0RELOH,QWHUQHW :$3. This is the Internet version of the user's guide. Print only for private use. 6,0 GH ODUDWLRQRI RQIRUPLW\
|
|
- Άτροπος Αποστόλου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ô ù ù ø ³ ò 0RELOH,QWHUQHW :$3 ô ñ 6,0 ù" GH ODUDWLRQRI RQIRUPLW\ ò û"
2 6RQ\(UL VVRQ7 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$% ô6rq\(ul VVRQ 0RELOH&RPPXQL DWLRQV$% 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$% 58/=75$,1129$75213$7(176 *60 ù ø ö 7Œ 7HJL &RPPXQL DWLRQV ö ü ô % +. '('.), )5,71/37(66(*%
3 ô ù ù ù ³ ô ø ± ù ù ù ù ô ± ± ô
4 ô
5 ñ ô ô ô ö
6 ù ø ù ³ø 6,0 ù 6,0 6,0 6,0 ùù 6,0 ù
7 6,0 6,0 ò 6,0 6,0 ù ù ò ñ ø ù
8 ù 3,1 3,1 6,0 ô 3,1 ù 3,1 6,0 ³ô 3,1 6,0 38. ô 38. ù
9 ø ù ù ø ± ô ù ³ ø
10 ù ù ù ò ô ù ù ô ³ ³ñ ù <(6ñ <(6 ñ<(6 <(6 ù ù ù ø
11 ñ ò ñ ³ñ ³ ø
12 ø ò ù :$3 õ&/, ø ø ý ù ø ù ù ù ò +DQGVIUHH ó ù õ õ õ ó ò 3XVK ù :$3 ø õ ø ø
13 606 :$3 ù 7Œ ³ö Œ ø ù :$3 <(6 <(6 ± ù ù <(6 <(6 <(6 ù ù <(6 ô "Ã!B $%&cb jdγ '()qe Φ *+,u -./Λ 012fg z 3456 Π Σ 789h ø
14 ô ± :;<= # Θ Ξ Ψ Ω ù $ % $ ùù :$3 öœ ö ù ùö ù <(6 <(6 7<(6 ø
15 <(6 <(6 ³-DQH DE ù ³ ù ù " ú ± ø ø
16 ö ñ ù <(6ñ <(6 <(6 <(6 <(6 ø <(6 ù <(6ñ <(6 <(6 <(6
17 ù <(6ñ <(6 <(6<(6 <(6 ù ô " """ ù <(6ñ <(6 <(6ù<(6 "<(6 <(6 <(6 ù <(6ñ <(6 ö<(6 <(6
18 ô <(6 <(6 12 ù ± ± ± ù <(6ñ <(6 <(6 <(6 ù ù ñ ñ ñ ù ñ ù ò
19 6,0 6,0 6,0 ù <(6 <(6 <(6 <(6 ù ù ù ù ù ô <(6ô<(6 ù ù ³ ø <(6ô<(6 ö <(6 <(6 <(6 <(6ô<(6 <(6
20 <(6 <(6 ô ö ô ù ù ù ù ù ù ù ù ù ô ò ù ù ³ò <(6ô<(6 <(6 <(6 ³ò <(6ô<(6 ò <(6 <(6
21 ö :$3 6RQ\(UL VVRQ0RELOH,QWHUQHW :HE ZDS6RQ\(UL VVRQ RP ù <(6<(6 <(6 <(6 <(6 ù <(6<(6 <(6 <(6 <(6 ³ ³ ³ ù <(6 <(6³ <(6 <(6 ù <(6 <(6<(6 <(6 DP SP ù ù
22 ù <(6 <(6<(6 <(6 ù 12 ù <(6+DQGVIUHH<(6 <(6 <(6 ù ù 6RQ\(UL VVRQ 12 ù <(6<(6ù <(6 <(6 ù <(6<(6ù <(6 <(6 ñ <(6 <(6 ù <(6<(6ù <(6 ö <(6ô<(6 <(6 ñ <(6 <(6 <(6ø <(6 ù <(6
23 ö 6,0 ù <(6 <(6 <(6 <(6 ùù " <(6 <(6 ò ù <(6ò <(6 ò <(6
24 ö ³ ³ <(6 <(6 <(6 <(6 ù ù ± ù ö ø ø ö ø
25 ù ø ù <(6ù <(6 <(6 <(6 ù <(6ù <(6ò<(6 <(6 <(6 ù <(6ù <(6ò<(6 <(6 ò <(6 ù ù ù ö ø ùù ù <(6ø<(6 <(6 <(6 ³
26 ù ù <(6 ñ 12 ò ø ö ù <(6 ù <(6 ³
27 ù " <(6 ö <(6 <(6 6RQ\(UL VVRQ 6,0 *60 ù 6,0 3,1 6,0 <(6
28 <(6 626<(6 <(6 ù ù ø" ø <(6 ø 12 ³ ³ù ³ù ù ú <(6 <(6 12ù ò
29 ñ ù ù <(6 <(6 <(6 ò <(6 <(6 ù <(6 ü ü±
30 ³ ô ù <(6 <(6 ò ø øò ò <(6 <(6 <(6 <(6 ³
31 ô ñ <(6 <(6 <(6 " <(6 <(6 ³ <(6 ô <(6ô&/,<(6 "<(6 <(6 <(6 ø ô <(6 ù ù ù <(6 ±
32 <(6 ô ± <(6 ù <(6 ± ù ³* ù <(6 <(6 <(6 ñ <(6 <(6 ù
33 <(6ù <(6 <(6 <(6 ò<(6 ñ <(6 <(6ù <(6 <(6 <(6 ù ñ ù ù <(6 <(6 <(6 <(6 ñ 6,0 ô 6,0 ò6,0 ô ù 6,0 ò 6,0 ù
34 ù <(6 <(6 6,0 6,0 ñ ù ñ" ù <(6± 12 <(6 ù 6,0 <(6 <(6 ñ <(6 <(6 <(6 <(6 ùñ 6,0 ô 6,0 ô 6,0
35 6,0 <(6 <(6ô 6,0 <(6 <(6ô 6,0 ³ 606 <(6 <(6 "<(6 <(6 "<(6 <(6 12 " ù 606 ³ 606 ò
36 <(6 <(6 <(6 <(6 ö ³ ³ ù ù <(6 12 ù ø ò <(6 <(6 <(6 ù ø
37 ò <(6 <(6 <(6 ù 3,1 ò <(6 <(6 <(6 3,1<(6 ò<(6 86' ü <(6 <(6 ø ô ò <(6 <(6 <(6 3,1<(6 ò <(6 <(6 ù
38 ± ± ± ± ù <(6ù <(6 ù<(6 <(6 <(6 <(6 ùù ³ñ ù <(6ù <(6 ù<(6 <(6 ø<(6 ö ùù ù ù ô ³
39 ù <(6ù <(6ø <(6 ø<(6 ù <(6 <(6 ù ù ù øñ ñ ù <(6 ± ø ñ ñ ñ
40 ø ± ù <(6 ñ 12 <(6 ñ 12 <(6ù<(6 ù ø <(6ø <(6 ù ñ ñ ø ø ñ ô
41 <(6ø <(6 <(6 <(6ø <(6 ù <(6 <(6 <(6 <(6ø <(6 <(6ø <(6 <(6 <(6ø <(6 ù 12 ñ ù ± ± ò ±ò
42 ± ± ù <(6ù <(6 ñ <(6 <(6 ø<(6 <(6 ø ò ùù ù 6,0 ù 6,0 3,1 " ùù
43 <(6 <(6 <(6 3,1<(6 <(6 " ñ ò ³ñ ± ù <(6ù <(6ñ <(6ò <(6 "<(6 <(6 <(6 ò ù <(6ù <(6ñ <(6ò <(6 <(6 <(6 ù <(6ù <(6ñ <(6ø<(6 <(6 ù ³ù ³ ø
44 ù <(6ù <(6ù <(6 <(6 "<(6 <(6 ù <(6ù <(6ù <(6 <(6 <(6 ù ù <(6 <(6<(6 <( ,0 (06 <(6 <(6 ú <(6 " <(6 <(6 ù
45 <(6 <(6 <(6 ³ <(6 12 <(6 <(6 <(6 ôñ ö ö<(6 <(6 <(6 <(6 <(6 <(6 <(6 <(6 <(6 <(6 <(6 <(6
46 ù ³ <(6 <(6 <(6 <(6 <(6 ùù ù ù ñ ± ù ù ± ñ ± ñ ± <(6 <(6 <(6 ù <(6 <(6
47 ³ñ ù ñ <(6 ü <(6ü <(6 "<(6 <(6 <(6 ù" ³ 12 ü ³ ò <(6 <(6 ø 606<(6 606 ù ø ù " ù " <(6 ù
48 ù <(6ù ù ø" 12 ù <(6 ø<(6 <(6 ± <(6 ù <(6 ù <(6 <(6 ù <(6 <(6 ù <(6 û<(6 ù <(6 <(6 ³
49 ù ³ 6,0 6,0 6,0 ù <(6 <(6 <(6 <(6 "<(6 <(6 <(6 ò ø 606 ò± <(6 <(6 ò <(6ù <(6 ô
50 <(6 <(6ò <(6ò <(6 "<(6 <(6 ù ù û ù <(6 12 ò ô û ò 0RELOH,QWHUQHW :$3ù ò0reloh,qwhuqhw ù 0RELOH,QWHUQHW ù :$3 ³ *60 :$3 0RELOH,QWHUQHW
51 ù ò 6RQ\ (UL VVRQ0RELOH,QWHUQHW ñ:he ZZZ6RQ\(UL VVRQ RP ù :$3 &RQILJXUDWRU ù " <(6 12 ù :$3 ³ *60 :$3<(6ù :$3<(6 :$3<(6 ü <(6ò<(6 <(6 ù <(6 <(6,3<(6,3 <(6 ù,3 ù,3,3 *60<(6 <(6 *60<(6 ò<(6 *60 <(6 ù <(6 *60<(6 :$3 0RELOH,QWHUQHW
52 :$3 :$3 :$3<(6 <(6 :$3<(6 :$3 :$3<(6 <(6 :$3<(6 12 " 12 :$3 :$3 :$3 :$3<(6ù :$3<(6 :$3 <(6 ò <(6 <(6 <(6 :$3<(6ñ<(6 <(6 <(6 ± :$3 ò ± :$3 ± ù ± :$3 ù 0RELOH,QWHUQHW
53 :$3<(6ø <(6 ø "<(6 ñ :$3 :$3<(6ù :$3<(6 ü <(6ñ <(6 <(6 :$3<(6ù :$3<(6ø <(6 ñ <(6 <(6 :$3SXVK ù :$3 SXVK ù 3XVK :$3 :$3<(6ù :$3<(6ø <(6 3XVK<(6 ù ù ù3xvkù ø± ñ ±ñ :$3 ± ù 0RELOH,QWHUQHW
54 ô ô ñ <(6ô <(6 "<(6 <(6 <(6 ù"<(6 <(6 ùù <(6 <(6 <(6ô <(6 <(6 ù ± ø ± ù± ù± <(6 ù ³ ù <(6ô <(6 <(6
55 <(6 ò<(6 ò <(6 <(6 <(6 <(6 <(6 <(6 ø <(6 <(6 <(6 <(6 <(6 <(6 <(6 <(6 ù <(6 <(6 <(6 <(6 ø <(6 ø<(6 ù <(6ñ <(6 <(6 <(6 <(6 <(6 <(6 <(6 <(6
56 ù <(6 <(6 <(6 <(6 ±[ ò <(6ò <(6 <(6 <(6 ô
57 ñ 6,0 6,0 ù 6,0 6,0 6,0 6,0 3,1 ù 3,1 6,0 ô 3,1 6, ,1 6,0 ô 3,1 38.<(6 3,1<(6 3,1 <(6 3,1 ù <(6 <(6 6,0 <(6ò3,1<(6 3,1<(6 3,1<(6 3,1 <(6 ù ³ô 3,1 ³ 3,1 ³ 3,1 3,1 3,1 ù <(6 <(6 6,0 <(6ò3,1<(6 ³3,1 ñ
58 6,0 ù <(6 <(6 6,0 <(6ñ <(6 <(6 3,1<(6 6,0 ô ô <(6 ù 6,0 ò ù <(6 <(6 <(6ò <(6 ³3,1 ù 6RQ\(UL VVRQ ù <(6 <(6 <(6ñ <(6 <(6 <(6 ñ
59 ñ ³ù ø ù 6,0 6,0 6,0 6,0 ³6,0 6,0 6,06,0 626 ù ³
60 3,1 3,1 3,1 3,1 3,1 3,1<(6 ³ 6,0 ô 3,1 ³ 6,0 3,1 3,1 3,1 3,1 ò ³ 6, ø ù ³ ô ò ³ ³ ñ 6RQ\ (UL VVRQ
61 :HE 6RQ\(UL VVRQ :HE ZZZ6RQ\(UL VVRQ RPVXSSRUW ñ ø 6,0 ö 7 *60*60 ö [[ ö ö ƒ& ±ƒ&
62 ù ù ³ ô 6RQ\ (UL VVRQ ò 6RQ\(UL VVRQ ò
63 û 6$5 ö û ù,&1,53 ö 6RQ\(UL VVRQ 6$5ò 6$5 6$5 ù 6$5
64 ò6$5 6$5 6RQ\(UL VVRQ 6$5 6$5 ò ZZZ6RQ\(UL VVRQ RP ø (UL VVRQ 6RQ\(UL VVRQ ù ù ö ù ô ù
65 ò ùøñ øõ ó öò õ ø øöò ô öò òöø ò ö òõò òö ôð ùø ò õ ø õ ø ò ôÿ ø ð ö õôò õò ôø ø ÿ øôöøð ø òõò ù ø õø ò ñ ò ù ñ ö ù ù ñ ƒ ƒ
66 ± ò (UL VVRQ 6RQ\(UL VVRQ ñ ù ò ô ƒ ö ù 6RQ\(UL VVRQ&XVWRPHU&DUH&HQWHU
67 ñ ø ô6rq\(ul VVRQ0RELOH&RPPXQL DWLRQV $%6/XQG6ZHGHQ ±6RQ\(UL VVRQ ± ³ò ò 6RQ\(UL VVRQ 6RQ\(UL VVRQ &XVWRPHU&DUH&HQWHU :HE ZZZ6RQ\(UL VVRQ RP 6RQ\(UL VVRQ ò ò 6RQ\(UL VVRQ ò ò ô6rq\(ul VVRQ ò
68 ò ò ô6rq\(ul VVRQ ò 6RQ\(UL VVRQò ñ 6RQ\(UL VVRQ ò ò ò 6RQ\(UL VVRQ ò ò ù ò 6RQ\ (UL VVRQ 6RQ\(UL VVRQ ò ò 6RQ\(UL VVRQ (UL VVRQ 6RQ\(UL VVRQ
69 ò òô ôò ò òó ÿ ø ñ õ ùò ö ÿ òõò ÿ ø õòû ÿ ø ù ûò õ ÿ øö ù û øö ô ø òû øó òò ù ø õ ùø ñ ö öÿ òò ôõ û ø ø òûòòöùø ñ ö öÿ òòôøöö û ôøó ÿ ø ÿòõòù ò ø ø ò õ øù õ ÿ ú õ ó õ ö ò õø ò öòò øôøö øó ø òû øó òòôøöù ò 621<(5,&6621 ôð ð õò õòú ñòó òù òô ôò ø ø õ ø ø òñ ù öøóòõòôø ÿó ý õ ø ø ù øò øð ò ôõ û ø ø òûòòöùø ù ò ÿõò òõòôøöö û ôòó ý ù ñòò ùøùøõ øö øñö ý ò ý öø ÿ ø ùø ÿ øö ùø ô ñ ù ò ò 6RQ\(UL VVRQ ò 6RQ\ (UL VVRQ&XVWRPHU&DUH&HQWHUò ò ò
70 ô ò 6,0 'H ODUDWLRQRI RQIRUPLW\ :H6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$%RI 1\D9DWWHQWRUQHW 6/XQG6ZHGHQ GH ODUHXQGHURXUVROHUHVSRQVLELOLW\WKDWRXUSURGX W 6RQ\(UL VVRQW\SH%9 DQGLQ RPELQDWLRQZLWKRXUD HVVRULHVWRZKL KWKLV GH ODUDWLRQUHODWHVLVLQ RQIRUPLW\ZLWKWKHDSSURSULDWH VWDQGDUGV*3376(1DQG (1 IROORZLQJWKHSURYLVLRQVRI5DGLR (TXLSPHQWDQG7HOH RPPXQL DWLRQ7HUPLQDO(TXLSPHQW 'LUH WLYH(&ZLWKUHTXLUHPHQWV RYHULQJ(0& GLUH WLYH((&DQG/RZYROWDJHGLUH WLYH ((& /XQG-XO\ 3OD H GDWHRILVVXH.HQWDUR2GDND+HDGRI3URGX W%XVLQHVV8QLW* ò 5 77((&
71 ò ñ ø ù ò ù ô :$3 ò ö ò ò ñ ø ñ ù ³ ù ò
72 ñ ø ñ ñ ñ ø 6,0 ô ù:$3 SXVK 6,0 ñ ò
73 0 0RELOH,QWHUQHW 6 6, RQ\(UL VVRQ0RELOH,QWHUQHW 7 7 : :HE 6RQ\(UL VVRQ 6,0
74 ñ ò ô 3,1 3,1 38. ö ø
75 ù
76 6,0 ú û :$3 :$3
:$3. This is the Internet version of the user's guide. Print only for private use. :HE 6RQ\(UL VVRQ GH ODUDWLRQRI RQIRUPLW\
ù ù ø ³ ò :$3 û :$3 ù ñ 6,0 ù" :HE 6RQ\(UL VVRQ GH ODUDWLRQRI RQIRUPLW\ ñ û " 6RQ\(UL VVRQ7 *60 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$% ô6rq\(ul VVRQ 0RELOH&RPPXQL DWLRQV$% 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$%
0RELOH,QWHUQHW :$3 :HE 6RQ\(UL VVRQ GH ODUDWLRQRI RQIRUPLW\
ù ù ø ³ ò 0RELOH,QWHUQHW :$3 û 0RELOH,QWHUQHW :$3 ù ñ 6,0 ù" :HE 6RQ\(UL VVRQ GH ODUDWLRQRI RQIRUPLW\ ñ û " 6RQ\(UL VVRQ ù 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$% ô6rq\(ul VVRQ 0RELOH&RPPXQL DWLRQV$% 6RQ\(UL
:$3. This is the Internet version of the user's guide. Print only for private use. %OXHWRRWK GH ODUDWLRQRI RQIRUPLW\
ù ù ø ³ ò :$3 :$3 û :$3 :$3 ù %OXHWRRWK ô ñ 6,0 ù" GH ODUDWLRQRI RQIRUPLW\ ñ û" 6RQ\(UL VVRQ 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$% ô6rq\ (UL VVRQ0RELOH&RPPXQL DWLRQV$% 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$% 58/=75$
6,0 1RWIRU&RPPHU LDO8VH
6,0 ò ò ø ô 6,0 ù" ñ û" (UL VVRQ$V (UL VVRQ 0RELOH&RPPXQL DWLRQV$% ò (UL VVRQ0RELOH&RPPXQL DWLRQV$% ø (UL VVRQ0RELOH&RPPXQL DWLRQV$% 58/=7 5$,1129$75213$7(176 ø *60 ù ø 7Œ7H[W,QSXW± 7HJL &RPPXQL DWLRQV
1RWIRU&RPPHU LDO8VH (UL VVRQ0RELOH,QWHUQHW :$3 'H ODUDWLRQRI&RQIRUPLW\
ô ò ò ò :$3 ù ù ø ù ñ ò ò (UL VVRQ0RELOH,QWHUQHW ñ ø 'H ODUDWLRQRI&RQIRUPLW\ (UL VVRQ7V ù (UL VVRQ 0RELOH&RPPXQL DWLRQV$% ò (UL VVRQ0RELOH&RPPXQL DWLRQV$% ø (UL VVRQ0RELOH&RPPXQL DWLRQV$% 58/=7 5$,1129$75213$7(176
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H
v w = v = pr w v = v cos(v,w) = v w
Íö Ú Ò ÔÖ Ø Ô Ö ÔÖ ØÝ Ô Ð Ùö Ú ÒÝÒ ÝÖ Ð ÓØ Ó µ º ºÃÐ ØÒ Ë ÓÖÒ Þ ÔÓ ÒÐ Ø Ó ÓÑ ØÖ ½ ÁÞ Ø Ð ØÚÓ Æ Ù Å Ú º ÖÙ µº Ã Ø Ùö Ú Ò ÝÖ Ú Ø ÒÅ ØØÔ»»ÛÛÛºÑ ºÚÙºÐØ» Ø ÖÓ» ¾» л Ò Ó» ÓÑ ÙÞ º ØÑ ½ Î ØÓÖ Ð Ö ÒÅ Ö Ú ØÓÖ ÒÅ
ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ
ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ ¾ ÓÑ ¹ Ì Ø ÖØ»»¾ ÃÙ ÐôÑ Ø ÔÖ Ü ÛÒ ¹ ËØÓ Õ ô ÑÓÒ Ö Ñ Ø»¾¾ Ö Ñ Ø ÔÖ Ü ÔÓÙ Ø Ð Ø Ò Ò ÀºÍº Ò À ÔÖ ¾ Ù ôò
! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο. Επίδοση Υπολογιστικών Συστημάτων. Α.-Γ. Σταφυλοπάτης.
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Πειράματα Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Πρότυπα. ΙωάννηςΓºΤσ ούλος
Πρότυπα ΙωάννηςΓºΤσούλος ¾¼ ½ Συναρτήσειςπροτύπων Μετιςσυναρτήσειςπροτύπωνμπορούμενακάνουμεσυναρτήσειςοιοποίεςεκτελούντονίδιοκώδικα γιαδιαφορετικούςτύπουςδεδομένων όπωςπαρουσιάζεται καιστοεπόμενοπαράδειγμαºοιδηλώσειςσυναρτήσεωνμετηνχρήση
M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1
Å Ü Ò ÙÐØ Ø ÍÒ Ú ÖÞ Ø Ø Ù Ó Ö Ù Ã Ø Ö Þ Ñ Ò Ù ÐÙ Ð Ò Ö Ëº Ó Ì Ä ÈÊÇÊ ÉÍÆ Æ ÃÁÀ ËÌÊÍ ËÌÁ ÁÎÇ ÄÍÁ Á ÆÌÊÇÈËÃ Ê Ä Á κ = 1.4µ ½ ½ ÁÞ ÒØÖÓÔ Ö Ð ÃÓÖ Ø Ò ÑÓ Þ Þ ÒØÖÓÔ Ó ØÖÙ ½ Ú ÔÓÑÓ Ù Ò ÜÙ ØÓØ ÐÒ Ú Ð Õ Ò Ø Ø
Μονοδιάσ τατοιπίνακες
ΚΕΦΑΛΑΙΟ 2 ΠΙΝΑΚΕΣ ¾º½ Μονοδιάστατοιπίνακες Οιπίνακεςείναιδομέςδεδομένωνπουδιαθέτουνέναπλήθοςαπόστοιχείατουίδιου τύπουº Γιαπαράδειγμαηβαθμολογίασεέναμάθημααποθηκεύτεταισεπίνακαº Κάθεστοιχείοτουπίνακααντιπροσωπεύειτηνβαθμολογίαενόςσπουδαστήστο
) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,
½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾
Ã Ð Ó ËØÓ Õ ÛÒ ÐÓ ³ À ÛÑ ØÖ ØÛÒ ÇÖ Ó ÛÒÛÒ º½ ÇÖ ÑÓ ØÓÙ ÐÓÙ ³ ÌÓ ÐÓ ³ Ò ÒØÓÑÓ ÓÑÓ Ò Ñ Ñ ÒÓ ½ ÔÖÓØ Ó ÓÖ ¹ ÑÓ Ø Ò ÖÕ º ËØÓ Ñ Ð Ø ÖÓ Ñ ÖÓ ØÓÙ ÔÖ Ø ÔÓØ Ð Ñ Ø ÔÓÙ ÓÖÓ Ò ÓÖÓÙ ÙÒ Ù ÑÓ ÓÖ Ó ÛÒÛÒ Ø ØÖ ôòûò ÓÙ Ô
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 2: Αναλυτική Γεωμετρία Αθανάσιος Μπράτσος Τμήμα Πολιτικών Μηχ.ΤΕ και Μηχ. Τοπογραφίας & Γεωπληροφορικής
Αντικειμενοστραφής Προγραμματισμός Ενδεκτικές ασκήσεις-απαντήσεις
Αντικειμενοστραφής Προγραμματισμός Ενδεκτικές ασκήσεις-απαντήσεις Τσούλος Ιωάννης, Επίκουρος Καθηγητής Τμ. Μηχανικών Πληροφορικής Τ.Ε. Άρτα, Μάιος 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Αρχείασ την Â Ú. ΙωάννηςΓºΤσ ούλος
Αρχείαστην ÂÚ ΙωάννηςΓºΤσούλος Νοέμβριος ½½ ½ Ηκατηγορία ÁÒÔÙØËØÖÑ Ηκατηγορία ÁÒÔÙØËØÖÑείναιμιααφηρημένηκατηγορίακαιχρησιμοποιείταιγια τηνανάγνωση δεδομένων στην ÂÚαπόαρχείαεισόδουº Ωςαρχείαεισόδου μπορούμεναθεωρήσουμεαρχείαπουβρίσκονταιστονσκληρόδίσκοτουυπολογιστήήκαισυσκευέςεισόδουόπωςτοπληκτρολόγιοºοισημαντικότερεςμέθοδοι
Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή
ÔØ Ö ΕΙΣΟΔΟΣ ΔΕΔΟΜΕΝΩΝ º½ ÉÄ Ò Ø Ηβασ ικήκατηγορίατης ÉØγιαείσ οδοδεδομένωνείναιηéä Ò Øμετηνοποία οχρήσ τηςμπορείναεισ άγεισ εμιαγραμμήένααλφαριθμητικόºστοναλγόριθμο º½παρουσ ιάζεταιηδήλωσ ηγιαένακεντρικόπαράθυρομετοοποίοοχρήσ
p din,j = p tot,j p stat = ρ 2 v2 j,
ÁÑ ÔÖ Þ Ñ Öº Ò ÍÔÙØ ØÚÓ Þ Ð ÓÖ ØÓÖ Ú ¹ Å Ò ÐÙ Í Å Ò ÐÙ Ø ÓÖ ÔÖÓÙÕ Ú Ù ÒÓ Ñ ÒÞ ØÖÙ Ò Ø Ü ÚÓ ÐÙ º Ç ÒÓÚÙ Ø ÞÒ Õ Ò ÖÒÙÐ Ú Ò Õ Ò Ò Õ Ò ÓÒØ ÒÙ Ø Ø ÔÖÓ¹ Ö ÕÙÒ ØÖÙ Ò ÓØÔÓÖ º ÅÒÓ Ó Ø ÓÖ ÞÒ ÒÓ Ñ ÒÞ ØÖÙ ÑÓ Ù ÔÖÓÚ
Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής
Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι Άρης Παγουρτζής Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Προγραμματισ μόςσ ε» ΙωάννηςΓºΤσ ούλος
Προγραμματισμόςσε» ΙωάννηςΓºΤσούλος ¾¼½ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ½º½ Μεταβλητές ½º½º½ Δήλωση Η δήλωσημεταβλητώνμπορεί να γίνει σε οποιοδήποτεσημείοτου κώδικα σε αλλάείναιπροτιμότεροναγίνεταιστηναρχήτουπρογράμματος
S i L L I OUT. i IN =i S. i C. i D + V V OUT
Ç ÒÓÚÒ ÓÒÚ ÖØÓÖ ÈÓ Ó ÒÓÚÒ Ñ ÔÖ Ñ ÓÒÚ ÖØÓÖ Ñ ÔÓ Ö ÞÙÑ Ú Ù ØÖ ÓÒÚ ÖØÓÖ Ù ÓÓ Ø Ù ¹ ÓÓ Øº ËÚ ØÖ ÓÒÚ ÖØÓÖ Ù Ö Ø Ö Ò Ñ Ò Ñ ÐÒ Ñ ÖÓ Ñ Ð Ñ Ò Ø Þ Ø Ú Ù Ò ÓÒØÖÓÐ Ò ÔÖ ÒÙ Ó Ù Ò Ð Ñ Ò ÓÒ ÒÞ ØÓÖº Æ Ò Ó ÓÚ ØÖ ÓÒÚ ÖØÓÖ
ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ
ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ ËÓÑÑ Ö Ò Ò ÖÞ Ù Ø Ñ Ø Ñ ÈÖÓ Ö ÑÑ Ë ØØ Ò ÔÙÖ µ ½ ÒÐ
Κληρονομικότητα. ΙωάννηςΓºΤσ ούλος
Κληρονομικότητα ΙωάννηςΓºΤσούλος ¾¼½ ½ Ηκατηγορία ÈÖ ÓÒ ΗκληρονομικότητααποτελείένααπόταβασικότεραχαρακτηριστικάτουαντικειμενοστραφούςπρογραμματισμούºΤαβασικάτηςστοιχείασε είναι ½ºΤαπεδίαπουχρειάζεταιναπεράσουνστηνκατηγορίαπουκληρονομείθα
Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ14) Περίοδος ΕΡΓΑΣΙΑ 1 η. Τότε r r b c. και ( )
Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ4) Περίοδος 8-9 ΕΡΓΑΣΙΑ η Θέμα (μονάδες ) i. Δείξτε ότι ( a b) c a ( b c ) + b( a c ). a b c+ c a b+ b c a ii. Δείξτε την ταυτότητα Jacobi : ( ) ( ) ( ) Απάντηση i.
Στοκεφάλαιοαυτόθαμιλήσ ουμεγιατααρχείασ τηνγλώσ σ α ºΘαχρησ ιμοποιηθούνσ υναρτήσ ειςαπότηνκαθιερωμένηβιβλιοθήκηεισ όδου»εξόδου
ΚΕΦΑΛΑΙΟ 4 ΑΡΧΕΙΑ Στοκεφάλαιοαυτόθαμιλήσουμεγιατααρχείαστηνγλώσσα ºΘαχρησιμοποιηθούνσυναρτήσειςαπότηνκαθιερωμένηβιβλιοθήκηεισόδου»εξόδου ØÓºµκαι γιααυτόγίνεταιμιαπρώτηπαρουσίασηαυτήςτηςβιβλιοθήκηςº º½
arxiv: v1 [math.dg] 3 Sep 2007
Ì Ö ØÓ Ð ÔÖÓ Ð Ñ Ò ØÛÓ Ò ÐÓ Ó Ø Å Ò ÓÛ ÔÖÓ Ð Ñ Ò Ê Ñ ÒÒ Ò Ô º Ò Ö Áº Ó Ö Ò Ó ½ arxiv:0709.0158v1 [math.dg] 3 Sep 2007 ØÖ Ø ÙØ ÓÖ Ò Ø ÓÐÙØ ÓÒ Ó Ø Ö ØÓ Ð ÔÖÓ Ð Ñ ÓÖ ÓÔ Ò Ò ÐÓ ÙÖ Ò Ê Ñ ÒÒ Ò Ô º Ì Ö ØÓ Ð ÔÖÓ
Προσομοίωση Δημιουργία τυχαίων αριθμών
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Προσομοίωση Δημιουργία τυχαίων αριθμών Άδεια Χρήσης Το παρόν εκπαιδευτικό
ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ
ÔØ Ö ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Στοκεφάλαιοαυτόθαπαρουσ ιασ τούνμερικέςαπότιςδυνατότητεςπουπαρέχειη βιβλιοθήκη ÉÌσ εαρχείακαθώςκαιτρόποισ ύνδεσ ηςκαιεκτέλεσ ηςερωτημάτων σ εβάσ ειςδεδομένωνº º½ Ηκατηγορία
Morganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει
Ã Ð Ó ËØÓ Õ ÛÒ ÐÓ ³ È Ö ÐÓÙ º½ È Ö Õ Ñ Ò ØÓÙ ÐÓÙ ³ ÇÖ ÑÓ ½ ½½ ÈÖ Ø ½ ÈÛ Ö ÓÙÑ ØÓ ÒØÖÓ ØÓÙ ÐÓÙº ÈÖÓØ ¾ ½ ÉÓÖ ÐÓ Ø ÑÒ Ñ ÒÓ ÔØ Ñ ÒÓ º ÈÖÓØ ½ ½ ÔØ Ñ Ò º ÈÖÓØ ¾¼ ¾¾ ½ ÛÒ ØÑ Ñ Ø ÐÓÙ Ø ØÖ ÔÐ ÙÖ ÐÓÙº à ï Ä ÁÇ
tan(2α) = 2tanα 1 tan 2 α
½º ÙÒ Ð ØØ ½º Ò Ò Å Ò Ò M 1 = {1,4,9,16,25,36,49,64,...}, M 2 = {4,6,8,9,10,12,14,15,...}. µ Ö Ò Ë M 1 ÙÒ M 2 ÙÖ Ò Ò Ö Ò Ø ÓÖÑ Ð Ù º µ Ò Ë M 1 M 2 Òº µ Ò Ë M 1 \M 2 ÙÒ M 2 \M 1 Òº µ Ï Ú Ð ÚÓÒ Ò Ò Ö Ú Ö
Γραφικάμετηνχρήσ η ÛØ
Γραφικάμετηνχρήση ÛØ ΙωάννηςΓºΤσούλος Νοέμβριος ¾¼ Η Úδιαθέτειένα δικό της σύστημαγραφικών τοοποίομπορεί να είναι κάπωςπεριορισμένοσεσχέσημετο ÉÌήτο ÏÁÆ ¾ ÈÁαλλάδίνειμεταφέρσιμο κώδικακαιμπορείναχρησιμοποιηθείγιατηνκατασκευήπρογραμμάτωνγραφικής
Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº
ÔØ Ö ΓΡΑΦΙΚΑ ΚΑΙ ΠΟΛΥΜΕΣΑ Ηβιβλιοθήκη ÉÌμπορείναχρησ ιμοποιηθείκαιγιατηνδημιουργίαπρογραμμάτων μεαπλάγραφικά γραμμές κείμενο κύκλουςκτλµόπωςεπίσ ηςγιατηνδημιουργία γραφημάτων από δεδομέναº º½ Àκατηγορία
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Σχηματισμός και αντίληψη εικόνων. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Σχηματισμός και αντίληψη εικόνων Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 2 ËÕÑØ Ñ ÒØÐÝ ÒÛÒ 2.1 ËÕÑØ Ñ ÒÛÒ
Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί
v[m/s] U[mV] 2,2 3,8 6,2 8,1 9,7 12,0 13,8 14,2 14,6 14,9
Á ¹ È ÖÙÔ ½º ÖÞ ÚÓÞ Ö ÓÒ Ø ÒØÒÓÑ ÖÞ ÒÓÑ ÒØ ÒÞ Ø Ø v 1 = 45,0 m/s ÔÖÙ ÒÓÑ ÔÖ Ð ÞÙ Ó ÔÙØ Ñ ÒÓÖÑ ÐÒÓ Ò ÔÖ Ú ÔÖÙ Ö ÙØÓÑÓ Ð ÓÒ Ø ÒØÒÓÑ ÖÞ ÒÓÑ ÒØ ÒÞ Ø Ø v 2 = 15,0 m/s Ó Ò Ð º Í ÓÐ Ó Ö Ò ÚÓÞ Ñ ØÙ ÞÚÙ ÙÕ Ø ÒÓ
Δυναμικοί τύποι δεδομένων
Δυναμικοί τύποι δεδομένων ΙωάννηςΓºΤσούλος Δεκέμβριος ¾¼ Η ÂÚπεριέχειμιασειράαπόχρήσιμεςκατηγορίεςπουχρησιμοποιούνταιγια τηνδιαχείρισηδυναμικώνδεδομένων σταοποίαδενγνωρίζουμεεκτωνπροτέρων όχι μόνον την
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Μαθηματική μορφολογία. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Μαθηματική μορφολογία Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 11 ÅÑØ ÑÓÖÓÐÓ 11.1 ÅÓÖÓÐÓ ÔÜÖ ÙôÒ ÒÛÒ À ÑÑØ
Γιατηνδήλωσ ητωνδομώνχρησ ιμοποιείταιοπροσ διορισ τής ØÖÙØ όπωςσ την σ υνέχεια
ΚΕΦΑΛΑΙΟ 3 ΔΟΜΕΣ º½ Απλές δομές Ηδομήχρησ ιμοποιείταισ ανσ υλλογήμεταβλητώνδιαφορετικούτύπουπροκειμένου ναπεριγράψεισ υνολικάμιαοντότηταº ΓιαπαράδειγμαηοντότηταΑΝΘΡΩΠΟΣ αποτελείταιαπόταπεδία ½º Ονομα αλφαριθμητικόµ
Δυαδικά Συστήματα. URL:
Ø ÖÓ Ü Ñ ÒÓ ÓØ Δυαδικά Συστήματα ôö Ó Éº Ð Ü Ò Ö ÔÓÙÐÓ Ä ØÓÖ Èº º ¼» ¼ e-mail: alexandg@uop.gr URL: http://users.iit.demokritos.gr/~alexandg ÌÑ Ñ Ô Ø Ñ Ì ÕÒÓÐÓ Ì Ð Ô Ó ÒÛÒ ôò È Ö Õ Ñ Ò Ù Ë Ø Ñ ½ ¾ Δυαδικό
Z
Ç ÒÙØ Þ Ó Þ Þ Ñ ÒÓ Ó Ò Óö ÈÖ ÑÓö È Ø ÖÐ Ò Ë ËÚ Ø Ò Ò Ó Ø Ò ê ¾¼½½»¾¼½¾ ÈÓ Ð Ú ÌÇÅËÃÇ Â ÊÇ º½ ÍÚÓ Î Ø Ñ ÔÓ Ð Ú Ù ÓÑÓ Ù Ú Ö Ð Þ Ó ÒÓÚÒ Ñ Ð ØÒÓ ØÑ ØÓÑ Öº ÈÓÞÒ Ú Ò Ø Ð ØÒÓ Ø ÔÓÑ Ñ ÒÓ Þ Ö ÞÙÑ Ú Ò Ñ Ò ÒÓ Ø Ò
a x = x a x. Ηθετικήλύσητηςεξίσωσηςαυτής(για a = 1)είναιοαριθμόςτου Fibonacci 5 1 φ =. 2 ΟΑριστοτέληςδενχρησιμοποιείτονόρο,αλλάπροτιμάτοκάθετος.
Ã Ð Ó ½¾ ËØÓ Õ ÛÒ ÐÓ Ø³ ÇÑÓ Ø Ø ½¾º½ Ì Ô Ö Õ Ñ Ò ØÓÙ ÐÓ٠س ÇÖ ÑÓ ÇÖ ÑÓ Ø ÓÑÓ Ø Ø Ù Ù Ö ÑÑÛÒ Õ Ñ ØÛÒº ÈÖ Ø ½ ÌÓ ôö Ñ º ÈÖÓØ ¾ ÇÑÓ Ø Ø ØÖ ôòûòº ÈÖÓØ ½ Ò ÐÓ Ö ØÑ Ñ ØÛÒº ÈÖÓØ ½ ½ Ò ÐÓ Ñ º ½¾ ½¾ à ï Ä ÁÇ ½¾º
ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ
ÔØ Ö ¾ ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ ¾º½ Δημιουργία απλού παραθύρου Γιατηνδημιουργίαπαραθύρουθαχρειασ τείοχρήσ τηςνατοποθετήσ ειμέσ ασ ε μιακυρίωςεφαρμογήέναοπτικόσ υσ τατικό Ï ØµΤοπιοαπλόοπτικόσ υσ τατικόπουμπορείναχρησ
Ω = {ω 1,..., ω 6 }, ω = ω 1,..., ω m 1, 6, ω 1,...,, ω j {1, 2,...5}, m 1.
Î Ð Ù ËØ Å Ò Ì ÑÝ Ù Ø ÓÖ Ó Ô ØÓ Î ÐÒ Ù ¾¼¼ ÌÙÖ ÒÝ ½ Ì ÑÝ ÒÅ Ö ÚÅ º º º º º º º º º º º º º º º º º º º º º º º º º ½º½º ËØ Ø Ø Ò Ô Ö Ñ ÒØ º º º º º º º º º º º º º º º º ½º¾º ÃÐ Ò ÑÓ Ð º º º º º º º º
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Συνεδριο Δημιουργων ΕΛ/ΛΑΚ 2009
ÄÓ Ñ ÒÓ ØÓ Ãô ØÓ Ë Ø Ñ Ø Ì Ñ À Συνεδριο Δημιουργων ΕΛ/ΛΑΚ 2009 ½ º Ó Ó Ð Ó Διεύθυνση Πληροφορικής ΔΕΗ Τομέας Συστημάτων Γραφείου ÚºÞÓÙ Ó ºÓѺ Ö ¹Ñ Ð Αθήνα 19 Ιουνίου 2009 Συνεδριο Δημιουργων ΕΛ/ΛΑΚ 2009
Å Ñ ¾ º½ ÈÓÖ Ñ Ð Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ º¾ ÈÙÖ Ò Ò Ñ Ö ÑÑ Ô Ò º º º º º º º º º º º ½ º ÈÒ Ñ Ö ÑÑ Ô Ò º º º º º º
È Ö Õ Ñ Ò Á ³ Ò ÖÜ Ñ Ñ ØÓ ÁÁ ÖÕ Ñ Ñ Ø ½ Å Ñ ½ ½º½ Û º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ ÈÓÖ Ñ Ð Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º º º º º º º º
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Μετασχηματισμός Fourier 2-Δ ακολουθιών. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Μετασχηματισμός Fourier 2-Δ ακολουθιών Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 5 ÅØ ÕÑØ Ñ Fourier ¾¹ ÓÐÓÙôÒ
arxiv:quant-ph/ v1 28 Nov 2002
Ò ÒÚ Ø Ø ÓÒ ØÓ ÉÙ ÒØÙÑ Ñ Ì ÓÖÝ arxiv:quant-ph/0211191v1 28 Nov 2002 Û Ö Ïº È ÓØÖÓÛ ÁÒ Ø ØÙØ Ó Ì ÓÖ Ø Ð È Ý ÍÒ Ú Ö ØÝ Ó Ý ØÓ Ä ÔÓÛ ½ ÈÐ ½ ¾ Ý ØÓ ÈÓÐ Ò ¹Ñ Ð Ô ÐÔ ºÙÛ º ÙºÔÐ Â Ò Ë ÓÛ ÁÒ Ø ØÙØ Ó È Ý ÍÒ Ú Ö
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: 2-Δ συνεχή σήματα. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: 2-Δ συνεχή σήματα Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 3 ¾¹ ÙÒÕ ÑØ Å ÙÒÕ Ò ÑÔÓÖ Ò ÔÖ Ø Ô Ò ¾¹ ÙÒÕ Ñ Ð
ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ
ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ ÌÅÀÅ Ä ÉÇÍ Controlµ Ã Ì ÉÏÊÀÌ Ë Registersµ º Bussesµ ÃÍÃÄÇÁ ÅÀÉ ÆÀË Machine Cyclesµ Á ÍÄÇÁ ØÑ Ñ Ð ÕÓÙ
Δυναμική διαχείριση μνήμης
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γλώσσες Προγραμματισμού ΙΙ Διδάσκοντες: Νικόλαος Παπασπύρου, Κωστής Σαγώνας
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 8: Προσεγγιστική Λύση Γραμμικών Συστημάτων. Αθανάσιος Μπράτσος
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 8: Προσεγγιστική Λύση Γραμμικών Συστημάτων Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: SPLINES. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 11: SPLINES Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του μαθήματος διατίθεται
Θα εμφανίσει την τιμή 232 αντί της ακριβούς
Ì ÔÓ ÓÑ ÒÛÒ Ö Å Ø ØÖÓÔ ÑôÒ Fahrenheit ÑÓ Celsius Fahrenheit Celsius c = (5/9)(f 32) public class Fahr2Cels { public static void main(string args[]) { int f = 451; // Τι συμβαίνει στους 451F? int c; c =
ΟπτικόςΠρογραμματισ μός. ΙωάννηςΓºΤσ ούλος
ΟπτικόςΠρογραμματισμός ΙωάννηςΓºΤσούλος ¾¼½ ÔØÖ ½ ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ Σεαυτήτηνενότηταθαεξεταστούνμερικέςαπότιςβασικέςδομέςπάνωστις οποίεςστηρίζεταιηβιβλιοθήκη É̺Οιδομέςαυτέςπεριλαμβάνουνδυναμικούς πίνακες
N i. D i (x) = 1 N i. D(x, x ik ). (3, 1), (3, 0.9), (3, 0.8), (3, 0.8) (4, 0), (4, 0.1), (4, 0.2). k=1. j=1
Å Ì Å ÌÁà Á Î µ ÍÔÓÖ Å Ø Ñ Ø Á Ú Ð ØÖÓØ Ò ÚØÓÖ ØÙÑ Å Ð Ø À Ò Ú Ù Ø ¾¼¼ ½ âì ÎÁÄËà ÎÊËÌ ½º Ê ÎÊâ ÆÂ Î ÇÊ Î ÃÓ ö Ð ÑÓ Ò Ö ÞÚÖ Ò ÚÞÓÖ ÑÓ ÒÓ Ö ÞÚÖ Ø Ø ÓÞº ÓÔÖ Ð Ø ÞÖ ÙÒ ÑÓ Ö Þ Ð Ø ÚÞÓÖ Ó Ú ÞÒ Ò Ö ÞÖ ÓÚ ÚÞÓÖ
Reserve & Trapped. Mission Fuel. Military Ordnance. Expendable Payload. Passengers + Bags ( lbs/pass.) Revenue Cargo. Non expendable Payload
ÈÖÐÑÒÖÝ ØÑØ Ó Ì¹Ç«ÏØ ÈÓØÓÖÔ Ó ÓÒ ¹½ ÐÓÑ ØÖ Ø Ø¹Ó«ÅÜÑÙÑ Ø¹Ó«ÛØ ÕÙÐ ¼¼¼ Ð ÑÜÑÙÑ ÔÝÐÓ ½ ¼¼¼ Ð ÓÙÖØ Ý Ó Ø ÓÒ ÓÑÔÒݵº ½ Ï Ì Ç Ï ÙÐ Ï ÔÝÐÓ Ï ÑÔØÝ ¾½ Ï ÔÝÐÓ Ï ÜÔÒÐ Ï ÒÓÒ ÜÔÒÐ ¾¾ 000000000000 111111111111 000000000000
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 5: Συναρτήσεις Πολλών Μεταβλητών Μέρος ΙI Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο
Εισαγωγικά. URL:
Ø ÖÓ Ü Ñ ÒÓ ÓØ Εισαγωγικά ôö Ó Éº Ð Ü Ò Ö ÔÓÙÐÓ Ä ØÓÖ Èº º ¼» ¼ e-mail: alexandg@uop.gr URL: http://users.iit.demokritos.gr/~alexandg ÌÑ Ñ Ô Ø Ñ Ì ÕÒÓÐÓ Ì Ð Ô Ó ÒÛÒ ôò È Ö Õ Ñ Ò ½ Οργάνωση Μαθήματος Διαδικαστικά
ÍÒ Ú Ö Ø Ð Ù ÖÒ Ö ÄÝÓÒ Á ÁÒ Ø ØÙØ È Ý ÕÙ ÆÙÐ Ö ÄÝÓÒ Ì ÓØÓÖ Ø ËÔ Ð Ø È Ý ÕÙ Ô ÖØ ÙÐ ØÙ Ù Ò Ð À ¼ ¼ ÙÜ ÓÐÐ ÓÒÒ ÙÖ ÖÓÒ ÕÙ Ø ÒØ Ö Ð Ö Ø ÓÒ Ù ÐÓÖ Ñ ØÖ Ù ÊÙÒ ÁÁ Ù Ì Ú ØÖÓÒº Ô Ö È ÖÖ ¹ ÒØÓ Ò Ð ÖØ ËÓÙØ ÒÙ Ð ½
c = a+b AC = AB + BC k res = k 1 +k 2
Ã Ô Ø Ð Á ÒÐ ØÙÒ ï ½ ÅÓ ÐÐ ÚÓÒ Î ØÓÖÖÙÑ Ò ÁÒ Ñ Ö ÅÓØ Ú Ø ÓÒ Ò Ò Òµ È Ö Ö Ô Ò Ò ÐÒ Û Ö Ô Ð ÞÙÖ Ð Ö ¹ Ò ËØÖÙ ØÙÖ Î ØÓÖÖ ÙÑ º Ò Ö ÙÒ Ò Ø Ò ØÞ Ò Û Ö Ð ÒÒØ ÚÓÖ Ù º Ò ÈÖÞ ÖÙÒ Ö ÓÐ Ø ÔØ Ö Û ÒÒ Û Ö ÙÒ ÙÑ Ò Ñ Ø
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του
+ m ev 2 e 2. 4πε 0 r.
Ç ÒÙØ Þ Ó Þ Þ Ñ ÒÓ Ó Ò Óö Ë ËÚ Ø Ò Ò Ó Ø Ò ê ¾¼½½»¾¼½¾ ÈÓ Ð Ú ÇËÆÇÎ ÅÇÄ ÃÍÄËà ÁÇ Á Áà º½ ÍÚÓ ÅÓÐ ÙÐ Ó Þ Ó Ö ÚÒ Ú Ð ØÒÓ Ø Ó ÒÓÚÒ Ø ÚÒ ÐÓÚ ÓÐÓ Ø ÑÓÚ ØÓ ØÓ¹ ÑÓÚ ÑÓÐ ÙÐ ÓÒÓÚ Ò Ñ ÖÓÑÓÐ Ùк Ç Ö ÚÒ Ú ØÙ ÞÚ ÞÓ
[Na + ] [NaCl] + [Na + ]
Ç ÒÙØ Þ Ó Þ Þ Ñ ÒÓ Ó Ò Óö ÂÙÖ Ö Ò ÊÙ ÓÐ ÈÓ ÓÖÒ Ò Ë ËÚ Ø Ò ¾¼½½»¾¼½¾ ÈÓ Ð Ú Ä ÃÌÊÁ ÆÁ ÁÆ Å Æ ÌÆÁ ÈÇ ÎÁ º½ º½º½ Ð ØÖ ÒÓ ÔÓÐ Ò ØÓ Ð ØÖ Ò Ò Ó Ð ØÖ Ò ÔÓ Ú Ð Ó Ö ÞÐÓö ÑÓ Ò Ó ÒÓÚ Ù ÓØÓÚ ØÚ Ñ Ó Ó ÒÓÚÒ Ð ÓØ Ø
Άλγεβρα Boole, λογικές συναρτήσεις και κυκλώματα. URL:
Ø ÖÓ Ü Ñ ÒÓ ÓØ Άλγεβρα Boole, λογικές συναρτήσεις και κυκλώματα ôö Ó Éº Ð Ü Ò Ö ÔÓÙÐÓ Ä ØÓÖ Èº º ¼» ¼ e-mail: alexandg@uop.gr URL: http://users.iit.demokritos.gr/~alexandg ÌÑ Ñ Ô Ø Ñ Ì ÕÒÓÐÓ Ì Ð Ô Ó ÒÛÒ
plants d perennials_flowers
ÈÖÓ Ð Ø Ç Ø ÌÀÇÅ Ë ÁÌ Ê Ì Ò ÍÒ Ú Ö ØĐ Ø Ï Ò Â Å Ë Âº ÄÍ Ù Ò ÐÐ ÍÒ Ú Ö ØÝ ÌÀÇÅ Ë ÄÍà ËÁ ÏÁ Ì Ò ÍÒ Ú Ö ØĐ Ø Ï Ò Ò Îº ˺ ËÍ Ê ÀÅ ÆÁ Æ ÍÒ Ú Ö ØÝ Ó Å ÖÝÐ Ò Ì ÓÙ Ø Ö Ö Ñ ÒÝ ÔÔÐ Ø ÓÒ Û Ö Ò Ó Ø ÓÖ ÒØ Ø ÑÓ Ð ÓÓ
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του
arxiv: v3 [math.ap] 25 Nov 2009
ÅÁ ÊǹÄÇ Ä Æ Ä ËÁË ÏÁÌÀ ÇÍÊÁ Ê Ä Ë Í ËÈ Ëº È ÊÌ Á ËÌ Î Æ ÈÁÄÁÈÇÎÁ Æ Æ Ì Ç ÆÇÎ Æ ÂÇ ÀÁÅ ÌÇ Ì arxiv:0804.1730v3 [math.ap] 25 Nov 2009 ØÖ غ Ä Ø ω,ω 0 ÔÔÖÓÔÖ Ø Û Ø ÙÒØ ÓÒ Ò q [1, ]º Ï ÒØÖÓ Ù Ø Û Ú ¹ ÖÓÒØ
f 1 : P(Y ) P(X) : B f 1 (B) {x X : f(x) B}. (X, A) f (Y, B) g (Z, C) f 1 (E) A Õ E Eº (iii) a R f 1 ([a, )) Mº (iv) a R f 1 ((, a]) Mº
ÇÐÓ Ð ÖÛ º½ Å ØÖ Ñ ËÙÒ ÖØ È Ö Ø Ö º½ µ Å ÙÒ ÖØ f : X Y Ñ Ø Ü Ñ ÒôÒ ÙÒ ÐÛÒ Ô ½ Ñ Ô Ò f 1 : P(Y ) P(X) : B f 1 (B) {x X : f(x) B}. À Ô Ò ÙØ Ø Ö ÙÑÔÐ ÖôÑ Ø Ù Ö Ø Òô Ù Ö Ø ØÓÑ º µ Ò B P(Y ) Ò σ¹ Ð Ö Ó Ó Ò
Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών
Θεωρία Συνόλων Ενότητα: Επιλογής επόμενα Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι
¾ Ë Öö º¾º Å ØÓ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º Ê ÞÙÐØ Ø Ù º º º º º º º º º º º º º º º º º º º º º º º º º½º Ê ÞÙÐØ
Ë Öö ½º ÍÚÓ Ó Ò Ú Ò ÓÐÓ ÑÖ ö Ø ÓÖ ÓÑ Ö ÓÚ ½º½º ÍÚÓ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾º ÈÓÖ î Ò ÑÖ ö ÔÖ Ó Ò ÓÚ ÚÓ Ø Ú º º º º º º º º º º º ½º º ÅÓ Ð ÑÖ ö º º º º º º º
Î Ò È Ö Ó Ì ÈË Ì Ñ ØÙ Ò ÈÖÓÑÓ Ó Ë Ù
Î Ò È Ö Ó Ì ÈË Ì Ñ ØÙ Ò ÈÖÓÑÓ Ó Ë Ù ËÙÑ Ö Ó ½ Î Ò Ó Ú Ö ÓÙÐØ ½ ½º½ Ú Ò Ó Þ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ ½º¾ Å Ò ÑÓ Ò Ö ÒØ º º º º º º º º º º º º º º º º º
ÌÓ ÑÝ Ñ ÐÝ Ò Ö Ò Û Ø ÓÙØ Û ÓÑ Ø ÔÖÓ Ø ÛÓÙÐ Ò Ú Ö ÓÑÔÐ Ø
ÇÆ ÌÀ Ä ËËÁ Á ÌÁÇÆ Ç ÄÇË Ä Ì ÇÍʹŠÆÁ ÇÄ Ë Ý Ì ÓÑ È ÙÐ Ä Ñ ÖØ ÖØ Ø ÓÒ ËÙ Ñ ØØ ØÓ Ø ÙÐØÝ Ó Ø Ö Ù Ø Ë ÓÓÐ Ó Î Ò Ö ÐØ ÍÒ Ú Ö ØÝ Ò Ô ÖØ Ð ÙÐ ÐÐÑ ÒØ Ó Ø Ö ÕÙ Ö Ñ ÒØ ÓÖ Ø Ö Ó Ç ÌÇÊ Ç ÈÀÁÄÇËÇÈÀ Ò Å Ø Ñ Ø Ù Ù
Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών
Θεωρία Συνόλων Ενότητα: Διατακτικοί αριθμοί Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Αποκατάσταση εικόνων. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Αποκατάσταση εικόνων Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 12 ÔÓØ Ø ÒÛÒ ÈÓÐÐ ÓÖ Ó Ò Ø Ø ÐÝ Ù ØÒØ ÔÖÑÖÛ
Faculté des Sciences. Etude du couplage entre un algorithme génétique et des méthodes d optimisation locale
Faculté des Sciences Etude du couplage entre un algorithme génétique et des méthodes d optimisation locale Promoteur : Annick Sartenaer Directeur : Caroline Sainvitu Mémoire présenté pour l'obtention du
2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω
p a (p m ) A (p v ) B p A p B
½ ËØ Ø ÐÙ ½º½ ÍÚÓ ÈÖ ÔÖÓÙÕ Ú Ù Ñ Ò ÐÙ Ð Ó ÐÙ Ù Ò ÐÙ ÑÓ ÑÓ ÔÓ Ð Ø Ò Þ ÔÖ Ñ Ò Ð ¹ ÐÙ Ù Ò Ú ÐÙ Ò Ð ÙÒÙØ Ö ÔÓ Ñ ØÖ Ò Þ ÔÖ Ñ Ò Þ Ò Ó Ö ØÒÓ Þ Õ Ó ÓÒØ Ø Ð Þ Ñ Ò Ø Ò Ö ÐÒ Ð Ð ØÖÓÑ Ò ØÒ Ð µº ÇÚ Ð Ó ÕÒÓ ÞÖ Ú Ù ÔÓ
Εφαρμοσμένα Μαθηματικά
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Εφαρμοσμένα Μαθηματικά Ενότητα 6: Συναρτήσεις πολλών Μεταβλητών Αθανάσιος Μπράτσος Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας ΤΕ Το περιεχόμενο
È ÖÖÝ Àº Ä Ó ½½¼ ÍÒ ÓÒ ËØÖ Ø Ë ¾ ½ ÀÓÐÑ Ú º ˺ Å ÒÒ ÔÓÐ ÅÆ Å ÒÒ ÔÓÐ ÅÆ ¼ ½¾¹ ¾ ¹¼» Ü ½¾¹ ¾ ¹½ ½¾¹ ¾ ¹ Ô Ð Ó ÑºÙÑÒº Ù Ù Ø ÓÒ È º º ź Ò º º Ò º Å Ø ÐÐÙ
È ÖÖÝ Àº Ä Ó ½½¼ ÍÒ ÓÒ ËØÖ Ø Ë ¾ ½ ÀÓÐÑ Ú º ˺ Å ÒÒ ÔÓÐ ÅÆ Å ÒÒ ÔÓÐ ÅÆ ¼ ½¾¹ ¾ ¹¼» Ü ½¾¹ ¾ ¹½ ½¾¹ ¾ ¹ Ô Ð Ó ÑºÙÑÒº Ù Ù Ø ÓÒ È º º ź Ò º º Ò º Å Ø ÐÐÙÖ Ð Ò Ò Ö Ò Ò Å Ø Ö Ð Ë Ò ÖÒ Å ÐÐÓÒ ÍÒ Ú Ö ØÝ ÆÓÚ Ñ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Εισαγωγή. Καθηγητής Γεώργιος Τζιρίτας. Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Εισαγωγή Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 1 Û Å ØÒ ÐÙ Ø Ý ÛØÓÖ Ý Ò Ò ÔÐÓÒ ØÑ ØÓÙ ÙÖÛ ÓÒÓº À ÔÜÖ ÒÛÒ
Ιστοσελίδα:
½¾ Â ÛÖ ÈÐ ÖÓ ÓÖ ÃÛ ÛÒ ÌÀÄ ½ Ð Ü Ιστοσελίδα: www.telecom.tuc.gr/courses/tel412 ÌÀÄ ½¾ Â ÛÖ ÈÐ ÖÓ ÓÖ ÃÛ ÛÒ ¼ ÌÑ Ñ ÀÅÅÍ ÈÓÐÙØ ÕÒ Ó ÃÖ Ø Συνελικτικοι Κωδικες (n, k) L blocks ½ ¾ k ½ ¾ k ½ ¾ k [ ] g1 G T kl
½ ÍÚÓ Ò Ð Þ Ð ÓÖ Ø Ñ Ò ÓÔ Ó Ò Ó Ù Ø ÓÖ Ñ Ö ÞÑ ØÖ Ò Ñ ÔÓ Ù Ú ÑÓ Ó Ö ÑÓ ÐÓö ÒÓ Ø Ø ö ÒÙ Ò Ó ÔÖÓ Ð Ñ Ø Ó Ù ÔÖ Ø Ò Ñ ÔÖ Ñ Ò Ñ ö Ð ÑÓ ØÓ ÔÖ ÞÒ ÔÖÓ Ò ÑÓ Ó Ú
Ò Ð Þ Ð ÓÖ Ø Ñ Ô ØÒ Ö Þ ÔÖ Ñ Ø ËÐÓö ÒÓ Ø ÞÖ ÙÒ Ú Ò Å Ð Ò Ò ÓÚ ¾¼¾½»¼ ¼ º ¼¾º ¾¼¼ º Ë ö Ø ÇÚ Ö ÔÖ Ø ÚÐ Ö Ø ÔÖ Ð Ò Ñ ØÓ Ò Ð Þ Ð ÓÖ Ø Ñ Ó Ñ ÙØÓÖ Ö ÙÔÓÞÒ Ó Ù Ó Ú ÖÙ ÙÖ ËÐÓö ÒÓ Ø ÞÖ ÙÒ Ú Ò Ò ÔÖÚÓ Ó Ò ÔÓ Ø ÔÐÓÑ
ΔΕΙΚΤΕΣ ΚΑΙ ΛΙΣΤΕΣ. Εισ αγωγήσ τηνχρήσ ηδεικτών
ΚΕΦΑΛΑΙΟ 5 ΔΕΙΚΤΕΣ ΚΑΙ ΛΙΣΤΕΣ º½ Δείκτες º½º½ Εισαγωγήστηνχρήσηδεικτών Κάθεμεταβλητήστηνγλώσσα βρίσκεταισεσυγκεκριμένηθέσηστηνμνήμητου υπολογιστήºαυτήηθέσηονομάζεταικαιδιεύθυνσηκαιυπάρχειδυνατότητανατην
, z = 1 ( Lψ = Eψ, E = E fixed, L = +v(x,t), = 4 z z, x R 2 ½º µ
ÇÄ ÈÇÄ Ì ÀÆÁÉÍ ÆÌÊ Å ÌÀ Å ÌÁÉÍ Ë ÈÈÄÁÉÍ Ë ÍÅÊ ÆÊË ½ ½½¾ È Ä ÁË Í Ê Æ µº Ì Ð ¼½ ¼¼º Ü ¼½ ØØÔ»»ÛÛÛºÑ ÔºÔÓÐÝØ Ò ÕÙ º Ö» Ò Ó ÓÐ ØÓÒ Û Ø Ù ÒØ Ð Ö ÐÓ Ð Þ Ø ÓÒ ÓÖ Ø ÆÓÚ ÓڹΠÐÓÚ ÕÙ Ø ÓÒ Ø ÒÓÒÞ ÖÓ Ò Ö Ý ÒÒ Ã Þ
x E[x] x xµº λx. E[x] λx. x 2 3x +2
¾ λ¹ ÐÓÒ Ó ÙÖ ½ ¼ º õ ¹ ¹ ÙÖ ¾ ÙÖ º ÃÐ ¹ ½ ¼º ¹ Ð Ñ ÐÙÐÙ µ λ¹ λ¹ ÐÙÐÙ µº λ¹ º ý ½ ¼ ø λ¹ ÃÐ º λ¹ ÌÙÖ Ò ÌÙÖ º ÌÙÖ Ò ÚÓÒ Æ ÙÑ ÒÒ ¹ ÇÊÌÊ Æ Ä Çĺ ý λ¹ ¹ º Ö ÙØ ÓÒ Ñ Ò µ Ø ¹ ÓÛ ÓÑÔÙØ Ö µ ¹ λ¹ º λ¹ ÙÒØ ÓÒ Ð
Ö ØÓØ Ð Ó È Ò Ô Ø Ñ Ó ÈÓÐÙØ ÕÒ ËÕÓÐ Ò ÌÑ Ñ Ö Ñ Ø Ò ÐÙ Ä ÛÒ È Ø Ó Ð Â ÐÓÒ ¾¼¼
Ö ØÓØ Ð Ó È Ò Ô Ø Ñ Ó ÈÓÐÙØ ÕÒ ËÕÓÐ Ò ÌÑ Ñ Ö Ñ Ø Ò ÐÙ Ä ÛÒ È Ø Ó Ð Â ÐÓÒ ¾¼¼ ¾ È Ö Õ Ñ Ò ÈÖ ÐÓ Ó i ½ Ð Ö ÑÓ Ë ÐÑ Ø ½ ½º½ ÔÐÙ ÈÖÓ Ð Ñ ØÛÒ Ð Ö ÑÓ º º º º º º º º º º º º º º º º ½ ½º¾ Ð Ö ÑÓ Ù Ó ô º º º
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 9: Επικαμπύλια Ολοκληρώματα Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος
imagine virtuală plan imagine
Ô ØÓÐÙÐ ½ ÅÓ ÙÐÙÐ Ð Ö Ö ÓÑ ØÖ Ñ Ö ¾ ÈÁÌÇÄÍÄ ½º ÅÇ ÍÄÍÄ ÄÁ Ê Ê ÇÅ ÌÊÁ Å Ê Á ÙÔÖ Ò ½ ÅÓ ÙÐÙÐ Ð Ö Ö ÓÑ ØÖ Ñ Ö ½ ½º½ ÁÒØÖÓ Ù Ö ÑÓ Ð ÓÑ ØÖ Ð Ñ Ö º º º º º º º º º º º º º ½º½º½ ÈÖÓ ñ Ô Ö Ô Ø Ú º º º º º º º
Τεχνικές βασισμένες στα Δίκτυα Αναμονής
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Τεχνικές βασισμένες στα Δίκτυα Αναμονής Άδεια Χρήσης Το παρόν εκπαιδευτικό
Θεωρία Συνόλων. Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών
Θεωρία Συνόλων Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής. Αθανάσιος Μπράτσος
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο
Déformation et quantification par groupoïde des variétés toriques
Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.
º º½ Destination-Sequenced Distance-Vector (DSDV) º º º º. º º Temporally Ordered Routing Algorithm (TORA) º º º
È Ò Ô Ø Ñ Ó È ØÖôÒ ÈÓÐÙØ ÕÒ ËÕÓÐ ÌÑ Ñ Å Õ Ò ôò ÀÐ ØÖÓÒ ôò ÍÔÓÐÓ ØôÒ ÈÐ ÖÓ ÓÖ ÔÐÛÑ Ø Ö Ð Ö ÑÓ Ô Ó ÒÛÒ Ad-hoc Ã Ò Ø ØÙ È Ò ôø à ÒÓ Å ¾½¾ Ô Ð ÔÛÒ ÉÖ ØÓ ÖÓÐ È ØÖ ÁÓ Ð Ó ¾¼¼ c Copyright È Ò ôø à ÒÓ ÁÓ Ð Ó ¾¼¼
ZZ (*) 4l. H γ γ. Covered by LEP GeV
: 33 9! " 5< 687 235 # #) " " &( $ # $!" K I K T S R N \ N \ ] N ^ K V 63 7 "" ` 2 9 a C C E D # C B A @ " "? > H N OQP N M Y WX U V H O ( N O_P b i h i h h 63 7 "" ` C C E D # C B A @ " "? > b d e f f
½ È Ê Ç Î Ç Ê ÇÚ ÒÓÚ ÓØ À Ð ÖØÓÚ Ç ÒÓÚ ÓÑ ØÖ Ò Ò ÔÖ Ú ÒÓÚ ÔÖ Ö º ÍÔÖ ÚÓ Ù Ò Ò Ù ÑÓ Ò ÔÖ Ú Ñ Ò ÓÔÙÒ º Í ÓÔÙÒ I Ù ÙÔÐ Ò Ò Þ Ú ÒÓ Ø Ù Ø ÑÙ ÓÑ Ö ÐÒ ÖÓ¹ Ú
½ ËÊÈËà à ÅÁÂ Æ Íà ÃÄ ËÁ ÆÁ Æ Í ÆÁ ËÈÁËÁ ÃÆÂÁ XIV Å Ì Å ÌÁ ÃÁ ÁÆËÌÁÌÍÌ ÃÆÂÁ ½ ÍÖ Ò Ñ Ê ÁÎÇÂ Ã â ÆÁÆ ÍÔÖ ÚÒ Ñ Ø Ñ Ø Ó Ò Ø ØÙØ Ë Æ º ÀÁÄ ÊÌ ÇËÆÇÎ ÇÅ ÌÊÁ ÈÊ Î Ç Ë ÇËÅÇ Æ Å ÃÇ Á ÆÂ êº Ê â ÆÁÆ ÈÖ ÑÐ ÒÓ Ò XI
Ç ÖÚ Ø Ö Ø Ð ÒÙ Ù Ó Ø Ò ÒØ Ö Ø º È ÖÑ ÙÒ Ð Ô ÒØÖÙ Ñ Ø Ö Ð ÔÖ ÐÙ Ø ÒÙ Ù Ó Ø Ò ÖÙØ º È Ò Ø Ø Ð Ó Ö Ô ÒØÖÙ ÔÖ ÒØ Ø Ù ÓÖ Ô ÙÒ º ÔÓ Ø Ñ º
Þ ÔÓÚ Ø Ø Ö Ø Ò ÈÖ ÙÖ Ò ÐÙÖÙ ÔÖ Ð ½ ¾¼½¼ Ç ÖÚ Ø Ö Ø Ð ÒÙ Ù Ó Ø Ò ÒØ Ö Ø º È ÖÑ ÙÒ Ð Ô ÒØÖÙ Ñ Ø Ö Ð ÔÖ ÐÙ Ø ÒÙ Ù Ó Ø Ò ÖÙØ º È Ò Ø Ø Ð Ó Ö Ô ÒØÖÙ ÔÖ ÒØ Ø Ù ÓÖ Ô ÙÒ º ÔÓ Ø Ñ º ÓÒØ ÒØ ½ Å Ò ½ ½º ÄÙÑ Ñ Ø