Oblasti izučavanja. VIII.1. Osnovni principi izvlačenja uzoraka. VIII. Izvlačenje uzoraka IZVLAČENJE UZORAKA 04/12/2014

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Oblasti izučavanja. VIII.1. Osnovni principi izvlačenja uzoraka. VIII. Izvlačenje uzoraka IZVLAČENJE UZORAKA 04/12/2014"

Transcript

1 Oblasti izučavanja IZVLAČENJE UZORAKA 1. Priroda i obuhvat marketinških istraživanja 2. Izvori podataka u marketinškim istraživanjima 3. Faze istraživačkog procesa 4. Eksploratorna istraživanja 5. Deskriptivna istraživanja 6. Merenje stavova i dizajniranje upitnika 7. Uzročna istraživanja: Izvođenje eksperimenata 8. Izvlačenje uzoraka, vrste uzoraka 9. Analiza podataka 2 VIII. Izvlačenje uzoraka 1. Osnovni principi izvlačenja uzoraka Izvlačenje slučajnih uzoraka Izvlačenje neslučajnih uzoraka 2. Veličina uzorka i statistička teorija VIII.1. Osnovni principi izvlačenja uzoraka Osnovni pojmovi Izvlačenje slučajnih uzoraka Izvlačenje neslučajnih uzoraka 3 4 1

2 Pojmovi Osnovni pojmovi Populacija skup svih objekata koji poseduju određene zajedničke karakteristike u odnosu na konkretan problem marketinškog istraživanja Popis kada se zatraže odgovori od svih ispitanika u okviru populacije Parametar pokazatelj do koga se dođe na osnovu popisa Statistički pokazatelji uzorka, ili statistika informacije (pokazatelj) do kojih se dođe na osnovu podskupa populacije 5 6 Dobar uzorak Uzorak ili popis...reprezentuje ciljnu populaciju osnovni skup...je biran na slučajan način, tj. poznate su verovatnoće izbora...je dovoljno veliki da rezultati budu pouzdani Kada se treba opredeliti za popis? Ako je sama veličina populacije mala Informacije potrebne od svakog člana populacije Visoki troškovi donošenja pogrešne odluke Postoji mogućnost velikih grešaka u izvlačenju uzorka Kada se treba opredeliti za izvlačenje uzorka? Velika populacija, visoki troškovi i potrebno vreme Veća kontrola kvaliteta Posebno kod homogenih populacija Kada popis jednostavno nije moguć 7 8 2

3 OSNOVI ZADATAK UZORKA UZORAK TREBA/MORA DA BUDE SLIKA CILJNE POPULACIJE on to jeste bez velikih problema samo kada je uzorak samoponderišući ako nije onda mora da se ponderacijom rezultat merenja na uzorku svede na sliku populacije Uzorak i populacija: U čemu je problem? Na osnovu jednog dela zaključujemo o celom Kada bi celo u svim delovima bilo isto, bilo bi svejedno iz kog dela uzimamo uzorak na osnovu koga zaključujemo o celom Sva zanimljiva pitanja i sva važna saznanja i u nauci i u svakodnevnom životu su ona koja potiču od razlika 9 10 Greške vezane za prikupljanje podataka uzorkom Razlika između stvarne vrednosti (u populaciji) i opservirane vrednosti (u uzorku) Uzoračka greška razlika je isključivo posledica izvlačenja uzorka Smanjuju se povećanjem uzorka, ali po cenu sve teže kontrole kvaliteta istraživanja, pa se povećavaju neuzoračke greške Neuzoračke greške i u popisu i uzorku (npr. greške u merenju, evidentiranju, analizi, neodgovora) Proizilaze iz različitih izvora, teže se identifikuju i kontrolišu, pa je njihovo smanjivanje prioritetnije Proces izvlačenja uzorka 1. Identifikovanje ciljne populacije 2. Određivanje uzoračkog okvira 3. Prevazilaženje razlika 4. Izbor postupka izvlačenja uzorka 5. Određivanje odgovarajuće veličine uzorka 6. Dobijanje informacija od ispitanika 7. Definisanje odnosa prema onima što se nisu odazvali 8. Generisanje informacija za potrebe donošenja odluka

4 Određivanje ciljne populacije Utvrđivanje uzoračkog okvira Proces identifikacije (potencijalnih) elemenata uzorka - uzoračkih jedinica i područja pokrivenosti: 1. Obratite pažnju na ciljeve istraživanja 2. Razmotrite alternative 3. Upoznajte svoje tržište 4. Razmotrite odgovarajuću uzoračku jedinicu 5. Jasno navedite šta nije obuhvaćeno 6. Ne preterujte sa definisanjem 7. Formulišite definiciju za višekratnu upotrebu 8. Razmotrite posebne pogodnosti 13 Uzorački okvir je spisak članova populacije koji se koristi za dobijanje uzorka Sastavljanje spiskova za F2F Sastavljanje spiskova za telefonsko (CATI) intervjuisanje Prevazilaženje razlika između uzoračkog okvira i populacije tri problema 1. Problem podskupa 2. Problem nadskupa 3. Problem nepreklapanja 14 Izbor postupka za izvlačenje uzorka Izvlačenje slučajnih uzoraka Prost slučajan uzorak Stratifikovan uzorak Sistematski uzorak Uzorak skupina Višeetapni uzorak Izvlačenje neslučajnih uzoraka Na osnovu vrednosnog suda Na osnovu pogodnosti prigodan uzorak Na bazi kvota - kvotni uzorak Na principu grudve snega (koja se kotrlja) Uzorak tipičnih Izvlačenje slučajnih uzoraka Prost slučajan uzorak Stratifikovan uzorak Sistematski uzorak Uzorak skupina Višeetapni uzorak

5 Prost slučajan uzorak Postoji podjednaka verovatnoća da će biti izabran bilo koji član populacije, a time i svaki mogući uzorak (tablice slučajnih brojeva...). Razlikuje se sa i bez vraćanja SRSWR i SRSWoR Uzorak se izvlači na osnovu spiska (iz okvira) Balans između tačnosti i troškova povećanje efikasnosti izvlačenja uzorka (ovo je opšte pravilo o kome se vodi računa) zadržavanje istog nivoa tačnosti uz smanjenje troškova, zadržavanje istih troškova uz povećanje tačnosti, brže povećanje tačnosti od povećanja troškova i sporije smanjenje tačnosti od smanjenja troškova. Stratifikovani uzorak (1) Za unapređenje efikasnost izvlačenja uzorka se koriste informacije o podgrupama uzoračkog okvira Poboljšana efikasnost izvlačenja uzorka tako što tačnost raste brže od troškova Postupak izvlačenja u dva koraka U izradi plana izvlačenja uzorka treba potražiti prirodne podgrupe koje će biti homogenije od cele populacije, tzv. stratumi Idealno je da postoje velike razlike između, a velika sličnost unutar stratuma postiže se veća tačnost Stratifikovan uzorak (2) Uzorak skupina Homogenost unutar grupa Heterogenost između grupa Sve grupe su uključene Glavna razlika stratifikovanih uzoraka je u izboru veličine uzorka u okviru svake grupe: 1. Proporcionalni startifikovani uzorak 1. Direktno proporcionalni stratifikovani uzorak 2. Obrnuto proporcionalan stratifikovani uzorak 2. Neproporcionalni stratifikovani uzorak 19 Efikasnost izvlačenja uzorka se povećava tako što se troškovi smanjuju brže nego tačnost Postupak izvlačenja uzorka u dva koraka Populacija se deli na podgrupe skupine Heterogenost unutar, a homogenost između Bira se slučajan uzorak skupina, a opserviraju svi Korisno kada se mogu identifikovati reprezentativne podgrupe Dobijaju se relativno neprecizni uzorci jer se heterogene skupine relativno teško formiraju 20 5

6 Sistematski uzorak Sistematski se bira svaka J-ta osoba na spisku, dok se prva bira slučajno na intervalu (1, J) Efikasnost izvlačenja uzorka se povećava smanjenjem troškova uz očuvanje tačnosti. Ali efikasnost zavisi od redosleda na spisku: Ako je spisak sastavljen slučajno tačnost je ista kao kod prostog slučajnog uzorka Ako su elementi na spisku poređani u monotonom redosledu, tačnost će biti veća Ako su elementi poređani po cikličnom redosledu treba voditi računa o koraku (J) i periodu ciklusa Višeetapni dizajn: Primer uzorka područja 1. Formiranje uzorka skupina okruga Verovatnoća da neki okrug bude uključen u uzorak skupina je proporcionalna broju njegovih stanovnika 2. Dobijanje uzorka skupina gradova iz svakog odabranog okruga Verovatnoća da će grad biti izabran je proporcionalna njegovoj veličini 3. Izbor uzorka skupina blokova u svakom gradu Svaki blok se ponderiše brojem jedinica stanovanja 4. Sistematski uzorak stanova u svakom bloku i izvlači slučajan uzorak stanara svake jedinice Stanari koji žive sami imaju veću verovatnoću izbora! INPUT Greška uzorka SRSWoR, P=0.95, n=700, N=3M, err= +/- 1.6 na 5% Cluster, P=0.95, n=700, N=3M, err= +/- 2.8 na 5% FORMULA za račun uzoračke greške Incidencija Veličina n Dizajn efekt Populacija N OUTPUT C.I. 95% C.I. 99% C.I. donja C.I. gornja Estimation of SD 1.42 Estimation of 1.96*SD 2.78 Relative error 28.4 SMMRI Izvlačenje neslučajnih uzoraka Na osnovu pogodnosti Na osnovu vrednosnog suda Na bazi kvota U vidu grudve snega Istraživanje for all additional tržišta questions ask on dragisab@smmri.com

7 Izvlačenje neslučajnih uzoraka Nema potrebe za uzoračkim okvirom Nema mogućnosti da se odredi preciznost Rezultati sadrže skrivene pristrasnosti i neizvesnosti, što je gore nego kada se one znaju Koristi se u situacijama kao što su: 1. Eksplorativne faze istraživačkog projekta 2. Pred-testiranje upitnika 3. Postojanje homogene populacije 4. Slučajevi kada istraživač nema statističko znanje 5. Kada je potrebno da se posao što pre obavi Vrste neslučajnih uzoraka 1. Uzorci na bazi vrednosnih sudova 2. Uzorak formiran po principu grudve snega 3. Prigodan uzorak 4. Kvotni uzorak 5. Uzorak tipičnih Uzorci na bazi vrednosnih sudova Ekspert na osnovu sopstvenog suda identifikuje reprezentativne uzorke Veliki broj manje ili više očiglednih grešaka Ipak postoje situacije kada je preporučljivo: Izvlačenje slučajnih uzoraka fizički nije moguće ili je preterano skupo Ako uzorak treba da bude veoma mali (npr. 10) ovaj uzorak će često biti pouzdaniji od slučajnog uzorka Ponekad je korisno dobiti namerno pristrasan uzorak npr. ako se izmena proizvoda ne sviđa grupi onih koji bi inače njoj bili naklonjeni, onda... Uzorak formiran po principu grudve snega Vrsta uzorka na bazi vrednosnog suda koja je izuzetno podesna kada treba doći do malih, posebnih populacija Prvo se identifikuje jedan (ili više) član posebne populacije, koji zatim navede drugog, itd. Može se primeniti kad god treba dopreti do neke male populacije Postoji verovatnoća da će se izabrati one osobe koje su u društvenom smislu primetnije

8 Prigodni uzorak Kontaktiranje pogodnih uzoračkih jedinica Deluje neodbranjivo, što u apsolutnom smislu i jeste Ipak informacije treba oceniti ne u apsolutnom smislu već u kontekstu odlučivanja Korisno kao brza reakcija na prelim. koncept proizv. ili usluge, da li treba dalje da se razvija Nije pogodan kada pristrasnost rezultata može da ima ozbiljne ekonomske posledice, osim ako se te pristrasnosti ne mogu identifikovati Kvotni uzorak Zasnovan na vrednosnom sudu, ali uključuje minimalan broj za svaku podgrupu u populaciji Često se zasniva na demografskim podacima (geografska lokacija, starost, pol, obraz, prihod) Tako je uzorak uparen sa populacijom Time se eliminišu mnoge ozbiljne pristrasnosti Ipak ispitivači će kontaktirati one do kojih će lakše doći, koji imaju vremena, simpatični,..., što svakako uvodi pristrasnosti u rezultat Uzorak tipičnih Određuju se karakteristike ispitanika čiji se stavovi žele istražiti ( tipični predstavnik) Formuliše se trijažni upitnik da se isti identifikuju Izbor u kvazi-slučajnoj proceduri, da se rasprši uzorak Važno je da se ispitanici međusobno ne poznaju da ne bude interakcija u grupnom razgovoru Obavezno se pravi ponovna trijaža pred sam ulazak u diskusionu grupu (risk-screening) Fokus-grupe 8 tipičnih predstavnika nekog mišljenja ili posebnih grupa Veći broj grupa... obavezno Pronalaženje različitih stavova i ulaženje u motive određenog stava, ali ne i ocenjivanje proporcije prisustva stava (nema generalizacije) Veoma važna dobra selekcija ispitanika Radi kao pokvarena ploča Veza za internet Jednostrano ogledalo

9 04/12/2014 Responsmetrija: 20 do 25 ljudi gleda govor ili reklamne spotove ili javne nastupe političara i snimaju se reakcije Problemi neodgovora Neodgovor usled toga što pojedinci: Kao i za FGD ispituju se tipični 33 Baziraju se na presretanju kupaca, preko 32% svih popunjenih upitnika ili intervjua kupaca u SAD se odnose na intervjue u prodavnicama Javljaju se ozbiljni problemi u vezi sa uzorkom Jedno od ograničenja je pristrasnost kao posledica metoda korišćenog za izbor uzorka Izbor tržnog centra Izbor dela tržnog centra u kome se kupci presreću Doba dana kada se obavlja intervjuisanje Oni koji češće odlaze u kupovinu imaju veću verovatnoću izbora Pristupi smanjenju pristrasnosti usled neodgovora: 1. Unapređenje dizajna istraživanja 2. Ponovno kontaktiranje 3. Procena efekta neodgovora Izvlačenje uzorka u tržnim centrima (1) Odbijaju da odgovore, Nisu sposobni da odgovore, Nisu kod kuće, i Nisu dostupni Izvlačenje uzorka u tržnim centrima (2) 1. Izbor tržnog centra za reprezentativnost: 2. Pre svega se odnosi na domaćinstva koja žive u blizini, pa je demografija okoline važna Uzeti nekoliko gradova sa različitim karakteristikama Lokacije izvlačenja uzorka unutar tržnog centra 3. Stratifikovanje ulazne lokacije, kombinacija ponderisanih stratuma (frekvencijom lokacije) Vreme izvlačenja uzorka 4. Stratifikacija po vremenskim segmentima (radni dani, večeri, vikendi) uz ponderaciju Izvlačenje uzoraka ljudi, nasuprot poseta tržnom centru Podjednako obuhvatiti one koji kupuju često i retko, pa se može postiviti pitanje koliko često dolazite, za ponder 36 9

10 Kako prevazići nepostojanje okvira? Izbor postupka za izvlačenje uzoraka Nekoliko pitanja VIŠEFAZNA PROCEDURA Npr. za anketu mešovitih radnji ili preduzeća koja imaju interni restoran nekog tipa Izbor (PPS Probability Proportional to Size sa verovatnoćom proporcionalnom nekom poznatom parametru) jedinica prve faze, npr. mesnih zajednica Popis - pobrojavanje svih elemenata Izbor sa poznatom (npr. SRSWoR) verovatnoćom u trećoj fazi Koliko je važan trenutak? Nestabilnost subjektivnih stavova i procena => Rezultati se ponekad menjaju iz nedelje u nedelju Najpouzdaniji su trendovi 39 Najčešća pitanja: 1. Da li je uzorak reprezentativan za populaciju? (treba pitati za koji fenomen u populaciji je reprezentativan) 2. Kolika je veličina uzorka? (ne garantuje uspeh samo veličina ona smanjuje varijansu ali pristrasnost ostaje čak postaje OPASNIJA) A treba dati i odgovor: 1. Kolika je uzoračka greška i interval poverenja? (n=1500 5% je sa verovatnoćama 0,95 izmedju 3,9 i 6,1!) 2. Šta je okvir (sasečenost) koji se ocenjuje? (skoro nikada! se nema cela populacija a. popis ima grešku pokrivanja 1% do 3%, b. neregistrovana naselja...) 3. Koji su još izvori grešaka i kako su kontrolisani 40 10

11 Rezultati i interpretacija rezultata 1. Pogađanje, prognoza ili merenje? 2. Otkud razlike u rezultatima? Objašnjivo - prihvatljivo: uzorak, upitnik, momenat Opasno neprihvatljivo neadekvatnost METODOLOGIJE neprepoznavanje metodologije Pitanje veličine uzorka Praktično pitanje u marketinškim istraživanjima Istraživanje se ne može ni planirati ni sprovesti ako se ne zna veličina uzorka Ispravno određena veličina uzorka pruža dragocene informacije za donošenje razumnih odluka Direktno je povezana sa troškovima istraživanja Praktični (ad hoc) pristupi koji se koriste Formalni pristup za određivanje veličine uzorka: Pojmovi: karakteristike populacije, karakteristike uzorka, pouzdanost uzorka, interval ocene Ad hoc metodi za određivanje veličine uzorka Iskustvena pravila Sadman: svaka grupa min 100 članova, podgrupa 20 do 50, neproporcionalni uzorak Budžetska ograničenja Uporediva istraživanja Faktori koji određuju veličinu uzorka: 1. Broj podgrupa ili grupa za analizu, 2. Vrednost potrebnih informacija i potrebna tačnost, 3. Troškovi izvlačenja uzorka, i 4. Varijabilnost populacije. Karakteristike populacije - PARAMETRI Populacijska srednja vrednost, µ Populacijska varijansa, σ 2 Populacijska standardna devijacija, σ

12 Karakteristike uzorka STATISTIČKI POKAZATELJI UZORKA n X i Uzoračka srednja vrednost Uzoračka varijansa Uzoračka standardna devijacija X = 1 n s 2 = 1 n 1 i i=1 ( X i X ) s = s 2 2 Pouzdanost uzorka pojam standardne greške X Varijacija u vrednosti greškom: σ = σ X X se meri svojom standardnom n veličina uzorka Intuitivno, varijacije u vrednosti X će biti veće ukoliko je veća populacijska varijansa, σ 2 Isto tako, povećanje veličine uzorka bi trebalo da smanjuje varijacije u X Stoga se standardna greška menja sa n n Pouzdanost uzorka verovatnoće raspodele (1) Varijabla X ima normalan raspored Pretpostavlja se i da će varijacije uzoračke srednje vrednosti slediti normalan raspored X bi trebalo da bude blizu µ, i podjednako je verovatno da će biti veće ili manje od µ Verovatnoća da se X nalazi na rastojanju 1,96 σ X u odnosu na µ iznosi 0,95 Oko 95% uzoračkih srednjih vrednosti, X će biti u okviru ±1,96 standardne greške u odnosu na µ Verovatnoća je 0,90 da će se X nalaziti u okviru rastojanja 1,64 od populacijske srednje vrednosti, µ σ X 47 Pouzdanost uzorka verovatnoće raspodele (2) Čest izvor zabune je to što se ovde razmatraju dva potpuno odvojena rasporeda verovatnoće Prvi je raspored odgovora populacije, X, koga karakterišu populacijska srednja vrednost, µ, i populacijska standardna devijacija, σ Drugi je raspored X, uzorački raspored, čiju dispreziju pokazuje σ X Da bi se konceptualizovao ovaj raspored potrebno je da se zamisli veliki broj ponavljanja izvlačenja uzoraka 48 12

13 04/12/2014 Intervalne ocene (1) Uzoračka srednja vrednost X se koristi za ocenu nepoznate populacijske srednje vrednosti, µ Kako X ima drugačiju vrednost za svaki uzorak, ona nikad nije jednaka µ, već se javlja uzoračka greška, pa se ocena daje u intervalu: X ± uzoračka greška = intervalna ocena µ Veličina intervala zavisi od nivoa poverenja Za nivo poverenja od 95, intervalna ocena koja sadrži stvarnu populacijsku srednju vrednost je X ± 2σX = X ± 2σX 49 n 50 Intervalne ocene (2) Intervalne ocene (3) Ako populacijska standardna devijacija nije poznata, potrebno je da se oceni korišćenjem uzoračke standardne devijacije Intervalna ocena na nivou poverenja od 95%: X ± 2 s n = 95% interval poverenja ocene sa nepoznatim σ Zapravo, korišćenje s dodatno unosi neizvesnost, u interval poverenja ocene, za malu veličinu uzorka i za preciznu ocenu ovo se prilagođava korišćenjem trasporeda 51 Intervalna ocena populacijske sr vrednosti je: X ± zσ X n = X ± uzoračka greška z = 2 (1,96) za stepen poverenja od 95% z = 5/3 (1,64) za stepen poverenja od 90% σx = populacijska stand devijacija (s se koristi ako je nepoz) n = veličina uzorka Dakle, interval poverenja će zavisiti od tri činioca: 1. Stepen poverenja 2. Populacijska standardna devijacija 3. Veličina uzorka 52 13

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Populacija Ciljna/uzoračka populacija

Populacija Ciljna/uzoračka populacija Populacija i uzorak Sadržaj predavanja Šta je populacija, šta je uzorak a šta uzorkovanje? Statističko zaključivanje Klasifikacija uzoraka: sa i bez verovatnoće, sa i bez zamenjivanja Uzoračke raspodele

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Metod uzorka i karakteristike nekih planova

Metod uzorka i karakteristike nekih planova Metod uzorka i karakteristike nekih planova Metod uzorka nalazi primenu u mnogim oblastima ljudske aktivnosti. Metod uzorka se sastoji u ispitivanju jednog dela statističke mase (skupa, populacije) u cilju

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

3 Populacija i uzorak

3 Populacija i uzorak 3 Populacija i uzorak 1 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2 Primjer 3.1.

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Uvod Teorija odlučivanja je analitički i sistematski pristup proučavanju procesa donošenja odluka Bez obzira o čemu donosimo odluku imamo 6 koraka za

Uvod Teorija odlučivanja je analitički i sistematski pristup proučavanju procesa donošenja odluka Bez obzira o čemu donosimo odluku imamo 6 koraka za Osnovne teorije odlučivanja Uvod Teorija odlučivanja je analitički i sistematski pristup proučavanju procesa donošenja odluka Bez obzira o čemu donosimo odluku imamo 6 koraka za donošenje dobre odluke:

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Oblasti izučavanja. IX.1. Osnove analize podataka. IX. Analiza podataka UVOD U ANALIZU PODATAKA 13/11/15

Oblasti izučavanja. IX.1. Osnove analize podataka. IX. Analiza podataka UVOD U ANALIZU PODATAKA 13/11/15 Oblasti izučavanja UVOD U ANALIZU PODATAKA I. Priroda i obuhvat marketinških istraživanja II. Izvori podataka u marketinškim istraživanjima III. Faze istraživačkog procesa IV. Eksploratorna istraživanja

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Uvod u neparametarske testove

Uvod u neparametarske testove Str. 148 Uvod u neparametarske testove Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Hi-kvadrat testovi c Str. 149 Koristi se za upoređivanje dve serije frekvencija. Vrste c testa:

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće naučnim ili iskustvenim).

Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće naučnim ili iskustvenim). Str. 53;76; Testiranje statističkih hipoteza Predavač: Dr Mirko Savić savicmirko@eccf.su.ac.yu www.eccf.su.ac.yu Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

Mašinsko učenje. Regresija.

Mašinsko učenje. Regresija. Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

Izbor statističkih testova Ana-Maria Šimundić

Izbor statističkih testova Ana-Maria Šimundić Izbor statističkih testova Ana-Maria Šimundić Klinički zavod za kemiju Klinička jedinica za medicinsku biokemiju s analitičkom toksikologijom KBC Sestre milosrdnice Izbor statističkog testa Tajna dobrog

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Str

Str Str. Testiranje statističkih hipoteza Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

STATISTIKA S M E I M N I AR R 7 : METODE UZORKA

STATISTIKA S M E I M N I AR R 7 : METODE UZORKA Fakultet za menadžment u turizmu i ugotiteljtvu, Opatija Sveučilišni preddiplomki tudij Polovna ekonomija u turizmu i ugotiteljtvu Noitelj kolegija: Prof. dr. c. Suzana Marković Aitentica: Jelena Komšić

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

Testiranje statistiqkih hipoteza

Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza je vid statistiqkog zakljuqivanja koji se primenjuje u situacijama: kada se unapred pretpostavlja postojanje određene

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

3. OSNOVNI POKAZATELJI TLA

3. OSNOVNI POKAZATELJI TLA MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Populacija je skup na koji želimo da vršimo generalizaciju članovima populacije

Populacija je skup na koji želimo da vršimo generalizaciju članovima populacije Uzorkovanje Osnovni pojmovi Populacija univerzum osnovni skup statistička masa Populacija je skup na koji želimo da vršimo generalizaciju Pojedince, stvari ili događaje koji čine taj skup nazivamo članovima

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Korektivno održavanje

Korektivno održavanje Održavanje mreže Korektivno održavanje Uzroci otkaza mogu biti: loši radni uslovi (temperatura, loše održavanje čistoće...), operativne promene (promene konfiguracije, neadekvatno manipulisanje...) i nedostaci

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

SKUPOVI I SKUPOVNE OPERACIJE

SKUPOVI I SKUPOVNE OPERACIJE SKUPOVI I SKUPOVNE OPERACIJE Ne postoji precizna definicija skupa (postoji ali nama nije zanimljiva u ovom trenutku), ali mi možemo koristiti jednu definiciju koja će nam donekle dočarati šta su zapravo

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Postoji nekoliko statidtičkih testova koji koriste t raspodelu, koji se jednim imenom zovu t-testovi.

Postoji nekoliko statidtičkih testova koji koriste t raspodelu, koji se jednim imenom zovu t-testovi. Postoji nekoliko statidtičkih testova koji koriste t raspodelu, koji se jednim imenom zovu t-testovi. U SPSS-u su obradjeni: t test razlike između aritmetičke sredine osnovnog skupa i uzorka t test razlike

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Prediktor-korektor metodi

Prediktor-korektor metodi Prediktor-korektor metodi Prilikom numeričkog rešavanja primenom KP: x = fx,, x 0 = 0, x 0 x b LVM α j = h β j f n = 0, 1, 2,..., N, javlja se kompromis izmed u eksplicitnih metoda, koji su lakši za primenu

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Neparametarski testovi za dva nezavisna uzorka. Boris Glišić 208/2010 Bojana Ružičić 21/2010

Neparametarski testovi za dva nezavisna uzorka. Boris Glišić 208/2010 Bojana Ružičić 21/2010 Neparametarski testovi za dva nezavisna uzorka Boris Glišić 208/2010 Bojana Ružičić 21/2010 Neparametarski testovi Hipoteze o raspodeli obeležja se nazivaju neparametarske hipoteze, a odgovarajući testovi

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

PISMENI ISPIT IZ STATISTIKE

PISMENI ISPIT IZ STATISTIKE 1. a) Trgovina odjeće prodaje odjeću u tri različite veličine: 32% veličine S, 44% veličine M i ostatak veličine L. Pokazalo se da je postotak odjeće s greškom redom 1%, 5% i 2%. Ako je trgovina ustanovila

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... }

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... } VEROVTNOĆ - ZDI (I DEO) U računu verovatnoće osnovni pojmovi su opit i događaj. Svaki opit se završava nekim ishodom koji se naziva elementarni događaj. Elementarne događaje profesori različito obeležavaju,

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Analiza varijanse sa jednim Posmatra se samo jedna promenljiva

Analiza varijanse sa jednim Posmatra se samo jedna promenljiva ANOVA Analiza varijanse (ANOVA) Analiza varijanse sa jednim faktorom Proširena ANOVA tabela 2 Tehnike za analizu podataka Analiza varijanse sa jednim faktorom Posmatra se samo jedna promenljiva Posmatra

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Počela biostatistike, Poslijediplomski interdisciplinarni doktorski studij Molekularne bioznanosti. Molekularne bioznanosti. Molekularne bioznanosti

Počela biostatistike, Poslijediplomski interdisciplinarni doktorski studij Molekularne bioznanosti. Molekularne bioznanosti. Molekularne bioznanosti Analiza brojčanih podataka Nora Nikolac Klinički zavod za kemiju KB Sestre milosrdnice Kolegij: Počela biostatistike Statistička hipoteza postupak testiranja 1. postavljanje hipoteze: H 0, H 1 2. odabir

Διαβάστε περισσότερα