Upravljivi elektromehanički sustavi (motor s pretvaračem) s radnim mehanizmom
|
|
- Παμφιλος Αναγνώστου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Upravljivi elektroehanički sustavi (otor s pretvarače) s radni ehanizo Osnovna svrha proučavanja električnih strojeva i pripadnih energetskih pretvarača je upravljanje s različiti tipovia radnih ehanizaa u široko rasponu radnih brzina i traženi oenata, a sve zbog ispunjavanja definiranog radne (tehnološke) zadaće Pri toe se vrlo često, iz zahtjeva za veliki vrijednostia zahtijevanih oenata, ora izeđu otora i radnog ehaniza postaviti odgovarajući prijenosnik snage i gibanja, koji osigurava prilagodbu ehaničkih karakteristika otora ehanički karakteristikaa radnog ehaniza Prijer takvog prijenosnika je često korišteni zupčasti prijenosnik snage i gibanja, reduktor ili ultiplikator (ovisno da li se sanjuje ili povećava radna brzina)
2 Karakteristike otora i radnih ehanizaa Za pogon radnih ehanizaa često se koriste električki strojevi, koji električku energiju (određenu napono u i strujo i) pretvaraju u ehaničku energiju (određenu oento i brzino vrtnje ). Rado otora upravlja pretvarač, koji ia ulogu pojačala snage, te napon i struju izvora napajanja prilagođava otoru (aktuatoru) Električki aktuator ože biti znatno složeniji. Ovisno o funkciji koju obavlja on ože integrirati električni otor, ehanički prijenosnik snage i gibanja a oguće da se u to nizu prea radno ehanizu nađu i neke druge koponente (npr. ventili,) U opće je slučaju otor s radni ehanizo spojen preko ehaničkog prijenosa (zupčastog prijenosnika-reduktora ili reenice), koji prilagođava oent i brzinu vrtnje radno ehanizu.
3 r r r t t r t r t
4 Karakteristike otora i radnih ehanizaa Kada radni ehaniza obavlja translacijsko kretanje, u svojstvu ehaničkog prijenosa koristi se pužni prijenos ili nazubljena letva, koji rotacijsko kretanje otora pretvaraju u translacijsko kretanje radnog ehaniza. Kod translacijskih otora koji obavljaju translacijsko gibanje, nije potreban ehanički prijenos za spajanje s radni ehanizo. Po analogiji se u novije vrijee nastoje razviti rotacijski strojevi s takvi karakteristikaa (brzino vrtnje i oento ), da se ogu direktno (bez ehaničkog prijenosa) spojiti s radni ehanizo (engl. direct drive systes) Općenito vrijedi da se utjecaj radnog ehaniza na statičke i dinaičke karakteristike pogona uzia u obzir na taj način da se oenti troosti reduciraju (svedu) na jednu osovinu, a to je najčešće osovina otora.
5 PRIMER: Potrebno je sve zaašne ase svesti na osovinu otora (koju zaašnu asu VIDI OSOVINA MOTORA?) Pretpostavlja se (zbog jednostavnosti) da je reduktor bez gubitaka
6 NAPOMENA za izračun ekvivalentnog oenta troosti ase koja se translatorno (pravocrtno) giba Ako se radno ehanizu asa translacijski (pravocrtno) giba brzino v, ona se nadoješta ekvivalentni oento troosti (inercije) koju otor vidi na svojoj osovini. Prijer: Ovješeni teret na dizalici! Ekvivalentni oent troosti za tu asu se izračunava također izjednačavanje kinetičke energije ase koja se giba pravocrtno, s kinetičko energijo rotirajuće ase oenta troosti koja se nalazi na osovini otora.
7 + + + Ukupna zaašna asa na osovini otora je jednaka zbroju svih zaašnih asa reduciranih na osovinu otora tj. Masa Masa Zaašna asa tereta D D D v E k
8 Ukupna zaašna asa reducirana na osovinu otora iznosi D Za vježbu: Napišite diferencijalnu (dinaičku) jednadžbu koja povezuje razvijeni oent otora potreban za dizanje ase tereta!!! () Zaključak: oent troosti rotirajuće ase iza prijenosnika reducira se na stranu otora s kvadrato prijenosnog ojera i, (). Da bi se dobio iznos oenta radnog ehaniza reduciran na stranu otora potrebno je koristiti relaciju ηp P, gdje je η koeficijent korisnosti prijenosa snage
9 gibanja gibanja gibanja ( t) t ( t) + u ( t) d( t) dt () t kutna d u u d( t) dt ()
10 (4) t (5) sustava η rr η tη rr η t η η red (6)
11 i red i r t ηi r (7) i / r η i η t r r t r t rη i
12 f ( ) f ( ) t sinkronog asinkronog istosjernog otora s nezavisno uzbudo istosjernog otora sa serijsko uzbudo Pozitivni (negativni) oent je oent koji rezultira pozitivni (negativni) prirasto brzine vrtnje.
13 sinkroni otor asinkroni otor Istosjerni otor s nezavisno uzbudo Istosjerni otor sa serijsko uzbudo
14 r r t i r t (8) t i r i r
15 t
16
17 Tvrdoća karakteristike Tvrdoća karakteristike ože biti različita za različita područja karakteristike i definirana je ojero prirasta oenta i postignutog prirasta brzine vrtnje d Δ dt Δt β, βt d Δ d Δ (9) Tvrđa karakteristika znači veliki iznos koeficijenta β
18 Stabilnost radne točke Radna točka je stabilna, ako uslijed poreećaja izazvanog oento tereta t i sanjenje brzine u odnosu na radnu točku (Δ<0), nastane dinaički oent - t d >0, pri čeu je ojer prirasta oenta d i postignutog prirasta brzine u toj točki Δ negativan. Vrijedi d < 0 Δ (0) Stabilnost radne točke određena je karakteristikaa otora i radnog ehaniza. Radna točka je stabilna ako se pogon nakon prestanka djelovanja opterećenja vrati u prvotnu radnu točku. Drugi riječia, projena brzine vrtnje od te radne točke i dinaički oent koji pri toe nastane, oraju iati suprotne predznake
19 t t, t
20 Stabilnost radne točke Radna točka A na slici je stabilna, jer ako poreećaj izaziva efektivno povećanje opterećenja (karakteristika ), dolazi do sanjenja brzine vrtnje. Radna točka B je nestabilna ako radni ehaniza ia karakteristiku oblika, a postaje stabilna ako radni ehaniza ia karakteristiku oblika.
21 Zahtjevi radnih ehanizaa aksialna snaga otora u trajno radu aksialni otorski oent u prijelaznoj pojavi npr. pri startu potreba reverziranja brzine vrtnje i oenta otora - projena sjera energije Rad s potencijalni i/ili s reaktivni tereto (vuča-dizalični pogon) Podaci za projektiranje takvog elektroehaničkog sustava se dobivaju iz podatka trajne snage ehaničke karakteristike oent/brzina podatka o inerciji (oent inercije) potrebnog vreena ubrzanja i usporenja
22 Dinaička stanja, Kvadranti rada, 4Q, općenit slučaj brzina + Q Q Motor - Motor P < 0 Sjer energije P > 0 Sjer energije Mreža ili otpornik Mreža Motor Motor P > 0 Sjer energije P < 0 Sjer energije Mreža + Mreža ili otpornik Moent (T) Q Q4 -
23 POTSETNIK!!! AM, osnovni pojovi, ucrtana sao osnovna karakteristika 0<s< otorski način rada s> protustrujno kočenje s<0 generatorsko kočenje s s n M n M M k prekretno (aksialno) klizanje noinalno klizanje noinalni oent prekretni (aksialni) oent potezni oent (kod s)
24 M PODSETNIK!!! AM - načini upravljanja M ax M R Rr R r r 4 R r R r5 M k M n R < R < R < R < R r r r r 4 r 5 0 n n ax n n n s s s ax s n 0 M U U > > U > U U 4 s s s s pr pr pr pr4 0 f f f 5 4 f f s U U U 4 0 s pr s f f f f f f f4 f f5
25 PODSETNIK: Kočenje AM-a s potencijalni oento tereta
26 PODSETNIK: Generatorsko kočenje AM-a (s potencijalni tereto) i 4-kvadrantni rad 4 - +
27 Istosjerni 4 kvadrantni (4q) elektrootorni pogon L L L Antiparalelni spoj usjerivača s vreenski zatezanje priliko reverziranja, (bez kružnih struja) L L L M Antiparalelni spoj usjerivača bez vreenskog zatezanja priliko reverziranja (s kružni strujaa).
28 Pitanja za 4Q istosjerni elektrootorni pogon Koja je prednost usjerivača bez kružnih struja u odnosu na usjerivač s kružni strujaa? Koji je nedostatak usjerivača bez kružnih struja u odnosu na usjerivač s kružni strujaa? Na osnovu čega se u dinaici reverziranja utvrđuje koji od usjerivačkih ostova (u spoju s kružni strujaa) treba biti uključen? Koji uvjet ora biti ispunjen da bi usjerivač s kružni strujaa ogao raditi s istovreeno uključena oba usjerivačka osta (A i B)? Koja je funkcija prigušnica u usjerivačko spoju s kružni strujaa? Koja je inačica usjerivačkog osta pogodnija za prijenu u dinaički zahtjevni elektrootorni sustavia Usporedite cijenu usjerivačkih spojeva s i bez kružnih struja?
29 Istosjerni 4 kvadrantni usjerivači (AC/DC)pretvarači Spoj usjerivača s vreenski zatezanje priliko reverziranja, (bez kružnih struja) M 4 n - +
30 ZADATAK : Istosjerni nezavisno uzbuđeni otor (s konstantno uzbudo) nazivnih podataka 70V, 5A, 000 rp, η0.95 i otporo arature Ra0.05Ω,. koristi se za pogon transportnih kolica u skladišno (tvorničko) prostoru. a) S obziro na tip električnog aktuatora i funkciju koju obavlja, koje biste energetsko pojačalo (pretvarač) odabrali? Skicirajte sheu tog pretvarača i objasnite na koji način je oguće ijenjati brzinu kretanja transportnih kolica b) Pogonski otor je izlazno osovino reduktora korisnosti η0.9 projera d5 spojen na pogonske kotače transportnih kolica. Koliko ora iznositi prijenosni ojer reduktora da bi se pri 000 rp pogonskog otora na pogonski kotačia dobio okretni oent od 50 N c) Kolika je postotna projena brzine vrtnje otora u odnosu na brzinu praznog hoda, ako se opterećenje ijenja od 0-Mn? d) Uz odabrani prijenosni ojer reduktora (pod b)), kojo brzino se vrte pogonski kotači? Koliko ora iznositi projer pogonskih kotača D, da bi se transportna kolica kretala aksialno brzino od 5/s e) Koliko ora iznositi napon arature pogonskog istosjernog otora da bi se uz noinalno opterećenje postigla brzina kretanja kolica od /s?
31 NAPAANE DIGITALNI SUSTAV REGULACIE ENERGETSKI PRETVARAČ TAHOGENERATOR TG ISTOSMERNI POGONSKI MOTOR REDUKTOR D IZLAZNA OSOVINA POGONSKI KOTAČ d
32 Budući da se transportna kolica napajaju iz akuulatorske baterije potrebno je za pretvarač odabrati istosjerni pretvarač (čoper). Potrebno je da je napon akuulatorske baterije jednak (ili veći) od napona otora (npr. dvije baterije u seriju, tj. x4v, danas aku-baterije od 4V postaju standard u auto industriji). Zbog zahtjeva dva sjera kretanja kolica i kočenja, odabire se četverokvadrantni čoper. Upravljanje sklopkaa se izvodi pulsnoširinsko etodo. Za upravljanje ovakvi EMP-o standardno se upotrebljava krug regulacije brzine vrtnje otora s podređeni krugo regulacije struje arature.
33 a)tranzistorski čoper (DC-DC pretvarač) + S S u i S 4 S Valni oblici napona na otoru U a i struje otora I a Upravljanje iz autononog izvora
34 ) ( ) (. : i M M M i n n M M M M M tj P P vrijedi reduktor za N n P P M W P P W I U P red t red t red red n e e η η η η π η b)
35 c) Brzina P.H. (praznog hoda) i nazivna brzina otora odnose kao ojer napona napajanja i protuelektrootorne sile. Naie, u P.H. je protu EMS jednaka naponu napajanja dok u nazivnoj radnoj točki protu EMS iznosi: U n I E U n n R a I n + E R a ,05 6,75V Ojer brzina P.H. i nazivne brzine otora odnose se kao 70/ , tj. brzine se u nazivnoj točki sanji za 0% u odnosu na brzinu praznog hoda
36 d) n v D D n v D n D v rp i n n n n i π π π
37 e) Koliki napon arature treba da se dobije brzina od /s v 60v n i rp Dπ En nn ; E 6.75 E n 000 U / s I n R a + E 44.5V 8.5V f) Koliki faktor opterećenja je potreban za taj napon U sr δ δ (δ ) U U sr + U U 0,76 d d d 44, ,76
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
BIPOLARNI TRANZISTOR Auditorne vježbe
BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje
Periodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
FAKULTET PROMETNIH ZNANOSTI
SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Unipolarni tranzistori - MOSFET
nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]
UZDUŽNA DINAMIKA VOZILA
UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Rad, snaga i energija. Dinamika. 12. dio
Rad, snaga i energija Dinaika 1. dio Veliine u ehanici 1. Skalari. Vektori 3. Tenzori II. reda 4. Tenzori IV. reda 1. Skalari: 3 0 1 podatak + jerna jedinica (tenzori nultog reda). Vektori: 3 1 3 podatka
PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)
Predet: Mašinski eleenti Proračun vratila strana Dienzionisati vratilo elektrootora sledecih karakteristika: oinalna snaga P = 3kW roj obrtaja n = 400 in Shea opterecenja: Faktor neravnoernosti K =. F
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
UZDUŽNA DINAMIKA VOZILA
UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici.
VILJUŠKARI 1. Viljuškar e korii za uoar andardnih euro-pool palea na druko ozilo u ieu prikazano na lici. PALETOMAT a) Koliko reba iljuškara da bi ree uoara kaiona u koji aje palea bilo anje od 6 in, ako
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
RAD, SNAGA I ENERGIJA
RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA
PROIZVODNJA TROFAZNOG SISTEMA SIMETRIČNIH NAPONA
PROIZVODNJA TROFAZNOG SISTEMA SIMETRIČNIH NAPONA Za proizvodnju trofaznog sistea sietričnih napona najčešće se koriste trofazni sinhroni generatori. Osnovni konstrukcijski dijelovi generatora su stator
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA
Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -
, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova
Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Iz zadatka se uočava da je doslo do tropolnog kratkog spoja na sabirnicama B, pa je zamjenska šema,
. Na slici je jednopolno prikazan trofazni EES sa svim potrebnim parametrima. U režimu rada neposredno prije nastanka KS kroz prekidač protiče struja (168-j140)A u naznačenom smjeru. Fazni stav struje
ELEKTROMOTORNI POGONI - AUDITORNE VJEŽBE
veučilište u ijeci TEHNIČKI FAKULTET veučilišni preddiplomki tudij elektrotehnike ELEKTOOTONI OGONI - AUDITONE VJEŽBE Ainkroni motor Ainkroni motor inkrona obodna brzina inkrona brzina okretanja Odno n
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.
IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Tranzistori s efektom polja. Postupak. Spoj zajedničkog uvoda. Shema pokusa
Tranzistori s efektom polja Spoj zajedničkog uvoda U ovoj vježbi ispitujemo pojačanje signala uz pomoć FET-a u spoju zajedničkog uvoda. Shema pokusa Postupak Popis spojeva 1. Spojite pokusni uređaj na
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos
. KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..
Dinamika tijela. a g A mg 1 3cos L 1 3cos 1
Zadatak, Štap B duljine i mase m pridržan užetom u točki B, miruje u vertikalnoj ravnini kako je prikazano na skii. reba odrediti reakiju u ležaju u trenutku kad se presječe uže u točki B. B Rješenje:
ρ = ρ V V = ρ m 3 Vježba 101 Koliki obujam ima komad pluta mase 2 kg? (gustoća pluta ρ = 250 kg/m 3 ) Rezultat: m 3.
Zadaak 0 (Ana Marija, ginazija) Koliki obuja ia koad plua ae kg? (guoća plua ρ 50 kg/ ) Rješenje 0 kg, ρ 50 kg/,? Guoću ρ neke vari definirao ojero ae i obuja ijela. kg ρ / 0.004. ρ ρ kg 50 jeba 0 Koliki
Prikaz sustava u prostoru stanja
Prikaz sustava u prostoru stanja Prikaz sustava u prostoru stanja je jedan od načina prikaza matematičkog modela sustava (uz diferencijalnu jednadžbu, prijenosnu funkciju itd). Promatramo linearne sustave
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Ovisnost ustaljenih stanja uzlaznog pretvarača 16V/0,16A o sklopnoj frekvenciji
Ovisnost ustaljenih stanja uzlaznog pretvarača 16V/0,16A o sklopnoj frekvenciji Električna shema temeljnog spoja Električna shema fizički realiziranog uzlaznog pretvarača +E L E p V 2 P 2 3 4 6 2 1 1 10
4. Aerodinamički koeficijenti krila zbog rotacije
4-4 erodinaički koefiijenti krila zbog rotaije 4 Propinjanje Želio odrediti oent propinjanja zbog rotaije krila oko osi na udaljenosti od vrha krila kao na slii 4- Krilo ia konstantnu kutnu brzinu oko
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
ELEKTROMOTORNI POGONI SA ASINHRONIM MOTOROM
ELEKTROOTORNI POGONI SA ASINHRONI OTORO Poučavamo amo pogone a tofaznim motoom. Najčešće koišćeni moto u elektomotonim pogonima. Ainhoni moto: - jednotavna kontukcija; - mala cena; - vioka enegetka efikanot.
Elektronički Elementi i Sklopovi
Sadržaj predavanja: 1. Strujna zrcala pomoću BJT tranzistora 2. Strujni izvori sa BJT tranzistorima 3. Tranzistor kao sklopka 4. Stabilizacija radne točke 5. Praktični sklopovi s tranzistorima Strujno
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE
Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i
Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet
Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)
(Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom
Primjene motora novih tehnologija
Program stručnog usavršavanja ovlaštenih inženjera elektrotehnike ELEKTROTEHNIKA - XVII tečaj Nove tehnologije električnih postrojenja Primjene motora novih tehnologija mr sc Milivoj Puzak dipl. ing. viši
Tip ureappleaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 656
TehniËki podaci Tip ureappeaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 66 Nazivna topotna snaga (na /),122,,28, 7,436,,47,6 1,16,7 Nazivna topotna snaga (na 60/) 4,21,,621, 7,23,,246,4 14,663,2
Prof.dr.sc. Jasmin Velagić. Kolegij: Aktuatori
Lekcija 2 Električki strojevi Prof.dr.sc. Jasmin Velagić Elektrotehnički fakultet Sarajevo Kolegij: Aktuatori 2.1. Električki strojevi Koriste se kao izvršni članovi za pokretanje radnih mehanizama. Prema
Zadatak 003 (Vesna, osnovna škola) Kolika je težina tijela koje savladava silu trenja 30 N, ako je koeficijent trenja 0.5?
Zadata 00 (Jasna, osnovna šola) Kolia je težina tijela ase 400 g? Rješenje 00 Masa tijela izražava se u ilograia pa najprije orao 400 g pretvoriti u ilograe. Budući da g = 000 g, orao 400 g podijeliti
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
POGON SA ASINHRONIM MOTOROM
OGON SA ASNHRON OTORO oučavaćemo amo ogone a tofaznim motoom. Najčešće koišćeni ogon. Ainhoni moto: - ota kontukcija; - jeftin; - efikaan. ETALN RSTEN LANRANO JEZGRO BAKARNE ŠKE KAVEZN ROTOR NAOTAJ LANRANO
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
namotanih samo u jednom sloju. Krajevi zavojnice spojeni su s kondenzatorom kapaciteta 10 µf. Odredite naboj na kondenzatoru.
Zadatak (Mira, ginazija) Dvaa ravni, paralelni vodičia eđusobno udaljeni 5 c teku struje.5 A i.5 A u isto sjeru. Na kojoj udaljenosti od prvog vodiča je agnetska indukcija jednaka nuli? ješenje r 5 c.5,.5
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Trofazni sustav. Uvodni pojmovi. Uvodni pojmovi. Uvodni pojmovi
tranica: X - 1 tranica: X - 2 rofazni sustav inijski i fazni naponi i struje poj zvijezda poj trokut imetrično i nesimetrično opterećenje naga trofaznog sustava Uvodni pojmovi rofazni sustav napajanja
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N.
Osnove strojrstv Prvilo izolcije i uvjeti rvnoteže Prijeri z sostlno rješvnje 1. Gred se, duljine uležišten je u točki i obješen je n svoje krju o horizontlno uže. Izrčunjte horizontlnu i vertiklnu koponentu
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno