla počas roka na 60 miliónov zásahov za mesiac. Spôsobilo to však obrovské straty nahrávacích vydavateľstiev, ktoré boli v šoku. Lenže peniaze, ktoré strácali vydavateľstvá sa začali presúvať k výrobcom prázdnych cédečok a zapisovacích CD mechaník (napaľovačiek) a CD prehrávačov. V rokoch 1999 až 2001 predaj týchto produktov vyletel do závratných výšok. Zisky mimoriadne stimulovali technický pokrok v tejto oblasti a znížili ceny natoľko, že dnes sú napr. CD napaľovačky bežne dostupné a sú štandardnou výbavou počítačov. 15) Zvyčajne mala formu úsporného MP3 formátu. V takomto tvare sa vám na jedno CD zmestí približne 10-krát viac pesničiek ako na bežnom CD a navyše pesničku stiahnete 10-krát rýchlejšie. 101

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

3 ELEKTRÓNOVÝ OBAL ATÓMU. 3.1 Modely atómu

3 ELEKTRÓNOVÝ OBAL ATÓMU. 3.1 Modely atómu 3 ELEKTRÓNOVÝ OBAL ATÓMU 3.1 Modely atómu Elektrón objavil Joseph John Thomson (1856-1940) (pozri obr. č. 3) v roku 1897 ako súčasť atómov. Elektróny sú elementárne častice s nepatrnou hmotnosťou m e =

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili

Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

3. Striedavé prúdy. Sínusoida

3. Striedavé prúdy. Sínusoida . Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

Stavba atómového jadra

Stavba atómového jadra Objavy stavby jadra: 1. H. BECQUEREL (1852 1908) objavil prenikavé žiarenie vysielané zlúčeninami prvku uránu. 2. Pomocou žiarenia α objavil Rutherford so svojimi spolupracovníkmi atómové jadro. Žiarenie

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

2.2 Elektrónový obal atómu

2.2 Elektrónový obal atómu 2.2 Elektrónový obal atómu Chemické vlastnosti prvkov závisia od usporiadania elektrónov v elektrónových obaloch ich atómov, presnejšie od počtu elektrónov vo valenčnej vrstve atómov. Poznatky o usporiadaní

Διαβάστε περισσότερα

2.2 Rádioaktivita izotopy stabilita ich atómových jadier rádioaktivita žiarenie jadrové

2.2 Rádioaktivita izotopy stabilita ich atómových jadier rádioaktivita žiarenie jadrové 2.2 Rádioaktivita Koniec 19. storočia bol bohatý na významné objavy vo fyzike a chémii, ktoré poskytli základy na vybudovanie moderných predstáv o zložení atómu. Medzi najvýznamnejšie objavy patrí objavenie

Διαβάστε περισσότερα

,Zohrievanie vody indukčným varičom bez pokrievky,

,Zohrievanie vody indukčným varičom bez pokrievky, Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť

Διαβάστε περισσότερα

1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2

1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Analýza údajov. W bozóny.

Analýza údajov. W bozóny. Analýza údajov W bozóny http://www.physicsmasterclasses.org/index.php 1 Identifikácia častíc https://kjende.web.cern.ch/kjende/sl/wpath_teilchenid1.htm 2 Identifikácia častíc Cvičenie 1 Na web stránke

Διαβάστε περισσότερα

ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies.

ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies. ELEKTRICKÉ POLE 1. ELEKTRICKÝ NÁBOJ, COULOMBOV ZÁKON Skúmajme napr. trenie celuloidového pravítka látkou, hrebeň suché vlasy, mikrotén slabý prúd vody... Príčinou spomenutých javov je elektrický náboj,

Διαβάστε περισσότερα

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom

Διαβάστε περισσότερα

GLOSSAR A B C D E F G H CH I J K L M N O P R S T U V W X Y Z Ž. Hlavné menu

GLOSSAR A B C D E F G H CH I J K L M N O P R S T U V W X Y Z Ž. Hlavné menu GLOSSAR A B C D E F G H CH I J K L M N O P R S T U V W X Y Z Ž Hlavné menu A Atóm základná stavebná častica látok pozostávajúca z jadra a obalu obsahujúcich príslušné častice Atómová teória teória pochádzajúca

Διαβάστε περισσότερα

2 Chyby a neistoty merania, zápis výsledku merania

2 Chyby a neistoty merania, zápis výsledku merania 2 Chyby a neistoty merania, zápis výsledku merania Akej chyby sa môžeme dopustiť pri meraní na stopkách? Ako určíme ich presnosť? Základné pojmy: chyba merania, hrubé chyby, systematické chyby, náhodné

Διαβάστε περισσότερα

Príklady, úlohy a problémy alebo múdrosť vchádza do hlavy rukou

Príklady, úlohy a problémy alebo múdrosť vchádza do hlavy rukou Príklady, úlohy, problémy alebo múdrosť vchádza do hlavy rukou 55 Príklady, úlohy a problémy alebo múdrosť vchádza do hlavy rukou Ľudia si často myslia, že múdrosť vchádza do hlavy očami a ušami, ale nie

Διαβάστε περισσότερα

1 Aké veľké sú atómy a z čoho sa skladajú (I. časť)

1 Aké veľké sú atómy a z čoho sa skladajú (I. časť) 1 Aké veľké sú atómy a z čoho sa skladajú (I.časť) 1 1 Aké veľké sú atómy a z čoho sa skladajú (I. časť) 1.1 Avogadrova konštanta a veľkosť atómov Najprv sa vrátime trocha podrobnejšie k zákonu o stálych

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

Kontrolné otázky z jednotiek fyzikálnych veličín

Kontrolné otázky z jednotiek fyzikálnych veličín Verzia zo dňa 6. 9. 008. Kontrolné otázky z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej odpovede sa môže v kontrolnom teste meniť. Takisto aj znenie nesprávnych odpovedí. Uvedomte si

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

Fyzika atómu. 6. Stavba atómov

Fyzika atómu. 6. Stavba atómov Fyzika atómu 6. Stavba atómov Pauliho vylučovací princíp Platí pre častice s polčíselným spinom: elektrón, protón, neutrón,... (My sme mali častice s s = 1/2, ale existujú aj so spinom 3/2, 5/2...) Takéto

Διαβάστε περισσότερα

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita 132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

ZÁKLADY SPEKTROSKOPIE

ZÁKLADY SPEKTROSKOPIE ZÁKLADY SPEKTROSKOPIE Doplnkový text k prednáškam predmetu Štruktúra látok (letný semester) je určený pre pedagogické kombinácie s chémiou. Tento pracovný materiál dopĺňa obsah prednášok o atómovej (a

Διαβάστε περισσότερα

CHÉMIA Ing. Iveta Bruončová

CHÉMIA Ing. Iveta Bruončová Výpočet hmotnostného zlomku, látkovej koncentrácie, výpočty zamerané na zloženie roztokov CHÉMIA Ing. Iveta Bruončová Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH

6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6. Otázky Definujte pojem produkčná funkcia. Definujte pojem marginálny produkt. 6. Produkčná funkcia a marginálny produkt Definícia 6. Ak v ekonomickom procese počet

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

Základné poznatky molekulovej fyziky a termodynamiky

Základné poznatky molekulovej fyziky a termodynamiky Základné poznatky molekulovej fyziky a termodynamiky Opakovanie učiva II. ročníka, Téma 1. A. Príprava na maturity z fyziky, 2008 Outline Molekulová fyzika 1 Molekulová fyzika Predmet Molekulovej fyziky

Διαβάστε περισσότερα

AerobTec Altis Micro

AerobTec Altis Micro AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Διαβάστε περισσότερα

Fyzika atómu. 1. Kvantové vlastnosti častíc

Fyzika atómu. 1. Kvantové vlastnosti častíc Fyzika atómu 1. Kvantové vlastnosti častíc Veličiny a jednotky Energiu budeme často merať v elektrónvoltoch (ev, kev, MeV...) 1 ev = 1,602 176.10-19 C. 1 V = 1,602 176.10-19 J Hmotnosť sa dá premeniť na

Διαβάστε περισσότερα

Elektrónová štruktúra atómov

Elektrónová štruktúra atómov Verzia z 29. októbra 2015 Elektrónová štruktúra atómov Atóm vodíka a jednoelektrónové atómy Najjednoduchším atómom je atóm vodíka. Skladá sa z jadra (čo je len jediný protón) a jedného elektrónu. Atóm

Διαβάστε περισσότερα

VYŠETROVANIE VONKAJŠIEHO FOTOELEKTRICKÉHO JAVU A URČENIE PLANCKOVEJ KONŠTANTY

VYŠETROVANIE VONKAJŠIEHO FOTOELEKTRICKÉHO JAVU A URČENIE PLANCKOVEJ KONŠTANTY 45 VYŠETROVANE VONKAJŠEHO FOTOELEKTRCKÉHO JAV A RČENE PLANCKOVEJ KONŠTANTY doc. RNDr. Drahoslav Vajda, CSc. Teoretický úvod: Vonkajší fotoelektrický jav je veľmi presvedčivým dôkazom kvantovej povahy elektromagnetického

Διαβάστε περισσότερα

UNIVERZITA KONŠTANTÍNA FILOZOFA V NITRE FAKULTA PRÍRODNÝCH VIED KVANTUM. Aba Teleki Boris Lacsny ¼ubomir Zelenicky N I T R A

UNIVERZITA KONŠTANTÍNA FILOZOFA V NITRE FAKULTA PRÍRODNÝCH VIED KVANTUM. Aba Teleki Boris Lacsny ¼ubomir Zelenicky N I T R A UNIVERZITA KONŠTANTÍNA FILOZOFA V NITRE FAKULTA PRÍRODNÝCH VIED KVANTUM Aba Teleki Boris Lacsny ¼ubomir Zelenicky N I T R A 2010 Aba Teleki Boris Lacsný Ľubomír Zelenický KVANTUM KEGA 03/6472/08 Nitra,

Διαβάστε περισσότερα

Pevné ložiská. Voľné ložiská

Pevné ložiská. Voľné ložiská SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu

Διαβάστε περισσότερα

10 Základy kvantovej fyziky

10 Základy kvantovej fyziky 1 Základy kvantovej fyziky 1.1 Úvod Žiarenie absolútne čierneo telesa Látky všetkýc skupenstiev zoriate na istú teplotu vyžarujú elektromagnetické vlnenie, ktoré má pôvod v tepelnýc poyboc (kmitoc) ic

Διαβάστε περισσότερα

6, J s kg. 1 m s

6, J s kg. 1 m s 4 ELEKTRÓNOVÝ OBAL ATÓMU. PERIODICKÝ SYSTÉM PRVKOV. 4.1 Základy kvantovej (vlnovej) mechaniky Na základe teoretických úvah francúzsky fyzik L. de Broglie vyslovil myšlienku, že každá častica (nielen fotón)

Διαβάστε περισσότερα

16. Základne rovinné útvary kružnica a kruh

16. Základne rovinné útvary kružnica a kruh 16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)

Διαβάστε περισσότερα

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008) ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály

Διαβάστε περισσότερα

Zložené funkcie a substitúcia

Zložené funkcie a substitúcia 3. kapitola Zložené funkcie a substitúcia Doteraz sme sa pri funkciách stretli len so závislosťami medzi dvoma premennými. Napríklad vzťah y=x 2 nám hovoril, ako závisí premenná y od premennej x. V praxi

Διαβάστε περισσότερα

24. Základné spôsoby zobrazovania priestoru do roviny

24. Základné spôsoby zobrazovania priestoru do roviny 24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá

Διαβάστε περισσότερα

Riadenie elektrizačných sústav

Riadenie elektrizačných sústav Riaenie elektrizačných sústav Paralelné spínanie (fázovanie a kruhovanie) Pomienky paralelného spínania 1. Rovnaký sle fáz. 2. Rovnaká veľkosť efektívnych honôt napätí. 3. Rovnaká frekvencia. 4. Rovnaký

Διαβάστε περισσότερα

2. RTG. ŽIARENIE A JEHO DIFRAKCIA 2.1. Zdroj a charakteristika rtg. žiarenia

2. RTG. ŽIARENIE A JEHO DIFRAKCIA 2.1. Zdroj a charakteristika rtg. žiarenia 2. RTG. ŽIARENIE A JEHO DIFRAKCIA 2.1. Zdroj a charakteristika rtg. žiarenia Röntgenové (rtg) žiarenie (lúče X) predstavuje časť elektromagnetického spektra, ktoré spadá medzi ultrafialové svetlo a gama

Διαβάστε περισσότερα

Z čoho sa svet skladá? Čo ho drží pokope?

Z čoho sa svet skladá? Čo ho drží pokope? 4 ŠTANDARDNÝ MODEL 4.1 História Počiatkom všetkých vied je úžas nad tým, čím veci sú a čo sú. Aristoteles Z čoho sa svet skladá? Čo ho drží pokope? Odpovede na tieto otázky, na dnešnej úrovni nášho poznania,

Διαβάστε περισσότερα

u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.

u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore. Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.

Διαβάστε περισσότερα

4. JEDNODUCHÉ KVANTOVO-MECHANICKÉ SYSTÉMY - FYZIKÁLNY PRÍSTUP

4. JEDNODUCHÉ KVANTOVO-MECHANICKÉ SYSTÉMY - FYZIKÁLNY PRÍSTUP 4. JEDNODUCHÉ KVANTOVO-MECHANICKÉ SYSTÉMY - FYZIKÁLNY PRÍSTUP Samozdružený operátor  sa dá napísať pomocou jeho vlastných čísiel a j a jeho vlastných stavov a j ako  = a j a j a j, (4.1) j kde súčet

Διαβάστε περισσότερα

PRIEMER DROTU d = 0,4-6,3 mm

PRIEMER DROTU d = 0,4-6,3 mm PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

3. VYUŽITIE ELEKTROMAGNETICKÉHO ŽIARENIA V ANALYTICKEJ CHÉMII

3. VYUŽITIE ELEKTROMAGNETICKÉHO ŽIARENIA V ANALYTICKEJ CHÉMII 3. VYUŽITIE ELEKTROMAGNETICKÉHO ŽIARENIA V ANALYTICKEJ CHÉMII 3.1. ELEKTROMAGNETICKÉ ŽIARENIE A JEHO VLASTNOSTI Elektromagnetické žiarenie je druh energie, ktorá sa šíri priestorom postupným periodickým

Διαβάστε περισσότερα

C. Kontaktný fasádny zatepľovací systém

C. Kontaktný fasádny zatepľovací systém C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový

Διαβάστε περισσότερα

4. domáca úloha. distribučnú funkciu náhodnej premennej X.

4. domáca úloha. distribučnú funkciu náhodnej premennej X. 4. domáca úloha 1. (rovnomerné rozdelenie) Električky idú v 20-minútových intervaloch. Cestujúci príde náhodne na zastávku. Určte funkciu hustoty rozdelenia pravdepodobnosti a distribučnú funkciu náhodnej

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

PRÍPRAVA NA VYUČOVACIU HODINU CHÉMIE

PRÍPRAVA NA VYUČOVACIU HODINU CHÉMIE Gymnázium Exnárova 10, Košice PRÍPRAVA NA VYUČOVACIU HODINU CHÉMIE 3. hodina Meno vyučujúcej: RNDr. Marcela Vladimírová Dátum:... Ročník a trieda:... Téma vyučovacej hodiny: RÁDIOAKTIVITA Výchovno-vzdelávací

Διαβάστε περισσότερα

Funkcie - základné pojmy

Funkcie - základné pojmy Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny

Διαβάστε περισσότερα

Trapézové profily Lindab Coverline

Trapézové profily Lindab Coverline Trapézové profily Lindab Coverline Trapézové profily - produktová rada Rova Trapéz T-8 krycia šírka 1 135 mm Pozink 7,10 8,52 8,20 9,84 Polyester 25 μm 7,80 9,36 10,30 12,36 Trapéz T-12 krycia šírka 1

Διαβάστε περισσότερα

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3 ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v

Διαβάστε περισσότερα

1. HMOTA A JEJ VLASTNOSTI

1. HMOTA A JEJ VLASTNOSTI CHÉMIA PRE STAVEBNÝCH INŽINIEROV 1. HMOTA A JEJ VLASTNOSTI FORMY HMOTY a/ LÁTKY - majú korpuskulárnu (časticovú) štruktúru; skladajú sa z častíc ktoré majú nenulovú kľudovú hmotnosť. Medzi látkové formy

Διαβάστε περισσότερα

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv

Διαβάστε περισσότερα

7 Derivácia funkcie. 7.1 Motivácia k derivácii

7 Derivácia funkcie. 7.1 Motivácia k derivácii Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických

Διαβάστε περισσότερα

Odporníky. 1. Príklad1. TESLA TR

Odporníky. 1. Príklad1. TESLA TR Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L

Διαβάστε περισσότερα

Motivácia pojmu derivácia

Motivácia pojmu derivácia Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.2 Vzdelávacia

Διαβάστε περισσότερα

Goniometrické substitúcie

Goniometrické substitúcie Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať

Διαβάστε περισσότερα

2. Dva hmotné body sa navzájom priťahujú zo vzdialenosti r silou 12 N. Akou silou sa budú priťahovať zo vzdialenosti r/2? [48 N]

2. Dva hmotné body sa navzájom priťahujú zo vzdialenosti r silou 12 N. Akou silou sa budú priťahovať zo vzdialenosti r/2? [48 N] Gravitačné pole 1. Akou veľkou silou sa navzájom priťahujú dve homogénne olovené gule s priemerom 1 m, ktoré sa navzájom dotýkajú? Hustota olova je 11,3 g cm 3. [2,33 mn] 2. Dva hmotné body sa navzájom

Διαβάστε περισσότερα

Biofyzika a radiológia

Biofyzika a radiológia Biofyzika a radiológia 2 Obsah Obsah 4 1 Základný matematický aparát a fyzikálne konvencie 5 1.1 Vedecké značenie a práca s číslami............... 5 1.2 Číselná symbolika......................... 7 1-1

Διαβάστε περισσότερα

FYZIKA A SÚČASNÁ SPOLOČNOSŤ

FYZIKA A SÚČASNÁ SPOLOČNOSŤ Trnavská univerzita v Trnave Pedagogická fakulta FYZIKA A SÚČASNÁ SPOLOČNOSŤ Július Krempaský Žaneta Gerhátová Trnava 014 Trnavská univerzita v Trnave Pedagogická fakulta Recenzenti: doc. RNDr. Anna. Danihelová,

Διαβάστε περισσότερα

CHÉMIA PRE BIOLÓGOV ŠTUDIJNÝ TEXT

CHÉMIA PRE BIOLÓGOV ŠTUDIJNÝ TEXT CHÉMIA PRE BIOLÓGOV ŠTUDIJNÝ TEXT Mária Linkešová, Ivona Paveleková CHÉMIA AKO PRÍRODNÁ VEDA Chémia je prírodná veda, ktorá študuje štruktúru atómov, molekúl a látok z nich utvorených, sleduje ich vlastnosti

Διαβάστε περισσότερα

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523

Διαβάστε περισσότερα

Vzorce a definície z fyziky 3. ročník

Vzorce a definície z fyziky 3. ročník 1 VZORCE 1.1 Postupné mechanické vlnenie Rovnica postupného mechanického vlnenia,=2 (1) Fáza postupného mechanického vlnenia 2 (2) Vlnová dĺžka postupného mechanického vlnenia λ =.= (3) 1.2 Stojaté vlnenie

Διαβάστε περισσότερα

VŠEOBECNÁ A ANORGANICKÁ CHÉMIA

VŠEOBECNÁ A ANORGANICKÁ CHÉMIA VŠEOBECNÁ A ANORGANICKÁ CHÉMIA RNDr. Erik Rakovský, PhD. CH2-211 http://anorganika.fns.uniba.sk 1. VYMEDZENIE POJMU CHÉMIE Látka skladá sa z častíc s nenulovou pokojovou hmotnosťou (m 0 0), napr. súbory

Διαβάστε περισσότερα

URČENIE MOMENTU ZOTRVAČNOSTI FYZIKÁLNEHO KYVADLA

URČENIE MOMENTU ZOTRVAČNOSTI FYZIKÁLNEHO KYVADLA 54 URČENE MOMENTU ZOTRVAČNOST FYZKÁLNEHO KYVADLA Teoretický úvod: Fyzikálnym kyvadlom rozumieme teleso (napr. dosku, tyč), ktoré vykonáva periodický kmitavý pohyb okolo osi, ktorá neprechádza ťažiskom.

Διαβάστε περισσότερα

Návrh vzduchotesnosti pre detaily napojení

Návrh vzduchotesnosti pre detaily napojení Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová

Διαβάστε περισσότερα

7 ŠPECIÁLNA TEÓRIA RELATIVITY

7 ŠPECIÁLNA TEÓRIA RELATIVITY 7 ŠPECIÁLNA TEÓRIA RELATIVITY Podľa platných učebných osnov (z roku 1997) sú základy špeciálnej teórie relativity (ďalej len ŠTR) len rozširujúcim učivom. Preto si dovolíme výklad len fundamentálnych myšlienok

Διαβάστε περισσότερα

Testové otázky ku skúške z predmetu Fyzika pre chemikov

Testové otázky ku skúške z predmetu Fyzika pre chemikov Očakávaná odpoveď: (s) slovná matematická vzorec (s,m) kombinovaná (g) grafická - obrázok Testové otázky ku skúške z predmetu Fyzika pre chemikov 1. Vysvetlite fyzikálny zmysel diferenciálu funkcie jednej

Διαβάστε περισσότερα

1. Ionizujúce žiarenie (zdroje- alfa, beta, gama, neutrónové, rtg. žiarenie, fyzikálne vlastnosti žiarenia, zákony premeny)

1. Ionizujúce žiarenie (zdroje- alfa, beta, gama, neutrónové, rtg. žiarenie, fyzikálne vlastnosti žiarenia, zákony premeny) 1. Ionizujúce žiarenie (zdroje- alfa, beta, gama, neutrónové, rtg. žiarenie, fyzikálne vlastnosti žiarenia, zákony premeny) Ionizujúce žiarenie je schopné pri prechode prostredím spôsobiť jeho ionizáciu,

Διαβάστε περισσότερα

1. INFRAČERVENÁ SPEKTROSKOPIA

1. INFRAČERVENÁ SPEKTROSKOPIA ÚVOD Posledné roky sa vynašlo množstvo nových materiálov. Častým problémom však býva otázka, jeho životnosti, kompatibility s inými materiálmi, chemická agresia voči iným látkam a naopak. S týmto súvisia

Διαβάστε περισσότερα

Gramatická indukcia a jej využitie

Gramatická indukcia a jej využitie a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)

Διαβάστε περισσότερα

Modelovanie dynamickej podmienenej korelácie kurzov V4

Modelovanie dynamickej podmienenej korelácie kurzov V4 Modelovanie dynamickej podmienenej korelácie menových kurzov V4 Podnikovohospodárska fakulta so sídlom v Košiciach Ekonomická univerzita v Bratislave Cieľ a motivácia Východiská Cieľ a motivácia Cieľ Kvantifikovať

Διαβάστε περισσότερα

Hydromechanika II. Viskózna kvapalina Povrchové napätie Kapilárne javy. Doplnkové materiály k prednáškam z Fyziky I pre EF Dušan PUDIŠ (2013)

Hydromechanika II. Viskózna kvapalina Povrchové napätie Kapilárne javy. Doplnkové materiály k prednáškam z Fyziky I pre EF Dušan PUDIŠ (2013) Hyomechanika II Viskózna kvaaina Povchové naäie Kaiáne javy Donkové maeiáy k enáškam z yziky I e E Dušan PUDIŠ (013 Lamináne vs. Tubuenné úenie Pi úení eánej kvaainy ôsobia mezi voma susenými vsvami i

Διαβάστε περισσότερα

O matematike, fyzike a vôbec (fyzika v kocke)

O matematike, fyzike a vôbec (fyzika v kocke) O matematike, fyzike a vôbec (fyzika v kocke) Samuel Kováčik Commenius University samuel.kovacik@gmail.com 20. septembra 2013 Samuel Kováčik (KTF FMFI) mat-fyz 20. septembra 2013 1 / 42 Úvod O čom sa buďeme

Διαβάστε περισσότερα

LR(0) syntaktické analyzátory. doc. RNDr. Ľubomír Dedera

LR(0) syntaktické analyzátory. doc. RNDr. Ľubomír Dedera LR0) syntaktické analyzátory doc. RNDr. Ľubomír Dedera Učebné otázky LR0) automat a jeho konštrukcia Konštrukcia tabuliek ACION a GOO LR0) syntaktického analyzátora LR0) syntaktický analyzátor Sám osebe

Διαβάστε περισσότερα

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH

Διαβάστε περισσότερα

Fyzikálna olympiáda 54. ročník, 2012/2013 školské kolo kategória A zadanie úloh

Fyzikálna olympiáda 54. ročník, 2012/2013 školské kolo kategória A zadanie úloh Fyzikálna olympiáda 54. ročník, 202/203 školské kolo kategória A zadanie úloh. Raketa Raketa s celkovou začiatočnou hmotnosťou M 0 = 0 kg je vypustená zvislo nahor z povrchu Zeme s nulovou začiatočnou

Διαβάστε περισσότερα

Ján Pišút Rudolf Zajac O ATÓMOCH A KVANTOVANÍ

Ján Pišút Rudolf Zajac O ATÓMOCH A KVANTOVANÍ Ján Pišút Rudolf Zajac O ATÓMOCH A KVANTOVANÍ Bratislava 010 Kniha uvádza základné poznatky z elementárnej kvantovej mechaniky bez náročného matematického aparátu. Nájdeme v nej aj prehľad o historickom

Διαβάστε περισσότερα

Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana.

Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana. Spojité rozdelenia pravdepodobnosti Pomôcka k predmetu PaŠ Strana z 7 RNDr. Aleš Kozubík, PhD. 6. marca 3 Zoznam obrázkov Rovnomerné rozdelenie Ro (a, b). Definícia.........................................

Διαβάστε περισσότερα

3.2 PET ako ukážka modernej fyziky

3.2 PET ako ukážka modernej fyziky Cenou, ktorú však fyzici za to museli zaplatiť, bolo, že veľa pojmov a predstáv klasickej fyziky stratilo zmysel alebo nadobudlo nový ak sa vzďaľujeme od oblasti javov našej každodennej skúsenosti. Napríklad

Διαβάστε περισσότερα

MIKROSVET A KVANTOVÁ FYZIKA

MIKROSVET A KVANTOVÁ FYZIKA MIKROSVET A KVANTOVÁ FYZIKA vlnovo-časticový dualizmus, princíp neurčitosti kvantovomechanický stav častice, vlnová funkcia stredné hodnoty, operátory a meranie fyzikálnych veličín Schrödingerova rovnica

Διαβάστε περισσότερα

Analytická geometria pre tých, ktorí jej potrebujú rozumieť

Analytická geometria pre tých, ktorí jej potrebujú rozumieť Škola pre Mimoriadne Nadané Deti a Gymnázium, Teplická 7, 831 02 Bratislava Anino BELAN Analytická geometria pre tých, ktorí jej potrebujú rozumieť učebný text pre septimu osemročného gymnázia BRATISLAVA

Διαβάστε περισσότερα