Finansijska ekonometrija
|
|
- Βοανηργες Λύκος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Finnsijsk ekonomerij Uvod Profesor: Prof. dr Tibor Kiš Asisen: dr Boris Rdovnov
2 Uvod Smerovi: Finnsije, bnkrsvo i osigurnje Evropsk ekonomij Rčunovodsvo i revizij Predvnj / vežbe: / 3 Cilj predme: Upoznvnje s osnovnim krkerisikm sohsičkih proces i finnsijskih vremenskih serij Osposobljvnje z smoslno kvniivno isrživnje poveznosi rzličiih ekonomskih vrijbli u domenu finnsij.
3 Uvod Obveze: Redovno pohđnje predvnj i vežbi (6 poen) Dv pismen kolokvijum (po 6 poen) okvirni dumi polgnj: Novi Sd: 7. novembr i. jnur Suboic: 6. novembr i. jnur Pisnje seminrskog rd (6 poen) Prisusvo n lbororijskim vežbm (6 poen) Usmeni ispi (30 poen)
4 Prinos i rizik n hrije od vrednosi R 0.8% σ.83% FITO ENHL 0.3% σ.47% R
5 Sope prinos % σ.83% ENHL A σ R 4.6% σ 0.38% R -0.08
6 Preliminrn finnsijsk nliz poencijlnih ulgnj u hrije od vrednosi Pored prinos i rizik neophodno je uključii i fkor vreme N j nčin dobijmo reću dimenziju u nšoj nlizi poencijlnih ulgnj Cen kcij Imlek.d. Beogrd
7 Preliminrn finnsijsk nliz poencijlnih ulgnj u hrije od vrednosi kcij P/E P/B ROE DEV EPS BETA godišnj promen cene kcije ENHL % IMLK % SJPT % TGAS % AGBN % MTLC % TIGR % VZAS % AIKB % KMBN % UNBN % DJMN % ALFA % TLFN % CRFS % CCHS % JMBN % BMBI %
8 Preliminrn finnsijsk nliz poencijlnih ulgnj u hrije od vrednosi kcij P/E P/B ROE DEV EPS BETA godišnj promen cene kcije FITO % LSTA % CCNB % VINZ % MLSU % SMPO % PUUE % VITL % CRNX % GMON % VDAV % GLOS % ALBS % COKA % BELEX5-0.67% BELEXline -9.6% A % A % AVERAGE %
9 Preliminrn finnsijsk nliz poencijlnih ulgnj u hrije od vrednosi Korelcion mric PE PB ROE EPS DEV BETA GODPROMENA PE PB ROE EPS DEV BETA GODPROMENA D bel pokzuje d ržišni učesnici ne rzmišljju o dugoročnim plnovim preduzeć u čije kcije ulžu (nizk koeficijen korelcije s PE) Akcen je krkoročnim, špekulivnim promenm (visok koeficijen s ROE) Rdi se o zv. neefiksnom ržišu, gde se informcije ne prenose svim ržišnim učesnicim u isom obimu i isovremeno.
10 Preliminrn finnsijsk nliz poencijlnih ulgnj u hrije od vrednosi Osim AIK bnke nijedn drug finnsijsk insiucij nije osvril povećnje cen svojih kcij u odnosu n isi period prošle godine. Još uvek ne posoji ržišn sbilnos ovih insiucij Y996 Y997 Y998 Y999 Y000 Y00 Y00 Y003 Y004 Y005 Y006 Y007 Y008 Y009 Y00 Y0 Y0 Y03 Y04
11 Arbiržn eorij vrednovnj (APT) Cen invesirnog sredsv Mkroekonomski indikori Bruo domći proizvod (GDP) Porošnj Sop inflcije Plni bilns Uvoz Izvoz Devizne rezerve Indusrijsk proizvodnj Trgovinski bilns Sop nezposlenosi Kpilne invesicije Devizni kurs Kmn sop Cen nfe n sveskom ržišu
12 Regresion nliz Sisem linernih jednčin glsi: u funkciji rbiržne eorije vrednovnj (APT) X Y + U mričnom obliku izgled ovko: X Y Y X X X n X + + X X Y X X n Y X
13 Regresion nliz BELEX 5 (Y ) kmn sop (X ) Y X Y X SUM
14 Regresion nliz A * A A Inverzn mric
15 Regresion nliz Y 984 Ocenjeni model glsi: , ,7374 X Objšnjenje prmer: Prmer pokzuje hipoeičku vrednos vrednosi indeks beogrdske berze BELEX5 ko je kmn sop jednk nuli. Prmer oznčv promenu vrednosi indeks BELEX5 pri jednoprocennoj promeni kmne sope. Prem ome, ko kmn sop porse z % možemo očekivi d će se vrednos indeks BELEX5 smnjii z 75,7374 indeksnih poen.
16 Regresion nliz Tesirnje sisičke znčjnosi prmer e ( + ) Y Y Y X Zbir kvdr rezidul e ( ) σ σ e n k Ocen rezidulne vrijnse
17 Arbiržn eorij vrednovnj (APT) Sj σ jj, j Sndrdn grešk prmer 74,7 S 7903, S 6, ,90 S S , ,99 09,4734
18 Regresion nliz bj j, j Sj es z esirnje sisičke znčjnosi prmer H : 0 H : 0 0 j j * * S S 6344,7353 6, , ,99 0,6 > (5%,3),60 6,0036 > (5%,3),60 Uz nivo signifiknnosi 5% i broj sepeni slobode 3 (n k) odbcuje se nul hipoez kod ob prmer, p se može reći d se rdi o sisički znčjnim prmerim.
19 Regresion nliz Koeficijen deermincije y Y n Y Σe R i Σy i y R , , ,4 0, ,49% Modelom je objšnjeno 73,49% ukupnih vrijcij zvisne promenljive (BELEX5) puem regresor (kmn sop) dok je preoslih 6,87% objšnjeno puem modelom neobuhvćenih fkor.
GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo
GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Rešenja A/2 kolokvijuma iz predmeta MERNI SISTEMI U TELEKOMUNIKACIJAMA 10. januar 2006.
šnj A/ kolokvijum iz prdmt MENI SISEMI U ELEKOMUNIKACIJAMA. jnur. Zdtk. D i prikznim urđjm mogl mriti mplitud čtvrtog hrmonik u mmorijki lok tr d ud upin ditrovn zin unkcij ( t) y co π Izlz iz urđj j td
2.6 Nepravi integrali
66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,
ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА
ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА empertur sežeg beton menj se tokom remen i zisi od ećeg broj utijnih prmetr: Početne temperture mešine (n izsku iz mešie), emperture sredine, opote hidrtije ement, Rzmene topote
Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza
Mte Vijug: Rijesei zdci iz mtemtike z sredju skolu. ARITMETICKI I GEOMETRIJKI NIZ, RED, BINOMNI POUCAK. Aritmeticki iz Opci oblik ritmetickog iz: + - d Gdje je: prvi cl ritmetickog iz ti cl ritmetickog
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su
ALJAK ljk je geometijsko telo ogničeno s dv kug u plelnim vnim i delom ilindične povši čije su izvodnie nomlne n vn ti kugov. Os vljk je pv koj polzi koz ente z. Nvno ko i do sd oznke su: - je povšin vljk
dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor
I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto
PRIMER 10. n = 3000 τ = 16/52 = 0,30769 P 0 = 27000/3000 = 9 EUR po akciji S t = 140 K = 130 σ = 0,37 r = 0,068 t = 0,30769/5 = 0,061538
PRIMER 0. ) Invesior je sklopio forvard ugovor sa dospećem od godinu dana, za kupovinu obveznice čiji je rok dospeća 0 godina, sa kuponima od po 50 EUR koji se isplaćuju svaka 4 meseca. Sadašnja vrednos
KUPA I ZARUBLJENA KUPA
KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
Rijeseni neki zadaci iz poglavlja 4.5
Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz
a) Kosi hitac Krivolinijsko gibanje materijalne toke Sastavljeno gibanje Specijalni sluajevi kosog hica: b) Horizontalni hitac c) Vertikalni hitac
) Kosi hic Kriolinijsko ibnje merijlne oke Ssljeno ibnje 5. dio 3 4 Specijlni slujei koso hic: b) orizonlni hic c) Veriklni hic b) orizonlni hic c) Veriklni hic 5 6 7 ) Kosi hic 8 Kosi hic (bez opor zrk)
Termovizijski sistemi MS1TS
Termovizijski sistemi MS1TS Vežbe 02 primer 1 MATLAB funkcija conv. f x = rect x rect x 2 ( ) ( ) ( ) y=conv(rectangle_function(x),rectangle_function(x-2)); figure,subplot(3,1,1),plot(x,rectangle_function(x)),xlabel('\itx'),ylabel('rect({\itx})');
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA
OSNOVE TRIGONOMETRIJE PRVOKUTNOG TROKUT - DEFINIIJ TRIGONOMETRIJSKIH FUNKIJ - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKIJ KUTOV OD - PRIMJEN N PRVOKUTNI TROKUT - PRIMJEN U PLNIMETRIJI 4.1. DEFINIIJ TRIGONOMETRIJSKIH
Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.
Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),
Elementi energetske elektronike
ELEKTRIČNE MAŠINE Elemen energeske elekronke Uvod Čme se bav energeska elekronka? Energeska elekronka se bav konverzjom (prevaranjem) razlčh oblka elekrčne energje. Uvod Gde se kors? Elemen energeske elekronke
PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču
PIRAMIDA I ZARULJENA PIRAMIDA Slično ko i kod pizme i ovde ćemo njpe ojniti oznke... - oeležvmo dužinu onovne ivice - oeležvmo dužinu viine pimide - oeležvmo dužinu viine očne tne ( potem) - oeležvmo dužinu
Prema tome, kao sredstva koja uvrštavamo u portfolio pojavljuju se sredstvo 3, sa najvećim iznosom Sharpe-ovog indeksa, i sredstvo 2.
Prmer 7. 1) Da su podac za r sredsva u peroda osmarana, R 1,518 R 3, 031 R3 3, 9533 r 1 1, 0383 r 0, 837 r 3 1, 48 r 1 r 0,1919 r 1 r 3 0, 698 r r 3 0, 1801 na osnovu dah sumranh vrednos odred očekvanu
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i
Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine
FURIJEOVI REDOVI ZADACI ( II
FURIJEOVI REDOVI ZADACI ( II deo Primer. Fukciju f ( = rzviti u Furijeov red segmetu [,] ztim izrčuti sumu red. ( Rešeje: Kko je f ( = = = f ( zkjučujemo d je fukcij pr. Koristimo formue: = f ( = + ( cos
IZVOD FUNKCIJE Predpostvimo d je unkcij deinisn u nekom intervlu, i d je tčk iz intervl, iksirn. Uočimo neku proizvoljnu tčku iz tog intervl,. Ov tčk može d se pomer levo desno, p ćemo je zvti promenljiv
4. Trigonometrija pravokutnog trokuta
4. Trigonometrij prvokutnog trokut po školskoj ziri od Dkić-Elezović 4. Trigonometrij prvokutnog trokut Formule koje koristimo u rješvnju zdtk: sin os tg tg ktet nsuprot kut hipotenuz ktet uz kut hipotenuz
( ) p a. poklopac. Rješenje:
5 VJEŽB - RIJEŠENI ZDI IZ MENIKE LUID 1 1 Treb odrediti silu koj drži u rvnoteži poklopc B jedinične širine, zlobno vezn u točki, u položju prem slici Zdno je : =0,84 m; =0,65 m; =5,5 cm; =999 k/m B p
= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi
Zdtk 0 (Anstzij, gimnzij) Provjeri je li funkcij f log( 5) + + injekcij Rješenje 0 Kžemo d funkcij f im svojstvo injektivnosti ili d je on injekcij ko vrijedi f ( ) f ( ) Dkle, funkcij je injekcij ko rzličitim
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
Strukture GMDH u modeliranju i predikciji vremenskih serija. Ivan Ivek
Srukure GMDH u modelrnju predkcj vremenskh serj Ivn Ivek Group Mehod of D Hndlng Ivkhnenko, 966. regresj, esmcj, predkcj, konrol... Dobr svojsv: nskoprmersk lgorm smopodešvnje srukure selekcj ulnh vrjbl
SLIČNOST TROUGLOVA. kažemo da su slične ( sa koeficijentom sličnosti k ) ako postoji transformacija sličnosti koja figuru F prevodi u figuru F
SLIČNOST TROUGLOV Z dve figure F i F kžemo d su slične ( s koefiijentom sličnosti k ) ko postoji trnsformij sličnosti koj figuru F prevodi u figuru F. Činjeniu d su dve figure slične obeležvmo s F F. Sličnost
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΕΒΡΟΥ
ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΕΒΡΟΥ ΑΣΗΜΑΚΟΠΟΥΛΟΣ ΣΠΥΡΙΔΩΝ του ΔΗΜΗΤΡΙΟΥ ΚΑΛΑΪΤΖΙΔΟΥ ΑΙΚΑΤΕΡΙΝΗ του ΜΙΧΑΗΛ ΚΟΖΑΡΗΣ ΚΥΡΙΑΚΟΣ του ΧΡΗΣΤΟΥ ΜΑΛΚΟΥΚΗΣ ΒΑΣΙΛΕΙΟΣ του ΔΗΜΗΤΡΙΟΥ ΜΟΡΑΛΗΣ ΖΗΣΗΣ του ΙΩΑΝΝΗ ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
ΕΦΕΤΕΙΟ ΑΘΗΝΩΝ. ΣΥΝΟΛΙΚΗ ΒΑΘΜΟΛΟΓΙΑ και ΜΕΣΟΣ ΟΡΟΣ ΠΡΟΦΟΡΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΙΤΥΧΟΝΤΩΝ ΚΑΤΆ ΜΕΣΟ ΟΡΟ ΥΠΟΨΗΦΙΩΝ ΔΙΚΗΓΟΡΩΝ Β ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟΔΟΥ 2011
ΕΦΕΤΕΙΟ ΑΘΗΝΩΝ ΣΥΝΟΛΙΚΗ ΒΑΘΜΟΛΟΓΙΑ και ΜΕΣΟΣ ΟΡΟΣ ΠΡΟΦΟΡΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΙΤΥΧΟΝΤΩΝ ΚΑΤΆ ΜΕΣΟ ΟΡΟ ΥΠΟΨΗΦΙΩΝ ΔΙΚΗΓΟΡΩΝ Β ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟΔΟΥ 2011 ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΟΝΟΜΑ Εμπορικό Πολιτική Αστικό Ποινικό Ποινική
ΕΦΕΤΕΙΟ ΑΘΗΝΩΝ. ΣΥΝΟΛΙΚΗ ΒΑΘΜΟΛΟΓΙΑ και ΜΕΣΟΣ ΟΡΟΣ ΠΡΟΦΟΡΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΙΤΥΧΟΝΤΩΝ ΚΑΤΆ ΑΛΦΑΒΗΤΙΚΗ ΣΕΙΡΑ
ΕΦΕΤΕΙΟ ΑΘΗΝΩΝ ΣΥΝΟΛΙΚΗ ΒΑΘΜΟΛΟΓΙΑ και ΜΕΣΟΣ ΟΡΟΣ ΠΡΟΦΟΡΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΙΤΥΧΟΝΤΩΝ ΚΑΤΆ ΑΛΦΑΒΗΤΙΚΗ ΣΕΙΡΑ ΥΠΟΨΗΦΙΩΝ ΔΙΚΗΓΟΡΩΝ Β ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟΔΟΥ 2011 ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΟΝΟΜΑ Εμπορικό Πολιτική Αστικό Ποινικό
SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA
SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA Sinusn terem glsi: Strnie trugl prprinlne su sinusim njim nsprmnih uglv. R sinβ sinγ Odns dužine strni i sinus nsprmng ugl trugl je knstnt i jednk je dužini
GEOMETRIJSKA VEROVATNOĆA. U slučaju kada se ishod nekog opita definiše slučajnim položajem tačke u nekoj oblasti, pri čemu je proizvoljni položaj
GEMETRIJK VERVTNĆ U slučju kd se ishod nekog oi definiše slučjnim oložjem čke u nekoj oblsi, ri čemu je roizvoljni oložj čke u oj oblsi jednko moguć, korisimo geomerijsku verovnoću. ko, recimo, obeležimo
c = α a + β b, [sustav rješavamo metodom suprotnih koeficijenata]
Zdtk (Tihomir, tehničk škol) c = 8 i. Rješenje Prikži vektor c ko linernu kombinciju vektor i b ko je = i + 3 j, b = 4 i 3 j, Nek su i b vektori i α, β relni brojevi. Vektor c = α + β b nzivmo linernom
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Program testirati pomoću podataka iz sledeće tabele:
Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n
Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:
Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos
Osnove elektrotehnike I parcijalni ispit VARIJANTA A. Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti.
Osnove elektrotehnike I prcijlni ispit 3..23. RIJNT Prezime i ime: roj indeks: Profesorov prvi postult: Što se ne može pročitti, ne može se ni ocijeniti... U vzdušni pločsti kondenztor s rstojnjem između
Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo
Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Osnovni pojmovi u Analizi vremenskih serija
Profesor Zorica Mladenović 3/5/06 Osnovni pojmovi u Analizi vremensih serija Zorica Mladenović Osnovni pojmovi Elemenarne oznae Slučajan proces i vremensa serija Sacionarnos Auoovarijaciona funcija Auoorelaciona
MEHANIKA FLUIDA. Isticanje kroz velike otvore
MEANIKA FLUIDA Isticnje krz velike tvre 1.zdtk. Krz veliki ptvr u bčn zidu rezervr blik rvnkrkg trugl snve i keficijent prtk µ, ističe vd. Odrediti prtk krz tvr k su pznte veličine 1 i (v.sl.). Eleentrni
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Matematka 1 Zadaci za drugi kolokvijum
Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()
VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici.
VILJUŠKARI 1. Viljuškar e korii za uoar andardnih euro-pool palea na druko ozilo u ieu prikazano na lici. PALETOMAT a) Koliko reba iljuškara da bi ree uoara kaiona u koji aje palea bilo anje od 6 in, ako
INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50
INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 2. vežbe 2. vežbe Tehnologija bušenja II Slide 1 of 50 Proračuni trajektorija koso-usmerenih bušotina 2. vežbe Tehnologija bušenja II Slide 2 of 50 Proračun
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
1.PRIZMA ( P=2B+M V=BH )
.RIZMA ( =+M = ).Izrčunti površinu i zpreminu kvr čij je ijgonl ug 0m, užine osnovnih ivi su m i m. D 0m m b m,? D 00 b 00 8 8 b b 87 87 0 87 8 87 b 87 87 87 8 87. Ivie kvr onose se ko :: ijgonl je ug.oreiti
Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1
Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:
Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b
Analiza vremenskih serija Osnovni pojmovi
Analiza vremenskih serija Osnovni pojmovi Slučajan proces i vremenska serija Sacionarnos Osnovni modeli sacionarnih vremenskih serija Auokorelaciona funkcija (obična i parcijalna) Tesovi auokorelacije
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:
tnic:iii- lektosttik lektično polje n gnici v ielektik. Pločsti konenzto. Cilinični konenzto. Kuglsti konenzto. tnic:iii-. ztk vije mete ploče s zkom ko izoltoom ile su spojene n izvo npon, ztim ospojene
Moguća i virtuelna pomjeranja
Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +
pismeni br.4 4.2: Izračunati yds, gdje je K luk parabole y 2 = 2 px od ishodišta to točke
Prakkm Maemaka III Prredo DJočć smen br : Raz Forero red nkc eroda dan ormom za < za < : Izračna ds gde e k araboe od shodša o očke M : Izračna koordnae ežsa homogenog ka ckode a sn a ; : Izračna I e [
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Sistemi veštačke inteligencije primer 1
Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati
TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β
TRUG Mngug kji im ti stnie zve se tug. snvni elementi tugl su : - Temen,, - Stnie,, ( p dgvu stnie se eležvju nsupt temenu, np nspm temen je stni, itd) - Uglvi, unutšnji α, β, γ i spljšnji α, β, γ γ α
Analiza vremenskih serija
Profesor Zorica Mladenović 5/7/7 Analiza vremenskih serija Zorica Mladenović Srukura Uvodne napomene Vremenska serija i slučajan proces Sacionarnos i osnovni modeli Uzroci nesacionarnosi. Jedinični koren
ZBIRKA POTPUNO RIJEŠENIH ZADATAKA
**** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.
PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :
PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije
Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da
2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos
. KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
Metode rješavanja izmjeničnih krugova
Strnic: V - u,i u(t) i(t) etode rešvn izmeničnih kruov uf(t) konst if(t)konst etod konturnih stru etod npon čvorov hevenin-ov teorem Norton-ov teorem illmn-ov teorem etod superpozicie t Strnic: V - zdtk
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
Elektrotehnički fakultet univerziteta u Beogradu 26. jun Katedra za Računarsku tehniku i informatiku
Elektrotehički fakultet uiverziteta u Beogradu 6. ju 008. Katedra za Račuarku tehiku i iformatiku Performae račuarkih itema Rešeja zadataka..videti predavaja.. Kretaje Verovatoća Opi 4 4 Kretaje u itom
Χρηματοοικονομική Διοίκηση. 7η Εισήγηση Αποτίμηση και Απόδοση αξιογράφων
Χρηματοοικονομική Διοίκηση 7η Εισήγηση Αποτίμηση και Απόδοση αξιογράφων 1 ΠΗΓΕΣ ΧΡΗΜΑΤΟΔΟΤΗΣΗΣ Έμμεση χρηματοδότηση: Τραπεζικά δάνεια, αμοιβαία κεφάλαια, εταιρίες επενδύσεων χαρτοφυλακίου και ασφαλιστικά
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2004
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 4 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπα το γράµµα που αντιστοιχεί στη σωστή απάντηση Σύµφωνα µε την ηεκτροµαγνητική
ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.
Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako
Preuzeto iz elektronske pravne baze Paragraf Lex ODLUKA O IZVEŠTAVANJU BANAKA
www.prgrf.rs Preuzeto iz elektronske prvne bze Prgrf Lex ODLUKA O IZVEŠTAVANJU BANAKA ("Sl. glsnik RS", br. 45/2011, 94/2011, 87/2012 i 125/2014 - dr. odluk) NAPOMENA: Ovj propis je presto d vži. Vžeći
Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković
Devizno tržište Devizni urs i devizno tržište Devizni urs - cena jedne valute izražena u drugoj valuti Promene deviznog ursa utiču na vrednost ative i pasive oje su izražene u stranoj valuti Devizni urs
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Kinematika materijalne toke. 3. dio a) Zadavanje krivocrtnog gibanja b) Brzina v i ubrzanje a
Kinemik meijlne oke 3. dio ) Zdnje kiocnog gibnj b) Bzin i ubznje 1 Kiocno gibnje meijlne oke Položj meijlne oke u skom enuku emen možemo definii n slijedee nine: 1. Vekoski nin defininj gibnj (). Piodni
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ ΓΡΑΦΕΙΟ ΤΥΠΟΥ ndpress@nd.gr
ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ ΓΡΑΦΕΙΟ ΤΥΠΟΥ ndpress@nd.gr Τετάρτη, 9 Σεπτεμβρίου 2015 ΔΕΛΤΙΟ ΤΥΠΟΥ ΥΠΟΨΗΦΙΟΙ ΒΟΥΛΕΥΤΕΣ ΤΗΣ ΝΕΑΣ ΔΗΜΟΚΡΑΤΙΑΣ ΓΙΑ ΤΙΣ ΕΘΝΙΚΕΣ ΕΚΛΟΓΕΣ ΤΗΣ 20 ης ΣΕΠΤΕΜΒΡΙΟΥ ΕΠΙΚΡΑΤΕΙΑ 1. ΦΟΡΤΣΑΚΗΣ ΘΕΟΔΩΡΟΣ
Ekonometrija 4. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković
Ekonometrja 4 Ekonometrja, Osnovne studje Predavač: Aleksandra Nojkovć Struktura predavanja Nelnearne zavsnost Prmene u ekonomskoj analz Prmer nelnearne zavsnost Isptujemo zavsnost zmeđu potrošnje dohotka.
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe