ρ = ρ V V = ρ m 3 Vježba 101 Koliki obujam ima komad pluta mase 2 kg? (gustoća pluta ρ = 250 kg/m 3 ) Rezultat: m 3.
|
|
- ŌἈμφίων Αθανας Πολίτης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Zadaak 0 (Ana Marija, ginazija) Koliki obuja ia koad plua ae kg? (guoća plua ρ 50 kg/ ) Rješenje 0 kg, ρ 50 kg/,? Guoću ρ neke vari definirao ojero ae i obuja ijela. kg ρ / ρ ρ kg 50 jeba 0 Koliki obuja ia koad plua ae kg? (guoća plua ρ 50 kg/ ) Rezula: Zadaak 0 (Ana Marija, ginazija) Koliko je eak d leda pri 0 C? (guoća leda ρ 000 kg/, g 9.8 / ) Rješenje 0 d [ : 000] 0.00, ρ 000 kg/, g 9.8 /, G? Guoću ρ neke vari definirao ojero ae i obuja ijela. Najprije odredio au leda: ρ /. ρ Teina ijela je ila kojo ijelo zbog Zeljina privlačenja djeluje na horizonalnu podlogu ili ovje. Za lučaj kad ijelo i podloga, odnono ovje, iruju ili e gibaju jednoliko po pravcu obziro na Zelju, eina ijela je veličino jednaka ili ee. kg G g G ρ g N. jeba 0 Koliko je eak leda pri 0 C? (guoća leda ρ 000 kg/, g 9.8 / ) Rezula: 980 N. Zadaak 0 (Ana Marija, ginazija) Koliko je eška kapljica ive obuja 0.5 c? (guoća ive ρ 600 kg/, g 9.8 / ) Rješenje c [0.5 : ].5 0 -, ρ 600 kg/, g 9.8 /, G? Guoću ρ neke vari definirao ojero ae i obuja ijela. Najprije odredio au kapljice ive: ρ /. ρ Teina ijela je ila kojo ijelo zbog Zeljina privlačenja djeluje na horizonalnu podlogu ili ovje. Za lučaj kad ijelo i podloga, odnono ovje, iruju ili e gibaju jednoliko po pravcu obziro na Zelju, eina ijela je veličino jednaka ili ee. kg G g G ρ g N. jeba 0 Koliko je eška kapljica ive obuja 0.5 c? (guoća ive ρ 600 kg/, g 9.8 / ) Rezula: 0.06 N.
2 Zadaak 04 (Ana Marija, ginazija) Koliko je pua anji obuja šo ga zauzia iva od obuja šo ga zauzia jednaka aa peroleja? (guoća ive ρ 600 kg/, guoća peroleja ρ p 800 kg/ ) Rješenje 04 ρ 600 kg/, ρ p 800 kg/, p, p :? Guoću ρ neke vari definirao ojero ae i obuja ijela. Najprije odredio obujove peroleja i ive, a zai nađeo njihov ojer: ρ /. ρ ρ Obuja ive je pua anji od obuja šo ga zauzia jednaka aa peroleja. p kg p p ρ 600 p ρ p p ρ p p ρ p p. p kg ρ 800 ρ ρ p ρ jeba 04 Koliko je pua veći obuja šo ga zauzia perolej od obuja šo ga zauzia jednaka aa ive? (guoća ive ρ 600 kg/, guoća peroleja ρ p 800 kg/ ) Rezula: pua. Zadaak 05 (Ana Marija, ginazija) Koja će ila kolicia ae kg dai akceleraciju / ako u operećena ereo eine 0 N? Trenje zaneario. (g 0 / ) Rješenje 05 k kg, a /, G 0 N, g 0 /,? Najprije odredio au erea: G G g. g Budući da znao ukupnu au kolica i erea, ila iznoi: + k G 0 N ( + ) a kg 4 N. a k + k + g 0 jeba 05 Koja će ila kolicia ae kg dai akceleraciju / ako u operećena ereo eine 0 N? Trenje zaneario. (g 0 / ) Rezula: 8 N. Zadaak 06 (Ana Marija, ginazija) Lokooiva vučno ilo N daje vlaku akceleraciju 0. /. Koji će e ubrzanje gibai vlak ako e vučna ila anji na N, a oali uvjei oanu neproijenjeni? Rješenje N, a 0. /, N,, a?.inačica Drugi Newonov zakon: Ako na ijelo djeluje alna ila u jeru njegova gibanja, ijelo ia akceleraciju koja je proporcionalna ili, a obrnuo proporcionalna ai ijela e ia ii jer kao i ila. a. a
3 Budući da je aa vlaka alna, vrijedi: N 0. a a 4 a 8 0 N.inačica Drugi Newonov zakon: Ako na ijelo djeluje alna ila u jeru njegova gibanja, ijelo ia akceleraciju koja je proporcionalna ili, a obrnuo proporcionalna ai ijela e ia ii jer kao i ila. a. a Izračunao au vlaka: N kg. a 0. Kada e vučna ila anji, vlak će e gibai ubrzanje a : N a kg jeba 06 Lokooiva vučno ilo N daje vlaku akceleraciju 0. /. Koji će e ubrzanje gibai vlak ako e vučna ila anji na 0 4 N, a oali uvjei oanu neproijenjeni? Rezula: Zadaak 0 (Ana Marija, ginazija) Neka ila daje ijelu ae kg akceleraciju 4 /. Koju će akceleraciju dai ia ila ijelu ae 5 kg? Rješenje 0 kg, a 4 /, 5 kg,, a?.inačica Drugi Newonov zakon: Ako na ijelo djeluje alna ila u jeru njegova gibanja, ijelo ia akceleraciju koja je proporcionalna ili, a obrnuo proporcionalna ai ijela e ia ii jer kao i ila. a. Budući da je ila alna, vrijedi: kg 4 a.4. 5 kg.inačica Drugi Newonov zakon: Ako na ijelo djeluje alna ila u jeru njegova gibanja, ijelo ia akceleraciju koja je proporcionalna ili, a obrnuo proporcionalna ai ijela e ia ii jer kao i ila. a. Izračunao ilu koja ubrzava prvo ijelo: kg 4 N.
4 Zbog uvjea zadaka lijedi: N a.4. 5 kg jeba 0 Neka ila daje ijelu ae kg akceleraciju 4 /. Koju će akceleraciju dai ia ila ijelu ae kg? Rezula: 6. Zadaak 08 (Ana Marija, ginazija) Tijelo ae 0 g pod djelovanje alne ile prevali u prvoj ekundi pu 0 c. Kolika je ila koja djeluje na ijelo? Rješenje 08 0 g [0 : 000] 0.0 kg,, 0 c [0 : 00] 0.0,? 0.0 a 0.0 kg N. jednoliko ubrzano gibanje a ( ) jeba 08 Tijelo ae 40 g pod djelovanje alne ile prevali u prvoj ekundi pu 0 c. Kolika je ila koja djeluje na ijelo? Rezula: 0.06 N. Zadaak 09 (Ana Marija, ginazija) Granaa ae 5 kg izlei iz opovke cijevi brzino 00 /. Koliko u rednjo ilo plinovi u cijevi djelovali na granau ako e ona kroz cijev gibala 0.008? Rješenje 09 5 kg, v 00 /, 0.008,? 00 v 5 v kg 4500 N. v a jednoliko ubrzano gibanje a jeba 09 Granaa ae 0 kg izlei iz opovke cijevi brzino 00 /. Koliko u rednjo ilo plinovi u cijevi djelovali na granau ako e ona kroz cijev gibala 0.008? Rezula: N. Zadaak 0 (Ana Marija, ginazija) Na irno ijelo ae 5 kg počinje djelovai neka ila. Djelovanje e ile 5 ekundi ijelo je dobilo brzinu 0 /. Kolika je a ila? Rješenje 0 0 kg, 0, v 0 /,? 0 v 0 v kg 0 N. v a jednoliko ubrzano gibanje a 0 jeba 0 Na irno ijelo ae 0 kg počinje djelovai neka ila. Djelovanje e ile 0 ekundi ijelo je dobilo brzinu 0 /. Kolika je a ila? Rezula: 0 N. 4
5 Zadaak (Ana Marija, ginazija) Na irno ijelo ae 0 kg počinje djelovai neka ila. Djelovanje e ile 0 ekundi ijelo je dobilo brzinu 0 /. Kolika je a ila? Rješenje 0 kg, 0, v 0 /,? 0 v 0 v kg 0 N. v a jednoliko ubrzano gibanje a 0 jeba Na irno ijelo ae 5 kg počinje djelovai neka ila. Djelovanje e ile 5 ekundi ijelo je dobilo brzinu 0 /. Kolika je a ila? Rezula: 0 N. Zadaak (Ana Marija, ginazija) Tri inue nakon polaka a anice vlak je poigao brzinu 56. k/h. Izračunaje njegovo rednje ubrzanje u k/h i u / za e ri inue. Rješenje in [ : 60] 0.05 h, in [ 60] 80, v 56. k/h [56. :.6] 5.6 /, a? k 56. Ubrzanje izraeno u k/h v k iznoi: a h h h 5.6 Ubrzanje izraeno u / v iznoi: a jeba Tri inue nakon polaka a anice vlak je poigao brzinu 6 k/h. Izračunaje njegovo rednje ubrzanje u k/h i u / za e ri inue. k Rezula: a h Zadaak (Ana Marija, ginazija) lak vozi uzbrdo jednoliko uporeno rednjo brzino 4 /. Kolika u je počena brzina ako je konačna 6 /? Rješenje v 4 /, v 6 /, v? Kod jednolikog ubrzanog gibanja rednja brzina jednaka je arieičkoj redini počene i konačne brzine: v + v v. Počena brzina vlaka iznoi: v + v v / v v + v v v v 4 6. jeba lak vozi uzbrdo jednoliko uporeno rednjo brzino 4 /. Kolika u je počena brzina ako je konačna /? Rezula: 6 /. 5
6 Zadaak 4 (Ana Marija, ginazija) Tijelo e počinje gibai jednoliko ubrzano i u 0 ekundi prevali 0. Koliki pu prijeđe o ijelo u prve 4 ekunde? Rješenje 4 0, 0, 4,? Pu jednolikog ubrzanog gibanja računa e po foruli:. Najprije izračunao akceleraciju, a zai raeni pu: a a jeba 4 Tijelo e počinje gibai jednoliko ubrzano i u 0 ekundi prevali 0. Koliki pu prijeđe o ijelo u prvih 5 ekundi? Rezula: 0. Zadaak 5 (Ana Marija, ginazija) U renuku kad e odvojio od zelje zrakoplov je iao brzinu 55 k/h. Prije oga e ubrzavao na beonkoj pii prevalivši 850. Kako e dugo zrakoplov kreao po zelji prije nego šo je uzleio i kojo akceleracijo? Prepoavio da je gibanje bilo jednoliko ubrzano. Rješenje 5 v 55 k/h [55 :.6] 0.8 /, 850,?, a? Računao akceleraciju kojo e zrakoplov ubrzavao na pii: rijee za koje e zrakoplov kreao po pii iznoi: 0.8 v v a inačica 850 / a / 4. a a.95.inačica 850 v / v 4. v v 0.8 jeba 5 U renuku kad e odvojio od zelje zrakoplov je iao brzinu 60 k/h. Prije oga e ubrzavao na beonkoj pii prevalivši 00. Kako e dugo zrakoplov kreao po zelji prije nego šo je uzleio i kojo akceleracijo? Prepoavio da je gibanje bilo jednoliko ubrzano. Rezula: a 5 /, 4. 6
7 Zadaak 6 (Ana Marija, ginazija) Tijelo e giba jednoliko ubrzano i u ooj ekundi prevali 0. Izračunaj: a) koliko e akceleracijo ijelo giba, b) kolika u je brzina na kraju oe ekunde, c) koliki pu ijelo prevali u prvoj ekundi? Rješenje 6 8 0, 8 8,, a?, v?,? Da bio izračunali pu u ooj ekundi orao naći koliki je pu ijelo prevalilo za prvih 8 ekundi i za prvih ekundi i e puove oduzei: / /:5 a 4. Brzina na kraju oe ekunde iznoi: Pu koji ijelo prevali u prvoj ekundi je: 8, a 4 v 4 8. v a, a 4 4 ( ). jeba 6 Tijelo e giba jednoliko ubrzano i u ooj ekundi prevali 60. Izračunaj: a) koliko e akceleracijo ijelo giba, b) kolika u je brzina na kraju oe ekunde, c) koliki pu ijelo prevali u prvoj ekundi? Rezula: a 8 /, v 64 /, 4. Zadaak (Ana Marija, ginazija) Kolika je akceleracija ijela koje e giba jednoliko ubrzano, a za vrijee oe i devee ekunde zajedno prevali pu 40? Rješenje 9 40, 9 9,, a? Da bio izračunali pu za vrijee oe i devee ekunde zajedno orao naći koliki je pu ijelo prevalilo za prvih 9 ekundi i za prvih ekundi i e puove oduzei: / /: a.5. jeba Kolika je akceleracija ijela koje e giba jednoliko ubrzano, a za vrijee šee i ede ekunde zajedno prevali pu 40? Rezula: a. /
8 Zadaak 8 (Ana Marija, ginazija) Auoobil za vrijee kočenja vozi jednoliko uporeno i prio u e brzina uanjuje za /. Dee ekundi nakon počeka kočenja auoobil e zauavio. Koliku je brzinu iao u čau kad je počeo kočii? Koliki je pu prevalio za vrijee kočenja? Rješenje 8 a /, 0, v?,? Brzina auoobila u čau kočenja iznoi: v a 0 0. Za vrijee kočenja auoobil je prevalio pu:.inačica ( 0 ) 00..inačica v jeba 8 Auoobil za vrijee kočenja vozi jednoliko uporeno i prio u e brzina uanjuje za /. Dee ekundi nakon počeka kočenja auoobil e zauavio. Koliku je brzinu iao u čau kad je počeo kočii? Koliki je pu prevalio za vrijee kočenja? Rezula: v 0, 50. Zadaak 9 (Ana Marija, ginazija) lak koji ia brzinu 0 / počinje e uporavai akceleracijo 0.4 /. Kada će e vlak zauavii i koliki će pu prevalii za o vrijee? Rješenje 9 v 0 /, a 0.4 /,?,? rijee zauavljanja vlaka iznoi: 0 v v a 50. a 0.4 Za vrijee zauavljanja vlak je prevalio pu:.inačica 0.4 ( 50 ) 500..inačica v jeba 9 lak koji ia brzinu 40 / počinje e uporavai akceleracijo 0.4 /. Kada će e vlak zauavii i koliki će pu prevalii za o vrijee? Rezula: 00, 000. Zadaak 0 (Helena, rukovna škola) Auoobil vozi brzino 50 k/h. Pošo je 5 ekundi kočio, brzina u e anjila na 0 k/h. Nađi: ) akceleraciju ako je gibanje jednoliko uporeno, ) pu prevaljen u peoj ekundi. Rješenje 0 v 50 k/h [50 :.6].89 /, 5, v 0 k/h [0 :.6] 5.56 /, 8
9 a?, 5-4? ) v v v akceleracija ia negaivan a a predznak jer auoobil uporava ) Pu prevaljen u peoj ekundi jednak je razlici pua koji je auoobil prešao za prvih 5 ekundi i pua koji je auoobil prešao za prve 4 ekunde: a a 5 4 a ( 5 ) ( 4 ) ( 5 6 ) jeba 0 Auoobil vozi brzino 00 k/h. Pošo je 0 ekundi kočio, brzina u e anjila na 40 k/h. Nađi: ) akceleraciju ako je gibanje jednoliko uporeno, ) pu prevaljen u peoj ekundi. Rezula: a.,
akceleraciju koja je proporcionalna sili, a obrnuto proporcionalna masi tijela te ima isti smjer kao i sila. F m
Zadaak 4 (Ana, rednja škola) Tijelo vučeo alno ilo po horizonalnoj podlozi. Ako renje zaneario, ijelo e iba: A. alno brzino B. alno akceleracijo C. jednoliko uporeno D. ve većo akceleracijo Rješenje 4
Διαβάστε περισσότεραZadatak 281 (Luka, strukovna škola)
Zadaak 8 (Luka, rukovna škola) Kuglica ae. kg izbacuje e praćko. Priliko izbacivanja kuglice elaična vrpca praćke produži e za.5. Konana elaičnoi vrpce iznoi N/. Koliko brzino kuglica izlei iz praćke?
Διαβάστε περισσότεραh = v t π m 6.28
Zadatak 00 (Too, elektrotehnička škola) Za koliko e ati napuni prenik obuja 400 odo koja utječe kroz cije projera 0 brzino /? Rješenje 00 V = 400, d = 0 = 0., = /, π.4, t =?.inačica Cije ia oblik aljka
Διαβάστε περισσότερα= = = vrijeme za koje tijelo doñe u točku B. g Vrijeme za koje tijelo prijeñe put od točke A do točke B jednako je razlici vremena t B i t A : m m
Zadatak 6 (Ginazijalci, ginazija) Tijelo lobodno pada i u točki ia brzinu /, a u točki 4 /. Za koje će rijee prijeći udaljenot od do? Koliko u udaljene točke i? (g = 9.8 / ) Rješenje 6 h, = /, = 4 /, g
Διαβάστε περισσότεραGIBANJE (m h) giba miruje giba giba miruje miruje h 1000 :1000 h 1 h h :1000 1
GIBANJE ( h) gibnje gibnje ijel je projen položj ijel ili dijelo ijel u odnou pre neko drugo ijelu z koje o ujeno (dogoorno) uzeli d iruje U odnou n liječnik: gib iruje gib iruje gib gib iruje iruje gib
Διαβάστε περισσότερα1.inačica Iz formula za put i brzinu pri jednolikom usporenom gibanju dobije se brzina vlaka na kraju puta v = v a t v =
Zadatak (Marko, ginazija) Vlak e giba talno brzino 6 k/h. U jedno trenutku lakooña počne jednoliko kočiti te lak za 6 preali put od 6. Koliko e brzino lak giba na kraju tog puta? Rješenje = 6 k/h = [6
Διαβάστε περισσότεραKad tijelo obavlja rad, mijenja mu se energija. Promjena energije tijela jednaka je utrošenom radu.
Zadatak 6 (Daneja, ginazija) Loticu za tolni teni, olujera 5 i ae 5 g, uronio u odu na dubinu 0 c. Kad loticu iutio, ona ikoči iz ode na iinu 0 c iznad ode. Kolika e energija rito retorilo u tolinu zbog
Διαβάστε περισσότερα2 k. Kad tijelo obavlja rad, mijenja mu se energija. Promjena energije tijela jednaka je utrošenom radu.
Zadaa (Lidija, ginazija) Tijelo ae g pui e da lobodno pada a počeno brzino /. Nađi ineiču energiju ijela polije 0.. (g = 9.8 / ) Rješenje = g = 0.00 g, v 0 = /, = 0., g = 9.8 /, =? Tijelo ae i brzine v
Διαβάστε περισσότεραλ λ ν =. Zadatak 021 (Zoki, elektrotehnička škola) Dva zvučna vala imaju intenzitete 10 i 600 mw/cm 2. Za koliko se decibela razlikuju ta dva zvuka?
Zadatak (Zoki, elektrotehnička škola) Da zučna ala iaju intenzitete i 5 W/c. Za koliko e decibela razlikuju ta da zuka? Rješenje I = W/c = W/, I = 5 W/c = 5 W/, I = - W/, L L =? Tražio razliku intenziteta
Διαβάστε περισσότερα( ) ρ = ρ. Zadatak 141 (Ron, gimnazija) Gustoća leda je 900 kg/m 3, a gustoća morske vode 1000 kg/m 3. Koliki dio ledene sante
Zadatak 4 (Ron, ginazija) Gustoća leda je 900 /, a gustoća orske vode 00 /. Koliki dio ledene sante voluena viri iznad orske površine? (g = 9.8 /s ) Rješenje 4 ρ l = 900 /, ρ v = 000 /,, =? Akceleracija
Διαβάστε περισσότεραVILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici.
VILJUŠKARI 1. Viljuškar e korii za uoar andardnih euro-pool palea na druko ozilo u ieu prikazano na lici. PALETOMAT a) Koliko reba iljuškara da bi ree uoara kaiona u koji aje palea bilo anje od 6 in, ako
Διαβάστε περισσότεραm m ( ) m m v v m m m
Zadatak (Ria, ginazija) Autoobil raketni pogono započne e iz tanja iroanja ubrzaati zbog potika rakete Potiak traje 5, a ubrzanje iznoi 5 / Nakon gašenja raketnog pogona autoobil e natai gibati kontantno
Διαβάστε περισσότερα2 E m v = = s = a t, v = a t
Zadata 6 (Matea, ginazija) Sila N djeloala je na tijelo 4 eunde i dala u energiju 6.4 J. Kolia je aa tijela? Rješenje 6 = N, t = 4, E = 6.4 J, =? Tijelo obalja rad W ao djeluje neo ilo na putu na drugo
Διαβάστε περισσότερα( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Διαβάστε περισσότερα( ) ( ) Količinu tekućine I koja prođe u jedinici vremena s nekim presjekom cijevi površine S zovemo jakost struje. Ona iznosi
Zadatak 0 (Mario, ginazija) Razlika tlakova izeđu širokog i uskog dijela cijevi iznosi 9.8 0 4 Pa. Presjek šireg dijela cijevi je 0 d, a užeg 5 d. Koliko litara vode rotječe cjevovodo u sekundi? (gustoća
Διαβάστε περισσότερα2 2 c s Vježba 021 U sustavu koji miruje, π mezon od trenutka nastanka do trenutka raspada prijeñe put 150 m. Rezultat: 50 ns.
Zadatak (Rex, ginazija) U utau koji iruje, π ezon od trenutka natanka do trenutka rapada prijeñe put 75. Brzina π ezona je.995. Koliko je rijee žiota π ezona u latito utau? Rješenje = 75, =.995, = 3 8
Διαβάστε περισσότεραUnutarnji je volumen čaše V 1. Budući da je do polovice napunjena vodom masa te vode iznosi: 2 Ukupna masa čaše i vode u njoj je 1 kg
Zadatak 6 (Josi, ginazija) Staklena čaša nalazi se u sudoeru naunjena vodo. Čaša je do olovice naunjena vodo. Unutarnji voluen čaše je 5 c, a njezina asa kada je razna iznosi 9 g. Ako oduzeo sao alo vode
Διαβάστε περισσότερα( ) 2. σ =. Iz formule za površinsku gustoću odredimo naboj Q na kugli. 2 oplošje kugle = = =
Zadatak 0 (Maija, ginazija) Koliki ad teba utošiti da e u paznini (vakuuu) penee naboj 0. 0-7 iz bekonačnoti u točku koja je c udaljena od povšine kugle polujea c? Na kugli je plošna (povšinka) gutoća
Διαβάστε περισσότερα2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Διαβάστε περισσότεραα = 12, v 1 = 340 m/s, v 2 = m/s, β =? m sin12 = v sin v sin sin 72
Zadatak (Franjo, elektrotehnička škola) Zučni al pada pod kuto na ranu poršinu orke ode. Brzina zuka u zraku je 3 /, a u odi 56 /. Koliki je kut loa? Rješenje Budući da al prelazi iz redta anjo brzino
Διαβάστε περισσότεραm m s s m m Vježba 121 S ruba mosta bacimo vertikalno u vodu kamen brzinom 1 m/s. Nañi visinu mosta i brzinu s s
dk (Kriijn, ginzij) S rub o bcio eriklno u odu ken brzino.8 /. Nñi iinu o i brzinu kojo ken pdne u odu ko pd 3 ekunde. (g = 9.8 / ) Rješenje =.8 /, = 3, g = 9.8 /, =? Gibnje je jednoliko ubrzno (lobodni
Διαβάστε περισσότεραv =. . Put s koji automobil mora prijeći jednak je zbroju duljine automobila l 1 i duljine autobusa l 2. . Vrijeme t mimoilaženja iznosi: + l s s
adatak 4 (Marija, ginazija) utoobil duljine 4 ozi brzino 90 k/h, a autobu duljine 0 brzino 6 k/h Izračunaj koliko reena treba da e ioiñu Rješenje 4 l = 4, = 90 k/h = [90 : 6] = 5 /, l = 0, = 6 k/h = [6
Διαβάστε περισσότεραt t , 2 v v v 3 m
Zadatak 4 (Maturantia, ginazija) Zeljin atelit giba e brzino = 9 3 /. Oobi u atelitu prođe reenki interal od jedan at. Koliki je taj reenki interal na Zelji? Kolika je razlika u reenu? ( = 3 8 /) Rješenje
Διαβάστε περισσότεραFTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Διαβάστε περισσότεραZBIRKA POTPUNO RIJEŠENIH ZADATAKA
**** IVANA SRAGA **** ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE α www.i-raga.co FIZIKA za 8 razred Prijeri riješenih zadataka iz područja ELEKTRIČNE STRUJE U ovo dijelu zbirke obrađena
Διαβάστε περισσότεραRa smanjiti za 20%, ako je
Zadaak 81 (Marija, gimnazija) akon koliko će e vremena akivno 1 g izoopa radija vrijeme polurapada og izoopa 1622 godine? Rješenje 81 m = 1 g, p = 2% =.2, 1/2 = 1622 god, =? 1 226 88 Ra manjii za 2%, ako
Διαβάστε περισσότερα( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj
Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens
Διαβάστε περισσότεραPotrebne su relacije za put slobodnog pada za jedno i drugo nebesko tijelo (nepoznato (X)
MEĐUISPIT_3. gupa zadaaka, -0, svaki zadaak 3 boda:. Maja je bacila kamen hoizonalno bzinom v, a Mako s ise visine pema dolje i isom bzinom v. Koja je od navedenih vdnji očna? (Zanemaimo opo zaka). A.
Διαβάστε περισσότερα5. Rad, snaga, energija, Zakon očuvanja mehaničke energije, Zakon kinetičke energije
5. Rad, naga, energija, Zakon očuvanja mehaničke energije, Zakon kinetičke energije RAD SILE Rad je djelovanje ile na putu. Diferencijal rada jednak je kalarnom produktu ile i diferencijala pomaka vektora
Διαβάστε περισσότεραšupanijsko natjecanje iz zike 2017/2018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova)
šupanijsko natjecanje iz zike 017/018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova) U prvom vremenskom intervalu t 1 = 7 s automobil se giba jednoliko ubrzano ubrzanjem
Διαβάστε περισσότεραZadatak 003 (Vesna, osnovna škola) Kolika je težina tijela koje savladava silu trenja 30 N, ako je koeficijent trenja 0.5?
Zadata 00 (Jasna, osnovna šola) Kolia je težina tijela ase 400 g? Rješenje 00 Masa tijela izražava se u ilograia pa najprije orao 400 g pretvoriti u ilograe. Budući da g = 000 g, orao 400 g podijeliti
Διαβάστε περισσότεραFizika 1. Auditorne vježbe 5. Dunja Polić. Dinamika: Newtonovi zakoni. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva
Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Školska godina 2006/2007 Fizika 1 Auditorne vježbe 5 Dinamika: Newtonovi zakoni 12. prosinca 2008. Dunja Polić (dunja.polic@fesb.hr)
Διαβάστε περισσότερα2 2 t. Masa tijela je 50 kg. Vježba 001 Sila 300 N djeluje na neko tijelo 10 sekundi te ga pomakne 500 m. Kolika je masa tog tijela?
Zadata 00 (Veronia, edicina šola) Sila 00 N djeluje na neo tijelo 0 eundi te ga poane 800. Kolia je aa tog tijela? Rješenje 00 Iz forula za jednolio ubrzano gibanje i II. Newtonovog pouča dobijeo traženo
Διαβάστε περισσότεραMatematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Διαβάστε περισσότερα= = = Za h = 0 dobije se prva kozmička brzina:
adatak 08 (Ljilja, ednja škola) Koliku bzinu oa iati ujetni eljin atelit koji e giba po kužnici na iini h iznad elje? Kolika je pa kozička bzina? (poluje elje R = 6.4 0 6, aa elje = 6 0 4 kg, gaitacijka
Διαβάστε περισσότεραk = Kad tijelo obavlja rad mijenja mu se energija pa je obavljeni rad jednak povećanju kinetičke energije kutije.
Zadaa 0 (Key, ginazija) Kuija ae g iruje na horizonalnoe olu. Anonija počne gurai uiju alno horizonalno ilo od 0 N. Naon šo je prešla pu.5, uija je poigla brzinu /. Kolio je energije Anonija urošila na
Διαβάστε περισσότεραAkvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
Διαβάστε περισσότερα27 C, a na kraju vožnje 87 C. Uz pretpostavku da se volumen guma nije tijekom vožnje promijenio, nađite
Zaatak (Barny, ginazija) U vonji e zrak u autoobilki guaa grije. Na očetku vonje teeratura zraka u guaa je 7 C, a na kraju vonje 7 C. Uz retotavku a e voluen gua nije tijeko vonje roijenio, nađite ojer
Διαβάστε περισσότεραQ = m c ( t t Neka je m 2 masa leda koja se tom toplinom može rastaliti. Tada vrijedi jednadžba: J m c t t 0. kg C
Zadatak 4 (Ivica, tehnička škola) U osudi se nalazi litara vode na teeraturi 8 ºC. Ako u ovu količinu vode uronio 3 kg leda teerature ºC, onda će se led istoiti. Hoće li se istoiti sva količina leda? (secifični
Διαβάστε περισσότεραJednoliko pravocrtno gibanje duž puta s jest gibanje pri kojem vrijedi izraz
Zadaak 8 (Naaša, medicinka škola) Kolika je proječna brzina auomobila ijekom puoanja ako e pru poloicu remena giba brzinom 40 km/, drugu poloicu remena brzinom 60 km/? Rješenje 8 km km =, = 40, =, = 60,
Διαβάστε περισσότεραMehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika
1. Kinematika Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika Kinematika (grč. kinein = gibati) je dio mehanike koji
Διαβάστε περισσότερα( ) ( ) β = gdje je β koeficijent linearnog rastezanja koji se definira izrazom:
Zadatak 8 (Filip, elektrotehnička škola) Štap od cinka i štap od željeza iaju pri C jednaku duljinu l Kolika je razlika duljina štapova pri C? (koeficijent linearnog rastezanja cinka β cink 9-5 K -, koeficijent
Διαβάστε περισσότεραm m. 2 k x k x k m
Zadata 4 (Daro, rednja šola) Na glatoj horizontalnoj podlozi uz abijenu oprugu ontante 5 N/ leži ugla ae 4.5 g. Kolio će brzino ugla odletjeti ao je iputio? Opruga je prije ipuštanja ugle abijena za.6
Διαβάστε περισσότεραPARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Διαβάστε περισσότεραRad, energija i snaga
Rad, energija i snaga Željan Kutleša Sandra Bodrožić Rad Rad je skalarna fizikalna veličina koja opisuje djelovanje sile F na tijelo duž pomaka x. = = cos Oznaka za rad je W, a mjerna jedinica J (džul).
Διαβάστε περισσότερα1. Jednoliko i jednoliko ubrzano gibanje
1. JEDNOLIKO I JEDNOLIKO UBRZANO GIBANJE 3 1. Jednoliko i jednoliko ubrzano gibanje Jednoliko gibanje po pravcu je ono gibanje pri kojem se ne mijenja ni iznos ni smjer brzine. Ako se ne mijenja iznos
Διαβάστε περισσότεραIZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Διαβάστε περισσότεραSa slike vidi se: r h r h. r r. za slobodan pad s visine h:
Zadatak (Ljiljana, ednja škola) Uteg ae kg ii na niti koju o iz etikalnog položaja otklonili za kut α 3. Nađi napetot niti kad o uteg iputili te on polazi položaje anoteže. (g 9.8 / ) Rješenje kg, α 3,
Διαβάστε περισσότεραTRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Διαβάστε περισσότερα- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Διαβάστε περισσότεραRješenje 469. m = 200 g = 0.2 kg, v 0 = 5 m / s, h = 1.75 m, h 1 = 0.6 m, g = 9.81 m / s 2, E k =?
Zadatak 469 (Davor, tehnička škola) Kuglicu mase 00 g izbacimo početnom brzinom 5 m / s sa visine.75 m. Koliko iznosi kinetička energija kuglice kada se nalazi na visini 0.6 m iznad tla? Zanemarite gubitak
Διαβάστε περισσότεραFTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Διαβάστε περισσότεραOperacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Διαβάστε περισσότεραTrigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Διαβάστε περισσότεραRiješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Διαβάστε περισσότεραLinearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
Διαβάστε περισσότεραTRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Διαβάστε περισσότεραMehanika. Uvod. Mikrometarskim vijkom odredili ste debljinu jedne vlasi d = 0,12 mm. Kolika je ta debljina izražena potencijama od deset u metrima?
Mehanika Uvod Jednoliko gibanje duž pravca Jednoliko ubrzano i usporeno gibanje duž pravca Nejednoliko gibanje Osnovni zakon gibanja Impuls sile i količina gibanja Složena gibanja Sastavljanje i rastavljanje
Διαβάστε περισσότεραRIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Διαβάστε περισσότεραZadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Διαβάστε περισσότερα7. Titranje, prigušeno titranje, harmonijsko titranje
7. itranje, prigušeno titranje, harmonijsko titranje IRANJE Općenito je titranje mijenjanje bilo koje mjerne veličine u nekom sustavu oko srednje vrijednosti. U tehnici titranje podrazumijeva takvo gibanje
Διαβάστε περισσότεραMATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
Διαβάστε περισσότεραπ π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Διαβάστε περισσότεραOM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Διαβάστε περισσότερα41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Διαβάστε περισσότεραKontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Διαβάστε περισσότεραNastavna jedinica. Gibanje tijela je... tijela u... Položaj točke u prostoru opisujemo pomoću... prostor, brzina, koordinatni sustav,
1. UVOD 1. * Odgovorite na sljedeća pitanja tako da dopunite tvrdnje. 1.1 Što je gibanje tijela? Gibanje tijela je... tijela u... 1.2 Osnovni parametri u kinematici su... i... 1.3 Na koji način opisujemo
Διαβάστε περισσότεραSEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Διαβάστε περισσότεραPeriodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
Διαβάστε περισσότεραElementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Διαβάστε περισσότεραnamotanih samo u jednom sloju. Krajevi zavojnice spojeni su s kondenzatorom kapaciteta 10 µf. Odredite naboj na kondenzatoru.
Zadatak (Mira, ginazija) Dvaa ravni, paralelni vodičia eđusobno udaljeni 5 c teku struje.5 A i.5 A u isto sjeru. Na kojoj udaljenosti od prvog vodiča je agnetska indukcija jednaka nuli? ješenje r 5 c.5,.5
Διαβάστε περισσότεραv v 1 m y T s s Vježba 041 Kroz neko sredstvo šire se valovi koji imaju frekvenciju 1320 Hz i amplitudu 0.3 mm. Duljina
Zadatak 4 (Mirjana, rednja škoa) Kroz neko redto šire e aoi koji iaju frekenciju 66 Hz i apitudu.3. Dujina aa je 5 c. Odredi: a) brzinu širenja aa i b) akianu brzinu jedne četice. Rješenje 4 66 Hz, y.3
Διαβάστε περισσότεραMatematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Διαβάστε περισσότεραRad, snaga i energija zadatci
Rad, snaga i energija zadatci 1. Tijelo mase 400 g klizi niz glatku kosinu visine 50 cm i duljine 1 m. a) Koliki rad na tijelu obavi komponenta težine paralelna kosini kada tijelo s vrha kosine stigne
Διαβάστε περισσότεραIzradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split
DINAMIKA Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split Ova knjižica prvenstveno je namijenjena učenicima Srednje tehničke prometne škole Split. U knjižici su korišteni zadaci
Διαβάστε περισσότεραIspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Διαβάστε περισσότερα3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Διαβάστε περισσότερα1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Διαβάστε περισσότεραMEHANIKA FLUIDA. Prosti cevovodi
MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora
Διαβάστε περισσότεραINTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Διαβάστε περισσότεραRad, snaga i energija. Dinamika. 12. dio
Rad, snaga i energija Dinaika 1. dio Veliine u ehanici 1. Skalari. Vektori 3. Tenzori II. reda 4. Tenzori IV. reda 1. Skalari: 3 0 1 podatak + jerna jedinica (tenzori nultog reda). Vektori: 3 1 3 podatka
Διαβάστε περισσότεραVeličina Oznaka dimenzije Jedinica u SI sustavu masa M kg Skup duljina L m osnovnih vrijeme T s veličina temperatura Θ K. m = =MLT 2-2 SI
. predavanje iz Meanike fluida 14. IZIKLNE OSNOVE.1 Onovne dienzije i jedinice u eanici fluida Veličina Oznaka dienzije Jedinica u utavu aa M kg Skup duljina L onovni vrijee T veličina teperatura Θ K Dienzije
Διαβάστε περισσότεραMehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika
3. Dinamika Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika Kinematika (grč. kinein = gibati) je dio mehanike koji opisuje
Διαβάστε περισσότεραOsnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
Διαβάστε περισσότερα2 m. Rad elastične sile opruge je jednak:
Zadaak 8 (Jaca, auranca) Kolk je rad poreban da bo oprugu konane N/ raegnul z ranoežnog položaja za 3 c? Kolk je pr o rad elačne le opruge? Rješenje 8 k = N/, x = 3 c = 3, =?, el =? oreban rad da bo oprugu
Διαβάστε περισσότεραPRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Διαβάστε περισσότεραPismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Διαβάστε περισσότεραPismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Διαβάστε περισσότεραDinamika tijela. a g A mg 1 3cos L 1 3cos 1
Zadatak, Štap B duljine i mase m pridržan užetom u točki B, miruje u vertikalnoj ravnini kako je prikazano na skii. reba odrediti reakiju u ležaju u trenutku kad se presječe uže u točki B. B Rješenje:
Διαβάστε περισσότεραReverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
Διαβάστε περισσότεραOBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
Διαβάστε περισσότεραSISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK
SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK. Rši sism jdnačina: d 7 d d d Ršnj: Ša j idja kod ovih zadaaka? Jdnu od jdnačina difrniramo, o js nađmo izvod l jdnačin i u zamnimo drugu jdnačinu.
Διαβάστε περισσότεραRad, energija i snaga
Rad, energija i snaga 1. Koliko se puta promijeni kinetička energija automobila kada se njegova brzina poveća tri puta? A. Poveća se 3 puta. B. Poveća se 6 puta. C. Poveća se 9 puta. D. Poveća se 12 puta.
Διαβάστε περισσότεραMATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Διαβάστε περισσότερα1. KINEMATIKA MATERIJALNE TOČKE
1 1. KINEMATIKA MATERIJALNE TOČKE 1. Automobil prvu trećinu puta vozi brzinom 50km/h, a preostali dio puta brzinom 20km/h. Kolika je srednja (prosječna) brzina tijekom putovanja? R: 25 km/h 2. Biciklista
Διαβάστε περισσότερα3. OSNOVNI POKAZATELJI TLA
MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)
Διαβάστε περισσότεραKinematika i vektori
ZADACI ZA INTERAKTIVNE VJEŽBE IZ OPĆE FIZIKE 1 Kinematika i vektori 1. Svjetiljka udaljena 3m od vertikalnog zida baca na zid svijetlu mrlju. Svjetiljka se jednoliko okreće oko svoje osi frekvencijom f
Διαβάστε περισσότεραRješenje 141 Uočimo da je valna duljina čestice obrnuto razmjerna sa razlikom energijskih razina. h = E E n m h E E. m c
Zadatak 4 (Ivia, trukovna škola) Crtež prikazuje dio energijkih razina vodikova atoma. Koja od trjelia prikazuje emiiju fotona najkraće valne duljine? Zaokružite ipravan odgovor. A. a) B. b) C. ) D. d
Διαβάστε περισσότερα2 k k r. Q = N e e. e k C. Rezultat: 1.25
Zadatak 0 (Mia, ginazija) Dvije kuglice nabijene jednaki pozitivni naboje na udaljenosti.5 u vakuuu eđusobno se odbijaju silo od 0. N. Za koliko se boj potona azlikuje od boja elektona u svakoj od nabijenih
Διαβάστε περισσότεραNovi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Διαβάστε περισσότερα