Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης



Σχετικά έγγραφα
Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

ΚΕΦΑΛΑΙΟ 3 Ο ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

ΜΑΘΗΜΑ ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ Κοίλα κυρτά συνάρτησης Σηµεία καµπής Θεωρία Σχόλια Μέθοδοι Ασκήσεις

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

13 Μονοτονία Ακρότατα συνάρτησης

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

ΜΕΛΕΤΗ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

Κεφάλαιο 4: Διαφορικός Λογισμός

Λύσεις του διαγωνίσματος στις παραγώγους

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

Μελέτη και γραφική παράσταση συνάρτησης

ΣΥΝΑΡΤΗΣΕΙΣ Γενικές έννοιες

Ημερομηνία: Πέμπτη 5 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

5o Επαναληπτικό Διαγώνισμα 2016

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

και γνησίως αύξουσα στο 0,

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά)

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου].

2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

Σημειώσεις Μαθηματικών 2

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά)

********* Β ομάδα Κυρτότητα Σημεία καμπής*********

f(x) = και στην συνέχεια

ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

2011 ΘΕΜΑΤΑ ΘΕΜΑ Γ 1. Δίνεται η συνάρτηση f: δύο φορές παραγωγίσιμη στο, με f (0) = f(0) = 0, η οποία ικανοποιεί τη σχέση:

<Πεδία ορισμού ισότητα πράξεις σύνθεση>

ΜΑΘΗΜΑ ΠΡΩΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΜΕΛΕΤΗ ΑΥΤΗΣ)

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση.

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ Πότε μια συνάρτηση λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της?

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY. 0, τότε είναι και παραγωγίσιμη στο σημείο αυτό.

1o. Θ Ε Μ Α Β Ε. Γ Κ Ο Ρ Α. βρίσκεται ολόκληρη μέσα στο τετράγωνο ΑΒΓΔ.

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

Ι. Πραγματικές ΣΥΝΑΡΤΗΣΕΙΣ πραγματικής μεταβλητής (έως και ΑΝΤΙΣΤΡΟΦΗ)

1, x > 0 η οποία είναι συνεχής και παραγωγίσιμη σε κάθε ένα από τα διαστήματα (, 0) και (0, + ) του πεδίου ορισμού της D f = R.

1. Για οποιουσδήποτε μιγαδικούς z 1, z 2 με Re (z 1 + z 2 ) = 0, ισχύει: Re (z 1 ) + Re (z 2 ) = 0

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις)

ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

Πες το με μία γραφική παράσταση

20 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ - ΟΡΙΣΜΟΙ

2.8. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i)

3ο Διαγώνισμα στις παραγώγους

ΜΟΝΟΤΟΝΙΑ. Λυμένα Παραδείγματα. Παράδειγμα 1

3o Επαναληπτικό Διαγώνισμα 2016

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;

Μαθηματικά. Ενότητα 12: Ακρότατα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

γ λυκειου κεφαλαιο 2 κεφαλαιο 2 κεφαλαιο 2 κεφαλαιο 2 κεφαλαιο 2 κεφαλαιο2 διαφορικος λογισμος επιμελεια : τακης τσακαλακος T Ш τ

για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

Κοιλότητα. Διαφορικός Λογισμός μιας μεταβλητής Ι

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

4 0 Κεφάλαιο Στοιχεία Διαφορικού Λογισμού

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

x x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

Ερωτήσεις πολλαπλής επιλογής

2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ ΣΤΗΝ Α ΛΥΚΕΙΟΥ

ΣΗΜΕΙΩΣΕΙΣ. η τιμή της συνάρτησης είναι μεγαλύτερη από την τιμή της σε κάθε γειτονικό σημείο του x. . Γενικά έχουμε τον ακόλουθο ορισμό:

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 A ΦΑΣΗ

< και δεδομένου ότι η f είναι γνησίως μονότονη, συμπεραίνουμε ότι

[ α π ο δ ε ί ξ ε ι ς ]

2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

και δεν είναι παραγωγίσιμη σε αυτό, σχολικό βιβλίο σελ. 99 Α3. Ορισμός σελ. 73 Α4. α) Λ β) Σ γ) Λ δ) Σ ε) Σ , δηλαδή αρκεί x 1 x

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

Transcript:

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ / ΕΠΑΝΑΛΗΨΗΣ Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης 1. Ποιους ορισμούς πρέπει να ξέρω για τη μονοτονία ; Πότε μια συνάρτηση θα ονομάζεται γνησίως αύξουσα σε ένα διάστημα (α, β) και πώς συμβολίζεται ; Μια συνάρτηση θα λέγεται γνησίως αύξουσα σε ένα διάστημα (α, β), αν για οποιουσδήποτε δύο αριθμούς 1, 2 που ανήκουν στο (α, β) ισχύει: 1 < 2 f( 1 ) < f( 2 ) Γράφουμε: f 1 Πότε μια συνάρτηση θα ονομάζεται γνησίως φθίνουσα σε ένα διάστημα (α, β) και πώς συμβολίζεται ; Μια συνάρτηση θα λέγεται γνησίως φθίνουσα σε ένα διάστημα (α, β), αν για οποιουσδήποτε δύο αριθμούς 1, 2 που ανήκουν στο (α, β) ισχύει: 1 < 2 f( 1 ) > f( 2 ) Γράφουμε: f 2 Πότε μια συνάρτηση θα ονομάζεται γνησίως μονότονη σε ένα διάστημα (α, β) ; Όταν είναι γνησίως αύξουσα ή γνησίως φθίνουσα στο (α, β). 2. Ποιους ορισμούς πρέπει να ξέρω για τα ακρότατα ; Πότε θα λέμε ότι μια συνάρτηση παρουσιάζει τοπικό μέγιστο σε ένα σημείο 0 ; Μια συνάρτηση f θα λέμε ότι παρουσιάζει τοπικό μέγιστο στο σημείο = o αν υπάρχει ανοιχτό διάστημα (α, β) που περιέχει το o, τέτοιο ώστε f() f( o ), για κάθε (α, β).

Πότε θα λέμε ότι μια συνάρτηση παρουσιάζει τοπικό ελάχιστο σε ένα σημείο 0 ; Μια συνάρτηση f θα λέμε ότι παρουσιάζει τοπικό ελάχιστο στο σημείο = o αν υπάρχει ανοιχτό διάστημα (α, β) που περιέχει το o, τέτοιο ώστε f() f( o ), για κάθε (α, β). Πότε θα λέμε ότι μια συνάρτηση παρουσιάζει τοπικό ακρότατο σε ένα σημείο 0 ; Μια συνάρτηση f θα λέμε ότι παρουσιάζει τοπικό ακρότατο στο o αν παρουσιάζει τοπικό μέγιστο ή τοπικό ελάχιστο σε αυτό. Σε ποια σημεία αναζητούμε τα τοπικά ακρότατα μιας συνάρτησης ; α. Στα άκρα του πεδίου ορισμού της συνάρτησης f. β. Στα εσωτερικά σημεία του πεδίου ορισμού της f στα οποία δεν υπάρχει η παράγωγος της f. Τα σημεία αυτά καλούνται γωνιακά. γ. Στα σημεία του πεδίου ορισμού της f, όπου η παράγωγός της υπάρχει και είναι ίση με μηδέν, δηλαδή λύνουμε την εξίσωση f () = 0. Τα σημεία αυτά καλούνται στάσιμα. Ποια σημεία ονομάζονται κρίσιμα σημεία της f ; Κρίσιμα ονομάζονται τα γωνιακά και τα στάσιμα σημεία μαζί. 3. Ποια είναι η σχέση της παραγώγου με τη μονοτονία και τα ακρότατα ; ΘΕΩΡΗΜΑ α. Αν f () > 0 για κάθε (α, β), τότε η f είναι γνησίως αύξουσα στο (α, β). β. Αν f () < 0 για κάθε (α, β), τότε η f είναι γνησίως φθίνουσα στο (α, β). γ. Αν f () = 0 για κάθε (α, β), τότε η f είναι σταθερή στο (α, β).

Θεώρημα Fermat Αν η f παρουσιάζει τοπικό ακρότατο σε ένα εσωτερικό σημείο o του πεδίου ορισμού της και είναι παραγωγίσιμη στο σημείο αυτό, τότε: f ( o ) = 0 Κριτήριο 1 ης παραγώγου Έστω συνεχής συνάρτηση f: (α, β) και o κρίσιμο σημείο της. α. Αν f () > 0 στο (α, o ) και f () < 0 στο ( o, β), τότε το f( o ) είναι τοπικό μέγιστο της f. β. Αν f () < 0 στο (α, o ) και f () > 0 στο ( o, β), τότε το f( o ) είναι τοπικό ελάχιστο της f. γ. Αν η f () διατηρεί το ίδιο πρόσημο στα διαστήματα (α, o ) και ( o, β), τότε το f( o ) δεν είναι ούτε τοπικό μέγιστο, ούτε ελάχιστο και η f είναι γνησίως μονότονη στο (α, β). Κριτήριο 2 ης παραγώγου Έστω συνεχής συνάρτηση f: Α και o ένα στάσιμο σημείο της. Αν η f είναι δύο φορές παραγωγίσιμη στο o, τότε: α. αν f ( o ) < 0 η συνάρτηση f παρουσιάζει τοπικό μέγιστο στο o. β. αν f ( o ) > 0 η συνάρτηση f παρουσιάζει τοπικό ελάχιστο στο o. 4. Τι πρέπει να προσέχω στις ασκήσεις ; Για να λύσω μια άσκηση μονοτονίας ή ακροτάτων, σε γενικές γραμμές, ακολουθούμε τα παρακάτω βήματα: 1 ον. Βρίσκουμε την παράγωγο f () της συνάρτησης. 2 ον. Λύνουμε την εξίσωση f () = 0. 3 ον. Φτιάχνουμε πίνακα προσήμων / μονοτονίας. Επισημαίνουμε ότι τα σημεία, που μηδενίζεται η παράγωγος, δεν είναι απαραίτητα σημεία τοπικών ακροτάτων. Πρέπει να προσέχουμε πάντα, ν' αλλάζει η μονοτονία δεξιά κι αριστερά ενός σημείου. Διαφορετικά, δεν είναι ακρότατο και το προσπερνάμε.

Ξεκαθαρίζουμε στο μυαλό μας, ότι άλλο πράγμα η θέση 0 του τοπικού ακρότατου και άλλο το ίδιο το τοπικό ακρότατο, που είναι το f( 0 ). Προσέχουμε, καθώς κατασκευάζουμε τον πίνακα μονοτονίας, στον άξονα των δεν τοποθετούμε τυφλά + και, αλλά ότι μας υποδεικνύει το πεδίο ορισμού της συνάρτησης. 5. Ποιες είναι μερικές από τις βασικότερες ασκήσεις ; 1. Να εξετάσετε τις παρακάτω συναρτήσεις ως προς τη μονοτονία και τα ακρότατα : α. f() = 2 10 β. f() = 9 γ. f() = 3 2 2 + 1 δ. f() = 4 + 4 + 2 ε. f() = 9 2 στ. f() = 2 4 ζ. f() = 1 3 5 + 2 + 6 η. f() = 2 3 3 + 2 + 2 3 2 3 2 2. Ομοίως (αν δίνεται απευθείας η παράγωγος της συνάρτησης) : α. f () = 3 7 + 6 β. f () = 3 + 2 2 9 18 γ. f () = 3 + 1 δ. f () = ( 3)( + 1) 2 1 ε. f () = ( + 1)( 2) 3 στ. f () = ( 1)( ) (4 3) 2 3. Ομοίως : α. f() = e β. f() = ln γ. f() = δ. f() = 2014 4. Ομοίως : α. f() = 2 2 8 + 6, (0, 3) β. f() = 2 5 + 1, [1, 9] 5 3 2 γ. f() = 3 + 2 3, [0, 1] δ. f() = 2, [ 2, 1) 3 ε. f() = ημ, [0, π) στ. f() = συν, [0, π) 5. Δίνεται η συνάρτηση f() = 3 27 1. α. Να μελετηθεί ως προς τη μονοτονία. β. Να αποδείξετε ότι f(2014) > f(1821). γ. Να συγκριθούν οι τιμές f(e) και f( 1). δ. Να δείξετε ότι για κάθε (0, + ) είναι f() 55. ε. Να δείξετε ότι για κάθε (, 1) είναι f() < 100.

6. ln Δίνεται η συνάρτηση f: (0, + ), με f() =. α. Να μελετηθεί ως προς τη μονοτονία και τα ακρότατα. β. Να συγκριθούν οι τιμές f(π) και f(e). γ. Να συγκριθούν οι αριθμοί e π και π e. 7. Δίνονται οι συναρτήσεις f, g: (0, + ) με : e f() = και g() = ln + e Να αποδείξετε ότι παρουσιάζουν μέγιστο σε σημείο με κοινή τετμημένη. 8. Να αποδείξετε ότι οι παρακάτω συναρτήσεις δεν έχουν ακρότατα : α. f() = 5 + 3 + β. f() = e + γ. f() = + δ. f() = 2e 3 9. Δίνεται η συνάρτηση f() = 2 6 + 2λ, με λ. Να βρείτε για ποια τιμή του λ η συνάρτηση παρουσιάζει τοπικό ελάχιστο ίσο με 7. 10. Δίνεται η συνάρτηση f() = 2 + κ + 1, με κ. Να βρείτε την τιμή του κ, αν γνωρίζετε ότι η συνάρτηση παρουσιάζει τοπικό ακρότατο στη θέση 0 = 3. 11. Δίνεται η συνάρτηση f() = α 2 + β + 4, με α, β. Να βρείτε τους αριθμούς α και β, αν γνωρίζετε ότι η συνάρτηση παρουσιάζει στη θέση 0 = 1 τοπικό ακρότατο ίσο με 1. 12. Δίνεται η συνάρτηση f() = μ 2 4 + ν. Να βρείτε τους πραγματικούς αριθμούς α και β, αν γνωρίζετε ότι η συνάρτηση παρουσιάζει τοπικό ακρότατο στη θέση 0 = 2 και η γραφική παράσταση της f διέρχεται απ' το σημείο Α(1, 3).