HIPOTALAMUS Prof.dr Gordana Maširevi-Draškovi. Hipotalamus je centar koji upravlja: svim vegetativnim i veinom endokrinih procesa u telu,
|
|
- Ἐπίκτητος Αλεξανδρίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 HIPOTALAMUS Prof.dr Gordana Maširevi-Draškovi Hipotalamus je centar koji upravlja: svim vegetativnim i veinom endokrinih procesa u telu, pa je tako najznaajniji organ u homeostatskoj kontroli unutrašnje sredine. Znaajno je istai da se hipotalamus nalazi u grupi cirkumventrikularnih organa koje ine: - neurohipofiza i eminentio mediana, - area postrema, - organum vasculosum laminae terminalis (OVLT) i - subfornikalni organ (SFO) a koji su izvan krvno-moždane barijere. Ser Charles Sherrington je pre mnogo godina nazvao hipotalamus glavenom ganglijom autonomnog nervnog sistema. ovek je homeotermna životinja zahvaljujui grupi refleksnih odgovora koje integriše hipotalamus da održi telesnu temperaturu u vrlo uskim granicama uprkos velikih varijacija u temperaturi spoljašnje sredine. Termoregulacioni odgovori u oveka ukljuuju: - autonomne, - somatske, - endokrine i - bihevioralne promene. Termoreceptori su smešteni u koži (prvenstveno za hladno), dubokim tkivima, kimenoj moždini i drugim moždanim regionima ukljuujui hipotalamus (prvenstveno za toplo). Termoreceptori itaju temperaturu tela i šalju informacije u hipotalamus. Hipotalamus uporeuje temperaturu tela sa baždarnom takom (set-point) i pokree termoregulaciono podešavanje lokalnim i opštim refleksnim odgovorima: ako je temperatura tela ispod baždarne take, zadnji hipotalamus aktivira mehanizme za stvaranje toplote (povean metabolizam, drhtanje, vazokonstrikcija krvnih sudova kože); ako je temperatura tela iznad baždarne take, prednji hipotalamus aktivira mehanizme za odavanje toplote (vazodilatacija krvnih sudova kože, znojenje). Znai, hladnoa pokree refleksne odgovore preko zadnjeg hipotalamusa (centar za hladno) a toplota preko prednjeg hipotalamusa (centar za toplo). Serotonin je sinaptiki medijator u centrima koje aktivira hladnoa i koji stvaraju toplotu a noradrenalin u centrima koje aktivira toplota i koji poveaavaju odavanje toplote. Pirogeni, kako egzogeni (mikroorganizmi), tako i endogeni podižu baždarnu taku temperature, prednji hipotalamus to ita kao sniženu temperaturu tela i aktivira mehanizme za stvaranje toplote. Endogeni pirogeni (Eps) su citokini (Il-1, Il-6, β-ifn, γ- IFN, i TNF-α) koje proizvode monociti i makrofage. Ovi citokini su polipeptidi i ne mogu proi krvno-moždanu barijeru. Oni deluju na organum vasculosum laminae terminalis (OVLT) koji aktivira preoptiko podruje hipotalamusa. Pored toga, infekcija
2 stimuliše proizvodnju citokina u CNS koji onda deluju direktno na termoregulacione centre. Hipotalamus je tesno povezan sa limbikim sistemom, retikularnom formacijom i preko talamusa sa cerebralnim korteksom. Sledstveno tome, hormonska ravnoteža nije isto vegetativna regulacija, ve je povezana sa: ciklusom budnost-spavanje i sa psihikim faktorima i emocijama (stres može uzrokovati izostanak menstrualnog krvarenja) Hipotalamus može regulisati hormonske, somatske i nervne procese (koji su pod njegovim uticajem) na takav nain da organizam pokazuje odbrambeno ponašanje (alarmna reakcija), nutritivno ponašanje (reakcije povezane sa hranjenjem i varenjem), termoregulacione ponašanje, ponašanje povezano sa reprodukcijom jedinke. U hipotalamusu se odabira «programa» koji odreuje vrstu ponašanja, tj. aktiviraju se hormoni, autonomni i somatski nervni sistem kao «orue» za aktivaciju ili inhibiciju odgovarajueg perifernog organa ili strukture. Odbrambeno ponašanje (reakcija napada ili povlaenja) ukljuuje povean protok krvi kroz mišie, porast krvnog pritiska, frekvence respiracije, vazokonstrikciju u gastrointestinalnom traktu, itd. Slian program se aktivira tokom fizikog rada. Porast krvnog pritiska se pojavljuje i tokom hranjenja, mada je u ovom sluaju protok krvi kroz gastrointestinalni trakt povean a kroz mišie smanjen. Seksualni odgovor i reprodukcija ukljuuju centralnu kontrolu polnog odnosa, neuronske mehanizme koji posreduju seksualnu aktivnost, hormonsku regulaciju trudnoe itd. Limbiki sistem reguliše uroeno i steeno ponašanje («izbor programa»), iz njega potiu naše nagonsko ponašanje, motivacija i emocije («unutrašnji svet»). Postoje reciprone veze (lateralnog) hipotalamusa (uglavnom»prizivanje programa») sa temporalnim i frontalnim korteksom koje su znaajne za integraciju (determinacija ponašanja) percepcije i procenu signala iz «spoljašnjeg sveta» sa sadržajem memorije. Anatomski hipotalamus ne pripada limbikom sistemu. Funkcionalno hipotalamus je neodvojiv deo limbikog sistema, jer on upravlja ekspresijom emocija (strah, bes, radost, tuga) tj. fizikim komponentama emocija. Telesne funkcije veine, ako ne i svih živih bia pokazuju ritmike fluktuacije u trajanju od oko 24 asa, tj. one su cirkadijalne (circa oko + dia dan ). Cirkadijalni ritmovi su sinhronizovani sa ciklusom svetlosti u spoljašnjoj sredini: dan no. U sisara, ukljuujui i oveka, cirkadijalni ritam upravlja luenjem hormona (ACTH, hormona rasta, melatonina), ciklusom budnost-spavanje, ciklusom telesne temperature, obrascem aktivnosti (diurnalni i nokturalni organizmi).
3 Generator ovih ritmova ( biološki asovnik ) su suprahijazmatska jedra hipotalamusa, po jedno sa obe strane optike hijazme. Iz hipotalamusa, nervni i endokrini putevi upravljaju cirkadijalnim ritmovima telesnih funkcija. Aferentni signali koji usklauju cirkadijalne ritmove sa ciklusom svetlosti dolaze iz oiju retinohipotalamikim vlaknima koja prolaze direktno iz optike hijazme do suprahijazmatskih jedara. Suprahijazmatska jedra primaju i znaajnu serotonergiku inervaciju iz rafe jedara ali je uloga ovih jedara na biološki asovnik još uvek nepoznata. Regulaciju hranjenja kontrolišu brojni faktori; mnogi od njih još uvek nisu dovoljno objašnjeni i ispitani, ali je uloga hipotalamusa nedvosmisleno dokazana. Prikupljeni su brojni podaci o genima, peptidima, neurotransmiterima i receptorima u hipotalamusu i susednim podrujima koji su ukljueni u kontrolu uzimaanja hrane. Hipotalamika regulacija hranjenja zavisi od interakcije dva podruja: lateralnog centra za hranjenje i medijalnog centra za sitost. Centar za hranjenje je hronino aktivan, a njegovu aktivnost prolazno inhibira centar za sitost. Izgleda da ovaj centar ima baždarnu taku prema kojoj hipotalamus kontroliše uzimanje hrane. Uzimanje hrane poveavaju neuropeptid Y, melanin-koncentrišui hormon, orexin-a i orexin-b; a inhibiraju pro-opiomelanokortin (POMC), CRH, noradrenalin, adrenalin, serotonin, itd. Amfetamin i srodna jedinjenja se koriste kliniki za suzbijanje apetita delujui prvenstveno tako što oslobaaju noradrenalin u CNS. Hipotalamus kontroliše homeostazu vode: - stvaranjem oseaja žei i - kontrolom izluivanja vode putem bubrega. Pijenje regulišu osmolalnost plazme i zapremina ekstracelularne tenosti (ECT). Osmolalnost deluje na osmoreceptore smeštene u prednjem hipotalamusu. Smanjenje zapremine ECT uzrokuje že jednim delom, posredstvom sistema reninangiotenzin. Angiotenzin II deluje na subfornikalni organ i organum vasculosum laminae terminalis (OVLT), specijalizovana receptorska podruja u diencefalonu, koja onda stimuliše moždane regione povezane sa žei. Ova dva podruja pripadaju cirkumventrikularnim organima koji su izvan krvno-moždane barijere. Centralni nervni sistem preko senzornih organa prima neprekidno informacije o promenama u unutrašnjoj i spoljašnjoj sredini organizma i pokree efektorske mehanizme da prilagodi organizam tim promenama. Pored somatskih i autonomnih u efektorske mehanizme ubrajamo i endokrini sistem. Hipotalamus kontroliše luenje hormona hipofize: zadnji režanj hipofize (neurohipofizu) nervnim putem, a prednji režanj hipofize (adenohipofizu) hipotalamusnim hormonima koje lui u hipotalamo-hipofizni portalni sistem. Samo oni hipotalamusni hormoni koji regulišu luenje adenohipofize nazivaju se hipofizeotropni hormoni. Eminentio mediana, deo hipotalamusa izvan krvno-moždane barijere, lui u primarni kapilarni pleksus hipofizeotropne hormone (oslobaajui i inhibirajui hormoni) koji
4 kontrolišu luenje prednjeg režnja hipofize. Portalne vene grade sekundarni kapilarni pleksus koji snabdeva 90% krvi za elije prednje hipofize. Adenohipofiza lui stimulišue hormone koji upravljaju radom ciljnih endokrinih organa (tireoidna žlezda, adrenalni korteks i gonade). Endokrine žlezde lue hormone koji pored dejstva na ciljne organe, deluju i na hipotalamo-hipofizni sistem i smanjuju luenje pituitarnih tropnih hormona (negativna povratna sprega). Tako se formira model hipotalamo-hipofiza-ciljna žlezda kao mehanizam endokrine kontrole homeostaze. Nervna kontrola pituitarne žlezde ostvaruje se neurohumoralnom sekrecijom specijalizovanih neurosekretornih neurona (peptidergiki neuroni). Neurosekretorni neuroni imaju dve uloge: funkcionišu kao tipini neuroni: stvaraju i provode akcione potencijale funkcionišu kao endokrine žlezde: sintetišu neurohormone koji se aksoplazmatskim transportom (vezani za proteinske nosae neurofizine) prenose i skladište u akson terminalima u obliku sinaptikih vezikula. U odgovoru na adekvatni stimulus neurosekretorni neuroni okidaju akcione potencijale koji prazne sinaptike vezikule (Ca 2+ posredovana egzocitoza) i oslobaaju neurohormone bilo direktno u sistemsku cirkulaciju (neurohipofiza) ili u portalni sistem (hipofizeotropni neuroni koji sintetišu i oslobaaju neurohormone u primarni pleksus hipofiznog portalnog sistema). U oveka, neurosekretorni neuroni su prisutni u hipotalamusu gde su grupisani u dve odvojene populacije elija koje lue neurohormone: magnocelularni neurosekretorni sistem ine supraoptika i paraventrikularna jedra koja stvaraju zajedniki supraoptikohipofizni trakt. Magnocelularni neuroni sintetišu i oslobaaju neurohormone: antidiuretski hormon (ADH) i oksitocin. parvicelularni neurosekretorni sistem ine neurosekretorni neuroni tuberoinfundibularnog trakta iji se akson terminali završavaju direktno na kapilarima portalnih sudova eminencije medijane u koje sekretuju hipofizeotropne hormone. Oni predstavljaju zajedniki završni put neuroendokrine regulacije. Parvicelularni neurosekretorni neuroni su uglavnom peptidergiki sa izuzetkom dopaminergikih neurosekretornih neurona koji sintetišu i oslobaaju prolaktin-inhibirajui faktor (PIF). Monoaminergiki neuroni mezencefalona i donjeg dela moždanog stabla prenose informacije u magnocelularni i parvicelularni neurosekretorni sistem. Monoaminergiki neuroni koji inervišu parvicelularne neurone proizvode i lue biogene amine koji kontrolišu oslobaanje hipofizeotropnih hormona. Funkciju magnocelularnog neurosekretornog sistema kontrolišu holinergiki i noradrenergiki neuroni: - acetilholin (ACh) stimuliše oslobaanje ADH i oksitocina; - noradrenalin inhibira luenje ADH i oksitocina. Kako luenje magnocelularnih i parvicelularnih peptidergikih neurona regulišu biogeni amini, neurosekretorni neuroni se mogu posmatrati i kaao neuroefektorske elije. Antidiuretski hormon (ADH) vrši humoralnu kontrolu fakultativne reapsorpcije vode i predstavlja glavni faktor u regulaaciji homeostaze vode u organizmu. Glavno mesto dejstva ADH membrane glavnih elija kortikalnih i medularnih sabirnih kanalia gde
5 poveava permeabilnost tih membrana za vodu. Pored toga, ADH smanjuje protok krvi kroz medulu bubrega. ADH stimuliše oslobaanje adrenokortikotropnog hormona (ACTH) iz adenohipofize. Oksitocin stimuliše kontrakcije glatkih mišia: - mlene žlezde (mioepitelne elije) i omoguava ejekciju mleka (refleks naviranja mleka) i - uterusa (miometrijum). Progesteron štiti gravidni uterus od dejstva oksitocina. Oksitocin stimuliše kontrakcije uterusa tokom poroaja i koristi se u akušerstvu za indukciju poroaja. Prof.dr Gordana Maširevi-Draškovi
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
ULOGA HIPOTALAMUSA U SVEUKUPNOJ KONTROLI HOMEOSTAZE
ULOGA HIPOTALAMUSA U SVEUKUPNOJ KONTROLI HOMEOSTAZE INTEGRATIVNE ULOGE HIPOTALAMUSA II Endokrine funkcije I ANS HIPOTALAMUS III Homeostatski kontrolni centri V Biološki ritmovi IV Ponašanje: nagonsko i
FAKULTET ZA SPECIJALNU EDUKACIJU I REHABILITACIJU Medicinska fiziologija - predavanja. Endokrini sistem. Doc. dr Maja Milovanović
FAKULTET ZA SPECIJALNU EDUKACIJU I REHABILITACIJU Medicinska fiziologija - predavanja Endokrini sistem Doc. dr Maja Milovanović Hormoni Endokrine žlezde luče hemijske supstance koje se zovu hormoni. Endokrine
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Dominantna uloga bubrega u dugoronoj regulaciji arterijskog pritiska:
Dominantna uloga bubrega u dugoronoj regulaciji arterijskog pritiska: RAAS, kalikrein-kinin sistem, Eikosanoidni sistem - Skraena verzija predavanja - Doc. Dr Zvezdana Koji Institut za fiziologiju Decembar,
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Hormoni ženskog reproduktivnog sistema
Hormoni ženskog reproduktivnog sistema INHIBINI ZREO FOLIKUL ADENOHIPOFIZA MATURACIJA FOLIKULA FSH LH GnRH LH OVARIJUM FSH Regulacija aktivnosti endokrine funkcije gonada ESTROGENI PROGESTERON KORPUS
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
ENDOKRINI SISTEM ČOVEKA. Doc. dr Snežana Marković Institut za biologiju i ekologiju Prirodno-matematički fakultet Univerzitet u Kragujevcu
ENDOKRINI SISTEM ČOVEKA Doc. dr Snežana Marković Institut za biologiju i ekologiju Prirodno-matematički fakultet Univerzitet u Kragujevcu ENDOKRINI SISTEM HORMONI Kontrolni sistemi organizma: nervni i
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
REGULACIJA ARTERIJSKOG KRVNOG PRITISKA
REGULACIJA ARTERIJSKOG KRVNOG PRITISKA Krvni sudovi - uloge elastične arterije Aortna valvula Levo srce Levi ventrikul mitralna valvula Levi atrijum plućne vene Arteriole kontrola protoka i pritiska Pluća
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija
2. Homeostaza je a) održavanje ravnotežnog stanja unutrašnje sredine organizma b) održavanje dinamičke stabilnosti unutrašnje sredine organizma
1. Endokrine žlezde svoje produkte sekretuju u a) unutrašnju sredinu organizma b) spoljašnju sredinu organizma 2. Homeostaza je a) održavanje ravnotežnog stanja unutrašnje sredine organizma b) održavanje
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
HORMONI. Prof. Marina Stojanov
HORMONI Prof. Marina Stojanov UDŽBENIK Podela : Razlika u strukturi, načinu transporta, metabolizmu i mehanizmu dejstva. 1. Steroidi (kortizol, polni hormoni). Hidrofobni, cirkulišu reverzibilno vezani
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
5 Ispitivanje funkcija
5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom.
1 Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom. Pravilo 2. Svaki atribut entiteta postaje atribut relacione šeme pod istim imenom. Pravilo 3. Primarni ključ entiteta postaje
NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
ZBIRKA POTPUNO RIJEŠENIH ZADATAKA
**** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka
1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje
Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.
Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Doc. dr Snežana Marković
SAN. EMOCIJE. Doc. dr Snežana Marković Institut za biologiju i ekologiju Prirodno-matematički fakultet Univerzitet u Kragujevcu BUDNO STANJE - SAN BUDNO STANJE (1) direktna stimulacija osnovnog nivoa aktivnosti
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА
ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА empertur sežeg beton menj se tokom remen i zisi od ećeg broj utijnih prmetr: Početne temperture mešine (n izsku iz mešie), emperture sredine, opote hidrtije ement, Rzmene topote
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
10. STABILNOST KOSINA
MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
Zadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.
ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
HORMONSKA REGULACIJA METABOLIZMA
HORMONSKA REGULACIJA METABOLIZMA HORMONSKA REGULACIJA METABOLIZMA - Definicija - Bazalni metabolizam - Faktori od uticaja: METABOLIZAM - Zastupljenost skeletnih mišića u ukupnoj telesnoj masi - Uzrast
Sistem sučeljnih sila
Sistm sučljnih sila Gomtrijski i analitički način slaganja sila, projkcija sil na osu i na ravan, uslovi ravnotž Sistm sučljnih sila Za sistm sila s kaž da j sučljni ukoliko sil imaju zajdničku napadnu
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
TEORIJA BETONSKIH KONSTRUKCIJA 79
TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum
27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.
2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =
( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se