Autonomni živčani sustav i srž nadbubrežnih žlijezda. Katedra za fiziologiju Medicinski fakultet u Splitu
|
|
- Αμάλθεια Χρηστόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Autonomni živčani sustav i srž nadbubrežnih žlijezda Prof. dr.. Zoran Valić Katedra za fiziologiju Medicinski fakultet u Splitu
2 dio živčanog sustava koji nadzire većinu visceralnih funkcija tijela arterijski tlak, kretnje i lučenje probavnog sustava, pražnjenje mjehura, znojenje, temperatura brzina i intenzitet promjene najupadljiviji
3 Opće e ustrojstvo AŽSA centri smješteni u: kralježni ničnojnoj moždini moždanom deblu hipotalamusu djelovanje pomoću visceralnih refleksa simpatički i parasimpatički živčani sustav
4 Fiziološka građa simpatikusa dva paravertebralna ganglijska lanca dva prevertebralna ganglija celijačni hipogastrični postganglijski živci sipatički preganglijski živci polaze zajedno sa spinalnim; ; iz segmenata T1-L2
5
6 Preganglijski i postganglijski neuroni stanična na tijela preganglijskih neurona nalaze se u intermediolateralnom rogu kralježni ničnene moždine njihova vlakna odlaze prednjim korijenom u odgovarajući spinalni živac
7
8 po izlasku spinalnog živca iz kralježnice preganglijska simpatička vlakna se od njega odvajaju kroz bijelu granu odlaze u jedan od ganglija simpatičkog lanca
9
10 daljnji tijek vlakna trojak: 1) sinapsa s postganglijskim simpatičkim neuronom u tom gangliju 2) penjanje ili spuštanje kroz simpatički lanac i sinapsa u nekom drugom gangliju u lancu 3) prolaz kroz ganglij/lanac, odlazak simpatičkim živcem i tvorenje sinapse u jednom od perifernih simpatičkih ganglija postganglijska ska vlakna odlaze do svojih ciljnih organa
11
12 neka se postganglijska vlakna vraćaju aju u spinalne živce kroz sive grane (na svim razinama kralježni ničnene moždine) to su vrlo tanka vlakna (vrste C) koja dospijevaju u sve dijelove tijela nadziru: krvne žile, žlijezde znojnice i piloerekcijske mišiće e dlaka čine 8% vlakana u prosječnom živcu
13 Segmentalna raspodjela simpatički putovi ne raspodjeljuju se nužno no isto kao i somatski spinalni: T1: glava T2: vrat T3-T6: T6: toraks T7-T11: T11: abdomen T12-L2: noge postoji i preklapanje, a inervacija organa ovisi o njegovu položaju u vrijeme razvoja (srce/vrat)
14 Srž nadbubrežnih nih žlijezda preganglijska simpatička vlakna prolaze bez prekopčavanja od stanica intermedio- lateralnog roga do posebnih živčanih stanica u SNŽ te sekrecijske stanice potječu u od živčanog tkiva i zapravo su postganglijski neuroni (imaju rudimentarna živčana vlakna) luče: adrenalin i noradrenalin
15 Fiziološka građa parasimpatikusa parasimpatička vlakna odlaze iz SŽS S S putem 3., 7., 9. i 10. moždanog živca, te 2. i 3. sakralnim spinalnim živcima (katkad 1. i 4.) 75% parasimpatičkih vlakana se nalazi u vagusima (torakalni i abdominalni dio) vagusi inerviraju: srce, pluća, jednjak, želudac, tanko crijevo, polovicu debelog crijeva, jetru, žučni mjehur, guštera teraču, bubrege i gornje dijelove mokraćovoda ovoda
16 + vanjski spolni organi - erekcija
17 Preganglijski i postganglijski neuroni preganglijska vlakna prolaze bez prekapčanja anja sve do organa koji nadziru (uz iznimku nekih moždanih živaca) postgangliski neuroni su smješteni u stjenci organa u tkivo odlaze kratka postganglijska vlakana (razlika u odnosu na simpatikus)
18 Kolinergična na i adrenergična na vlakna kolinergična na vlakna luče acetilkolin adrenergična na vlakna luče noradrenalin
19 svi preganglijski neuroni (vlakna) su kolinergični ni (i parasimpatički i simpatički) gotovo svi parasimpatički postganglijski neuroni/vlakna su kolinergični ni većina simpatičkih postganglijskih neurona/vlakana su adrenergični ni izuzetak: simpatička postganglijska vlakna za žlijezde znojnice i piloerekcijske mišiće
20 acetilkolin parasimpatički neurotransmitor noradrenalin simpatički neurotransmitor
21 Lučenje ACh i NA neki parasimpatički završetci slični neuromuskularnom spoju većina pak samo dodiruje efektorske stanice inerviranog organa varikoziteti mjehurasta proširenja vlakana u varikozitetima ACh i NA, mitohondrij akcijski potencijal ulazak Ca lučenje iz završetaka ili varikoziteta
22 ACh sintetizira se u završetcima i varikozitetima pohranjuje se u sekrecijskim mjehurićima ima acetil-coa + kolin acetilkolin acetilkolin-esteraza esteraza iz lokalnog veziva ga razgrađuje na acetat i kolin kolin je podložan ponovnom unosu (reuptake)
23 NA sintetizira se u završetcima i mjehurićima ima tirozin (hidroksilacija) DOPA (dekarboksilacija) dopamin (unos u mjehuriće, hidroksilacija) noradrenalin (u SNŽ,, 80%, metilacija) ) adrenalin uklanjanje: reuptake (50-80%) difuzija u okolno tkivo i krv (većina preostalog NA) razgradnjom enzimima (MAO, KOMT, manji dio)
24
25 NA izlučen od živaca djeluje kratko adrenalin i NA izlučeni iz SNŽ djeluju duže (sve do odlaska u tkiva, gdje ih razgrađuje KOMT, jetra) sekunda velika aktivnost; minute gubitak učinkau
26 Receptori ACh i NA se moraju vezati sa specifičnim receptorima da bi djelovali receptor se nalazi na vanjskoj strani stanične ne membrane vezanje neurotransmitora izaziva konformacijske promjene receptora 1) promjena propusnosti stanične ne membrane 2) aktivacija ili inhibicija nekog enzima
27 Promjena propusnosti membrane otvaranje ili zatvaranje ionskog kanala najčešće e Na i/ili Ca kanali ulaz tih iona dovodi do depolarizacije (pobuđivanja uđivanja) ) stanice izlaz K iona iz stanice dovodi do hiperpolarizacije (inhibicije) stanice
28 Promjena aktivnosti enzima vezanje NA adenil-ciklaze camp učinak u stanici ovisi o vrsti receptorske bjelančevine evine i njezinom djelovanju
29 Kolinergični ni receptori 1. nikotinski receptori aktivira ih nikotin 2. muskarinski receptori aktivira ih muskarin (otrov iz stolice žabe krastače) ACh aktivira i nikotinske i muskarinske receptore
30 1. Nikotinski receptori nalaze se na sinapsama između preganglijskih i postganglijskih neurona u parasimpatičkom kom,, ali i simpatičkom sustavu ima ih i izvan autonomnog živčanog sustava; nalaze se u neuromuskularnom spoju
31 ionotropni receptor (direktno povezan s ionskim kanalom, ne koristi druge glasnike) dvije podskupine: 1) nikotinski receptor mišićnog tipa 2) nikotinski receptor neuralnog tipa
32
33 2. Muskarinski receptori nalaze se na efektorskim stanicama koje stimuliraju postganglijski kolinergični ni neuroni prvenstveno parasimpatički sustav, ali i kolinergični ni simpatički živčani sustav
34 metabotropni receptor (receptor povezan s G-bjelančevinom) evinom) pet podskupina (M 1 -M 5 )
35
36 Adrenergični ni receptori 1. α-receptori dalje se dijele na α 1 - i α 2 -receptore 2. β-receptori dalje se dijele na β 1 -, β 2 - i β 3 -receptore NA podražuje uglavnom α-receptore, a samo slabo β-receptore adrenalin podjednako podražuje obe skupine
37 metabotropni receptori (receptori povezani s G-bjelanG bjelančevinom) evinom) na njih djeluju katekolamini isoprenaline ili isoproterenol djeluje na β- receptoru
38
39
40 β3
41 Ekscitacijski i inhibicijski učinci u simpatikusa i parasimpatikusa u nekim organima ekscitacija,, a u nekim inhibicija nema generalizacije pa je učinak potrebno naučiti kad simpatikus ima određeni učinak, u parasimpatikus obično ima obrnut učinaku većinu organa pretežno nadzire jedan ili drugi sustav
42
43 Funkcija SNŽ podraživanje SNŽ simpatičkim živcima otpuštanje tanje velikih količina ina adrenalina (80%) i NA (20%), ali može e biti i drukčije cirhulirajući hormoni imaju gotovo jednake učinke kao i simpatičko podraživanje, ali traje puta dulje
44 adrenalin snažnije nije potiče e srce, a manju vazokonstrikciju (pogotovo u mišićima, ima, koji čine većinu žila) stoga NA jako povećava tlak; adrenalin manje, ali jako povećava SMV adrenalin ima mnogo jači i metabolički učinak
45 Važnost SNŽ za funkciju simpatikusa istodobno podraživanje organa: izravno- simpatikusom i posredno-hormonima SNŽ međusobno potpomaganje,, a katkad i zamjena čimbenik sigurnosti podraživanje tjelesnih struktura bez izravne simpatičke inervacije (svaka stanica u tijelu)
46 Odnos frekvencije podražaja aja i veličine ine učinkau za punu aktivaciju autonomnih efektora potrebna je mala frekvencija podraživanja (za razliku od skeletnog živčanog sustava) općenito je dovoljan 1 impuls u sekundi, a puna aktivacija se postiže e pri impulsa u sekundi (u skeletnom impulsa u sekundi i više)
47 Simpatički i parasimpatički tonus autonomni živčani sustav je normalno neprekidno aktivan, a razinu aktivnosti nazivamo simpatički, odnosno parasimpatički tonus na taj se način aktivnost može e povećati, ali i smanjiti
48 simpatički sustav normalno drži i promjer sistemskih arteriola na polovici njihova maksimalnog promjera presijecanje vagusa može e uzrokovati tešku opstipaciju
49 Bazalno lučenje SNŽ adrenalin 1,1 nmol/kg/min NA 0,3 nmol/kg/min znatna količina, ina, dovoljna za održavanje arterijskog tlaka (čak( i bez simpatičke inervacije)
50 Gubitak tonusa nastaje u slučaju presijecanja živaca kod krvnih žila nastaje maksimalna vazodilatacija unutar sekunda uspostava vlastitog tonusa nakon nekoliko tjedana prilikom gubitka parasimpatičkog tonusa za prilagodbu potrebno nekoliko mjeseci
51 Preosjetljivost nakon denervacije tjedan dana nakon denervacije organ postaje osjetljiviji na izvana ubrizgani NA ili ACh denervacijska preosjetljivost simpatikusa i parasimpatikusa; različiti iti organi; reaktivnost povećana i 10x povećanje broja receptora u denerviranim organima
52
53 Autonomni refleksi reguliraju mnoge visceralne funkcije kardiovaskularni autonomni refleksi baroreceptorski refleks gastrointestinalni autonomni refleksi mirisi ili nazočnost nost hrane u ustima istezanje rektuma ostali refleksi pražnjenje mokraćnog mjehura spolni refleksi
54 Masovno izbijanje simpatikusa kad gotovo svi djelovi simpatikusa istodobno odašilju impulse zbog straha, strepnje ili jake boli reakcija u cijelom organizmu alarmna ili stresna reakcija
55 Aktivacija pojedinih dijelova simpatikusa proces termoregulacije utječe e na znojenje i protok krvi u koži lokalni refleksi zagrijavanje ili hlađenje ograničenog dijela kože probavni simpatički refleksi; ne uključuju uju ni kralježnicu već samo paravertebralne ganglije motorika ili sekrecija
56 Specifični lokalni odgovori parasimpatikusa nadzorne funkcije parasimpatikusa su obično jako specifične kardiovaskularni refleksi djeluju samo na srce, refleks defekacije samo na rektum lučenje sline, želuca i guštera terače e obično istovremeno; pražnjenje rektuma i mokračnog mjehura
57 Alarmna ili stresna reakcija simpatikusa povećava sposobnost organizma za obavljanje teškog mišićnog rada 1) arterijskog tlaka 2) protoka krvi kroz mišiće, a kroz inaktivna tkiva 3) intenziteta metabolizma u cijelom tijelu 4) GUK 5) glikolize u jetri i mišićima ima 6) mišićne snage 7) mentalne aktivnosti 8) ubrzano zgrušavanje krvi
58 simpatička reakcija na stres omogućavanje dodatne aktivacije organizma u stresnim stanjima stanje bijesa alarmna reakcija ili reakcija borbe ili bijega
59 Kontrola AŽS A S produljenom moždinom, ponsom i mezencefalonom nadzor arterijskog tlaka, srčane frekvencije, disanje, lučenja žlijezda, peristaltike, kontrakcije mokraćnog mjehura presijecanjem ispod produljene moždine tlak pada na polovicu svoje vrijednosti viši i centri također mogu igrati ulogu (tlak, temperatura) bolesti (ulkus, opstipacija, palpitacije, infatkt)
60
61 Farmakologija AŽS A simpatikus 1) lijekovi koji djeluju na adrenergične receptore simpatomimetici 1) α-receptori phenilefrin 2) β-receptori izoproterenol 3) β 2 -receptori albuterol 2) lijekovi koji oslobađaju NA iz živaca 1) efedrin, tiramin i amfetamin
62 3) lijekovi koji koče e adrenergičnu nu aktivnost simpatolitici 1) sprječavanje sinteze i pohranjivanja NA rezerpin 2) sprječavanje oslobađanja NA gvanetidin 3) blokada α-receptora fentolamin 4) blokada β-receptora propranolol; blokada β 1 -receptora metoprolol 5) blokada prijenosa živčanih impulsa kroz ganglije heksametonij
63 Farmakologija AŽS A parasimpatikus 1) lijekovi koji djeluju na kolinergične receptore parasimpatomimetici (kolinergični ni lijekovi) 1) ACh različit it učinak u zbog razgradnje acetilkolin- esterazom 2) muskarinski receptori pilokarpin i metakolin
64 2) lijekovi koji pojačavaju avaju učinak u parasimpatikusa antikolinesterazni lijekovi 1) neostigmin, piridostigmin i ambenonium 3) lijekovi koji koče e kolinergičnu nu aktivnost antimuskarinski lijekovi 1) atropin, homatropin, skopolamin; - ne djeluju na nikotinske receptore niti na neuromuskularnu vezu
65 Lijekovi koji podražuju postganglijske neurone ubrizgani ACh nikotin (tvari koje podražuju postganglijske neurone nikotinski lijekovi) aktivacija i simpatikusa i parasimpatikusa
66 Lijekovi koji blokiraju ganglije koče e prijenos impulsa iz preganglijske u postganglijske neurone tetraetil-amonij, amonij, heksametonij i pentolinij kočenje i simpatičkog i parasimpatičkog sustava koriste se za blokadu simpatikusa mogu sniziti tlak, ali ih je teško dozirati
FARMAKOLOGIJA PERIFERNOG ŽIVČANOG SUSTAVA
FARMAKOLOGIJA PERIFERNOG ŽIVČANOG SUSTAVA Prof. dr. sc. Frane Božić Zavod za farmakologiju i toksikologiju Veterinarski fakultet Sveučilišta u Zagrebu USTROJ ŽIVČANOG SUSTAVA MOZAK KRALJEŽNIČNA MOŽDINA
Διαβάστε περισσότερα18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Διαβάστε περισσότερα3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Διαβάστε περισσότεραELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Διαβάστε περισσότεραVeleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Διαβάστε περισσότεραPARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)
(Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom
Διαβάστε περισσότεραDISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Διαβάστε περισσότερα1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Διαβάστε περισσότεραIskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Διαβάστε περισσότεραUNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Διαβάστε περισσότεραPARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Διαβάστε περισσότεραOsnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Διαβάστε περισσότερα21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
Διαβάστε περισσότεραPRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Διαβάστε περισσότεραEliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Διαβάστε περισσότεραIspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Διαβάστε περισσότεραIZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Διαβάστε περισσότεραπ π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Διαβάστε περισσότεραPismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Διαβάστε περισσότεραM086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Διαβάστε περισσότεραTrigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Διαβάστε περισσότεραPRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
Διαβάστε περισσότεραApsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Διαβάστε περισσότεραradni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Διαβάστε περισσότεραMATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Διαβάστε περισσότεραIspitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Διαβάστε περισσότεραProf.dr.sc. Frane Božić Zavod za farmakologiju & toksikologiju Veterinarskog fakulteta Sveučilišta u Zagrebu
Prof.dr.sc. Frane Božić Zavod za farmakologiju & toksikologiju Veterinarskog fakulteta Sveučilišta u Zagrebu PREMEDIKACIJA preanestetska medikacija Svrha premedikacije: smanjiti strah pacijenta (smiriti
Διαβάστε περισσότερα5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
Διαβάστε περισσότεραnumeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Διαβάστε περισσότεραradni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Διαβάστε περισσότεραRIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Διαβάστε περισσότεραSISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Διαβάστε περισσότεραFunkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Διαβάστε περισσότεραXI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
Διαβάστε περισσότεραS t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Διαβάστε περισσότερα2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Διαβάστε περισσότερα41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Διαβάστε περισσότεραGrafičko prikazivanje atributivnih i geografskih nizova
Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički
Διαβάστε περισσότεραZavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Διαβάστε περισσότεραLinearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
Διαβάστε περισσότερα- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Διαβάστε περισσότεραNovi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Διαβάστε περισσότερα3. Komunikacija između stanica i tkiva
Sveučilište u Zagrebu Prirodoslovno-matematički fakultet 143963 Animalna fiziologija 3. Komunikacija između stanica i tkiva Prof.dr.sc. Dubravka Hranilović Biološki odsjek Zavod za animalnu fiziologiju
Διαβάστε περισσότεραa M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Διαβάστε περισσότεραSEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Διαβάστε περισσότερα( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Διαβάστε περισσότεραRačunarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Διαβάστε περισσότερα7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Διαβάστε περισσότερα( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
Διαβάστε περισσότεραTRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Διαβάστε περισσότεραIZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Διαβάστε περισσότεραPOTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
Διαβάστε περισσότεραMatematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Διαβάστε περισσότεραRiješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Διαβάστε περισσότεραOperacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Διαβάστε περισσότεραTeorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Διαβάστε περισσότεραKaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Διαβάστε περισσότεραInzulin, glukagon i. Prof. dr. Zoran Valić Katedra za fiziologiju Medicinski fakultet u Splitu
Inzulin, glukagon i šećerna erna bolest Prof. dr. Zoran Valić Katedra za fiziologiju Medicinski fakultet u Splitu sudjelovanje u probavi dva važna hormona: inzulin i glukagon (važni za regulaciju metabolizma
Διαβάστε περισσότεραINTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Διαβάστε περισσότεραI.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
Διαβάστε περισσότεραNOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
Διαβάστε περισσότεραPismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Διαβάστε περισσότεραĈetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
Διαβάστε περισσότεραElementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Διαβάστε περισσότεραFARMAKOLOGIJA PROBAVNOG SUSTAVA
FARMAKOLOGIJA PROBAVNOG SUSTAVA OSNOVNE SKUPINE LIJEKOVA Emetici sredstva koja uzrokuju povraćanje Antiemetici sredstva protiv povraćanja Antacidi sredstva za neutralizaciju viška HCl-a Prokinetici sredstva
Διαβάστε περισσότεραORGANSKI SUSTAVI (ŽIVČANI, OSJETILNI, ENDOKRINI) ŽIVČANI SUSTAV. Izv. prof. dr. sc. Reno Hrašćan. Evolucija živčanog sustava.
ORGANSKI SUSTAVI (ŽIVČANI, OSJETILNI, ENDOKRINI) ŽIVČANI SUSTAV Izv. prof. dr. sc. Reno Hrašćan Evolucija živčanog sustava Živčani sustav živčani sustav prima različite podražaje iz okoline i unutrašnjosti
Διαβάστε περισσότεραCauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Διαβάστε περισσότεραKontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Διαβάστε περισσότερα(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Διαβάστε περισσότεραIZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Διαβάστε περισσότεραElektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo
Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra
Διαβάστε περισσότεραPROSTORNI STATIČKI ODREĐENI SUSTAVI
PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y
Διαβάστε περισσότεραOSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
Διαβάστε περισσότεραIII VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
Διαβάστε περισσότεραNumerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
Διαβάστε περισσότερα1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
Διαβάστε περισσότεραOpća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava
Opća bilana tvari masa unijeta u dif. vremenu u dif. volumen promatranog sustava masa iznijeta u dif. vremenu iz dif. volumena promatranog sustava - akumulaija u dif. vremenu u dif. volumenu promatranog
Διαβάστε περισσότερα2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos
. KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..
Διαβάστε περισσότεραObrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
Διαβάστε περισσότεραPT ISPITIVANJE PENETRANTIMA
FSB Sveučilišta u Zagrebu Zavod za kvalitetu Katedra za nerazorna ispitivanja PT ISPITIVANJE PENETRANTIMA Josip Stepanić SADRŽAJ kapilarni učinak metoda ispitivanja penetrantima uvjeti promatranja SADRŽAJ
Διαβάστε περισσότεραSEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
Διαβάστε περισσότεραOsnove elektrotehnike I popravni parcijalni ispit VARIJANTA A
Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja
Διαβάστε περισσότεραOtpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Διαβάστε περισσότεραPošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
Διαβάστε περισσότεραMatematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Διαβάστε περισσότεραStrukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
Διαβάστε περισσότεραOSNOVE TEHNOLOGIJE PROMETA
OSNOVE TEHNOLOGIJE PROMETA MODUL: Tehnologija teleomuniacijsog rometa FAKULTET PROMETNIH ZNANOSTI Predavači: Doc.dr.sc. Štefica Mrvelj Maro Matulin, dil.ing. Zagreb, ožuja 2009. Oće informacije Konzultacije:
Διαβάστε περισσότεραRačunarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Διαβάστε περισσότερα2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
Διαβάστε περισσότεραIzbor statističkih testova Ana-Maria Šimundić
Izbor statističkih testova Ana-Maria Šimundić Klinički zavod za kemiju Klinička jedinica za medicinsku biokemiju s analitičkom toksikologijom KBC Sestre milosrdnice Izbor statističkog testa Tajna dobrog
Διαβάστε περισσότεραDimenzioniranje nosaa. 1. Uvjeti vrstoe
Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju
Διαβάστε περισσότεραZBIRKA POTPUNO RIJEŠENIH ZADATAKA
**** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.
Διαβάστε περισσότερα( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Διαβάστε περισσότεραPeriodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
Διαβάστε περισσότεραTOLERANCIJE I DOSJEDI
11.2012. VELEUČILIŠTE U RIJECI Prometni odjel OSNOVE STROJARSTVA TOLERANCIJE I DOSJEDI 1 Tolerancije dimenzija Nijednu dimenziju nije moguće izraditi savršeno točno, bez ikakvih odstupanja. Stoga, kada
Διαβάστε περισσότεραLinearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
Διαβάστε περισσότεραkonst. Električni otpor
Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost
Διαβάστε περισσότεραZadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
Διαβάστε περισσότεραPismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:
Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave
Διαβάστε περισσότερα5 Ispitivanje funkcija
5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:
Διαβάστε περισσότερα