ΘΕΜΑ (επαναληπτικές) α. Δίνονται Να περιγράψετε οι μιγαδικοί γεωμετρικά αριθμοί το, σύνολο, (Σ) των εικόνων των μιγαδικών αριθμών 3 με 3 3. πο

Σχετικά έγγραφα
Θέματα εξετάσεων στους μιγαδικούς

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΙΓΑ ΙΚΟΙ. iz+α. (z 1)(z + 1) f ( ) = f (z). (1993-2ο- 1) (1994-2ο) (1999-2ο) ΑΘΑΝΑΣΙΑΔΗΣ ΚΩΣΤΑΣ

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Θέματα από τους μιγαδικούς

Ασκήσεις. x ' x οι ευθείες πάνω στις οποίες κινούνται οι εικόνες Μ(z).

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Θωμάς Ραϊκόφτσαλης 01

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

ΚΕΦΑΛΑΙΟ 2ο Μιγαδικοί Αριθμοί (Νο 1) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΟΥΣ ΜΙΓΑ ΙΚΟΥΣ

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου

Επαναληπτικά ϑέµατα στους Μιγαδικούς Αριθµούς

ΠΡΟΛΟΓΟΣ. Επίσης. Ολες οι ασκήσεις ανα κεφάλαιο του Μαίου. Κλείνει με τις λύσεις όλων των θεμάτων του Μαίου

Ερωτήσεις σωστού-λάθους

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

v a v av a, τότε να αποδείξετε ότι ν <4.

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

Ισότητα μιγαδικών αριθμών πράξεις στο C Έστω z 1 =α+βi και z 2 =γ+δi δύο μιγαδικοί (α,β,γ,δ R) z 1 =z 2 α=γ και β=δ z 1 =0 α=0 και β=0

ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ. Ασκήσεις. Επιµέλεια.: Κάτσιος ηµήτρης. Μεθοδολογία Παραδείγµατα Ασκ ΜΕΘΟ ΟΛΟΓΙΑ 1

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ

Ασκήσεις σχ. Βιβλίου σελίδας Α ΟΜΑ ΑΣ 1.

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014

ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΟΙ ΣΥΝΑΡΤΗΣΕΙΣ

Ον/μο: Θετ-Τεχν. ΘΕΜΑ 1 0

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

2.3. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. Να βρείτε τα µέτρα των µιγαδικών : 1 + i, 1 i, 3 + 4i, 3 4i, 5i, 4, 1 i, 1 i.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

Γ / ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

Επαναληπτικά Θέματα Μαθηματικών Γ Λυκείου Κατεύθυνσης

ΑΣΚΗΣΕΙΣ. x + 5= 6 (1) και. x = 1, οπότε η (2) γίνεται 1 5x + 1= 7 x = 1 ΘΕΜΑ Β. Άσκηση 1. Να βρείτε τον αριθμό x R όταν. Λύση.

Κεφάλαιο 1ο. Μιγαδικοί Αριθμοί

Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων Θεολόγης Καρκαλέτσης

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2

ΤΡΥΦΩΝ ΠΑΥΛΟΣ Μαθηµατικά Γ Λυκείου - Κατεύθυνσης

α) () z i z iz i Αν z i τότε i( yi) i + + y y y ( y) i i y + 4y + 4, y y 4. Άρα z i. 4 β) ( z) z i z z i z ( i) z, οπότε ( z ) i z z Άρα z z γ) Αν z τ

Μιγαδικοί Αριθμοί. Στοιχεία Θεωρίας Μεθοδολογίες Λυμένα Παραδείγματα. Κωνσταντίνος Παπασταματίου

20 επαναληπτικά θέματα

x R, να δείξετε ότι: i)

= u u I, ως διαφορά συζυγών. z + 2. i) R. Λύση: α τρόπος. + z z = . Άρα. x 2 +y 2 +x-2=0. , ως. i) Re(z 2 )= -4, ii) Im(z 2 )=2, iii) Re(1+z 2 )=0.

5, 5 = 1. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΙΑ ΣΥΛΛΟΓΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ 30 ΑΣΚΗΣΕΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΜΟΝΟ ΜΙΓΑΔΙΚΟΙ + 10 ΑΣΚΗΣΕΩΝ ΜΙΓΑΔΙΚΟΙ ΜΕ ΑΝΑΛΥΣΗ

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ

Θέματα από τους μιγαδικούς

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ( ) ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΕΙΣ Ο.Ε.Φ.Ε. ( )

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ ΚΑΙ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΙΣΟΤΗΤΑ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. α+βi =γ+δi α=γ και β=δ

ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α.3 Πότε η ευθεία y = λέγεται οριζόντια ασύμπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ

ΜΑΙΟΣ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο 5 + i Α. Δίνεται ο μιγαδικός αριθμός z =. + i α) Να γράψετε τον z στη μορφή α + βi, α, β IR. Στην παρ

ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4)

Αναλυτικές λύσεις όλων των θεµάτων στα Μαθηµατικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων Θεολόγης Καρκαλέτσης

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

Μαθηματικά Γ! Λυκείου. Θετική και Τεχνολογική Κατεύθυνση. Μιγαδικοί αριθμοί. Θ ω μ ά ς. Ρ α ϊ κ ό φ τ σ α λ η ς

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

αριθμοί σε τριγωνομετρική μορφή, να αποδείξετε ότι: z 1 z 2 = ρ 1 ρ 2 [συν (θ 1 +θ 2 )+i ημ (θ 1 +θ 2 )] ( 1Α/2002 ΙΟΥΛ)

= 1-3 i, να γράψετε στο τετράδιό

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ Επιμέλεια: Καρράς Ιωάννης Μαθηματικός Εἰ ἄρα ὁ δίκαιος ἀργύριον δεινὸς φυλάττειν, καὶ κλέπτειν δεινός.

G(x) = G(x) = ΘΕΜΑ 1o

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 27 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

(2+ i)z (3 i)u= 5i (1+2i)z+(1+3i)u=7+8i

ΜΑΘΗΜΑ Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - Θ. BOLZANO - Θ. ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ. , ώστε η συνάρτηση. η γραφική της παράσταση να διέρχεται από το σημείο M

β. Αν f (x) 0 σε κάθε εσωτερικό σημείο x του Δ, τι συμπεραίνετε για τη μονοτονία της συνάρτησης f ; Μονάδες 4,5

ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ MIΓΑ ΙΚΟΣ

Επαναληπτικά συνδυαστικα θέµατα

(a) (3a + 14β) + (2a β)i = 7 i (β) a(1 + i) + β(1 i) = 5 i) (1 + i)2 3 i. a + βi =

1 ο Τεστ προετοιμασίας Θέμα 1 ο

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 3: ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥ ΜΕΤΡΟΥ - ΤΡΙΓΩΝΙΚΗ ΑΝΙΣΟΤΗΤΑ

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης

25 ÈÝìáôá. ãåùìåôñéêþí ôüðùí óôïõò ìéãüäåò. ÌáèçìáôéêÜ Êáôåýèõíóçò Ã! Ëõêåßïõ. ÈùìÜò Ñáúêüöôóáëçò Ìáèçìáôéêüò

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

Ασκήσεις Κύκλος. 6. Για ποια τιμή του λ το σημείο Μ(2λ + 1, λ) ανήκει στον κύκλο με εξίσωση (x 3) 2 + (y + 4) 2 = 100

z = =5 ενώ z 1 z 2. (µε απόδειξη) z = z z I. z = z. z 1 z z όπου z 1 =x 1 +y 1 i και z 2 =x 2 +y 2 i σταθεροί z παριστάνει υπερβολή µε z 2

Transcript:

ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΩΝ ΣΤΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (000-03) ΘΕΜΑ 000 α. Αν, είναι οι ρίζες της εξίσωσης + + = 0, να αποδείξετε ότι 0-0 =0. β. Αν είναι ρίζα της εξίσωσης του α. ερωτήματος, με φανταστικό μέρος θετικό αριθμό, να βρείτε τις τιμές του θετικού ακεραίου ν για τις οποίες ν είναι πραγματικός αριθμός. ΘΕΜΑ 00 00 α. ΘΕΜΑ Έστω Να βρείτε 003 ένας τον μιγαδικός γεωμετρικό αριθμός τόπο και των f(ν) εικόνων = i ν, των ν μιγαδικών. για τους οποίους ισχύει: Δίνονται α. Να +6 =4 +. δείξετε οι μιγαδικοί ότι f(3) + αριθμοί f(8) + f(3) =α+βi, + f(8) όπου = α,β 0. και w=3 i _ +4, όπου _ είναι β. ο συζυγής Να βρείτε του τον. γεωμετρικό τόπο των εικόνων των μιγαδικών για τους οποίους ισχύει: - = -i. α. Να αποδείξετε ότι Re(w)=3α β+4 και Ιm(w)=3β α. β. Να αποδείξετε ότι, αν οι εικόνες του w στο μιγαδικό επίπεδο κινούνται στην ευθεία με εξίσωση y=x, τότε οι εικόνες του κινούνται στην ευθεία με εξίσωση y=x. γ. Να βρείτε ποιος από τους μιγαδικούς αριθμούς, οι εικόνες των οποίων κινούνται στην ευθεία με εξίσωση y=x, έχει το ελάχιστο μέτρο.

ΘΕΜΑ 003 005 (επαναληπτικές) α. Δίνονται Να περιγράψετε οι μιγαδικοί γεωμετρικά αριθμοί το, σύνολο, (Σ) των εικόνων των μιγαδικών αριθμών 3 με 3 3. που ικανοποιούν τις σχέσεις: 9 α. Δείξτε ότι: και Ιm () 0. β. Να αποδείξετε ότι, αν η εικόνα β. Δείξτε ότι ο αριθμός είναι του πραγματικός μιγαδικού αριθμού. κινείται στο σύνολο (Σ), 4 τότε η εικόνα του μιγαδικού αριθμού w κινείται σε ευθύγραμμο τμήμα γ. Δείξτε ότι: 3 3 3. 3 το οποίο βρίσκεται στον άξονα x x. ΘΕΜΑ 005 (Επαναληπτικές) α. Αν, είναι μιγαδικοί αριθμοί για τους οποίους ισχύει + =4+4i και - = 5+5i, να βρείτε τους,. β. Αν για τους μιγαδικούς αριθμούς, w ισχύουν 3i και w 3 i : i. να δείξετε ότι υπάρχουν μοναδικοί μιγαδικοί αριθμοί, w έτσι, ώστε = w ii. να βρείτε τη μέγιστη τιμή του w. ΘΕΜΑ 006 Δίνονται οι μιγαδικοί αριθμοί,, 3 με 3 και 3 α. Να αποδείξετε ότι: i. 3 3. 0 ii. 4 Re( ) και β. Να βρείτε το γεωμετρικό τόπο των εικόνων των,, 3 στο μιγαδικό επίπεδο, καθώς και το είδος του τριγώνου που αυτές σχηματίζουν.

ΘΕΜΑ 007 Δίνεται ο μιγαδικός αριθμός = +αi α+i με α. α. Να αποδειχθεί ότι η εικόνα του μιγαδικού ανήκει στον κύκλο με κέντρο Ο(0,0) και ακτίνα ρ =. β. Έστω, οι μιγαδικοί που προκύπτουν από τον τύπο = +αi α+i α = αντίστοιχα. για α = 0 και i. Να βρεθεί η απόσταση των εικόνων των μιγαδικών αριθμών και. ii. Να αποδειχθεί ότι ισχύει: ( ) ν = (- ) ν για κάθε φυσικό αριθμό ν. ΘΕΜΑ 007 008 (Επαναληπτικές) Δίνονται Αν για τους οι μιγαδικοί μιγαδικούς αριθμοί αριθμούς = και α+βi w +i και ισχύουν 3 =, όπου α, β με β 0. Δίνεται ίνεται ότι ο μιγαδικός αριθμός = είναι ρίζα της εξίσωσης +β +γ =0, (i ) 6 και w ( i ) w ( 3 3i ) τότε να βρείτε: επίσης όπου β ότι, γ α. το γεωμετρικό τόπο των εικόνων των μιγαδικών αριθμών. α. Να αποδείξετε ότι β= - και γ=. α. Να αποδειχθεί ότι =. 3 β. το Να γεωμετρικό αποδείξετε τόπο ότι των = -. εικόνων των μιγαδικών αριθμών w. β. Να βρεθεί ο γεωμετρικός τόπος των εικόνων του στο μιγαδικό επίπεδο. γ. Να βρείτε τον γεωμετρικό τόπο των εικόνων του μιγαδικού αριθμού w, γ. για την Αν τον ο ελάχιστη αριθμός οποίο ισχύει: τιμή είναι του w φανταστικός και αβ>0, να υπολογισθεί ο να δειχθεί ότι w = - ( ++i) 0 ( +-i) 0 =0 δ. την ελάχιστη τιμή του w 3

ΘΕΜΑ 009 Θεωρούμε τους μιγαδικούς αριθμούς =(λ+)+(λ )i, λ Α.α. Να βρείτε την εξίσωση της ευθείας πάνω στην οποία βρίσκονται οι εικόνες των μιγαδικών αριθμών, για τις διάφορες τιμές του λ β. Από τους παραπάνω μιγαδικούς αριθμούς να αποδείξετε ότι ο μιγαδικός αριθμός 0 =-i έχει το μικρότερο δυνατό μέτρο. Β. Να βρεθούν οι μιγαδικοί αριθμοί w οι οποίοι ικανοποιούν την εξίσωση w w 0 όπου 0 ο μιγαδικός που αναφέρεται στο προηγούμενο ερώτημα. ΘΕΜΑ 009 (Επαναληπτικές) Θεωρούμε τους μιγαδικούς αριθμούς για τους οποίους ισχύει: -i + +i-8 = 0 α. Nα βρείτε τον γεωμετρικό τόπο των εικόνων των μιγαδικών αριθμών = x + yi οι οποίοι ικανοποιούν την παραπάνω εξίσωση. β. Nα βρείτε τον μοναδικό πραγματικό αριθμό και τον μοναδικό φανταστικό αριθμό οι οποίοι ικανοποιούν την παραπάνω εξίσωση. γ. Για τους αριθμούς που βρέθηκαν στο προηγούμενο ερώτημα να αποδείξετε ότι 4 = 0 4

ΘΕΜΑ 00 Δίνεται η εξίσωση + = όπου με 0 Β. Να βρείτε τις ρίζες και της εξίσωσης. 00 00 Β. Να αποδείξετε ότι + =0. B3. Αν για τους μιγαδικούς αριθμούς w ισχύει w - 4 +3i = - τότε να βρείτε το γεωμετρικό τόπο των εικόνων των w στο μιγαδικό επίπεδο. B4. Για τους μιγαδικούς αριθμούς w του ερωτήματος Β3, να αποδείξετε ότ 3 w 7. ΘΕΜΑ 00 (Επαναληπτικές) Έστω ότι οι μιγαδικοί αριθμοί, είναι οι ρίζες εξίσωσης δευτέρου βαθμού με πραγματικούς συντελεστές για τις οποίες ισχύουν + = και = 5 B. Να βρείτε τους μιγαδικούς αριθμούς, B. Αν για τους μιγαδικούς αριθμούς w ισχύει η σχέση w w να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων των w στο μιγαδικό επίπεδο είναι ο κύκλος με εξίσωση (x+) + y = 4 B 3. Από τους μιγαδικούς αριθμούς w του ερωτήματος Β να βρείτε εκείνους για τους οποίους ισχύει Re(w) + Im(w) = 0 B 4. Αν w, w είναι δύο από τους μιγαδικούς w του ερωτήματος Β με την ιδιότητα w w 4, να αποδείξετε ότι w w 5

ΘΕΜΑ 0 Έστω οι μιγαδικοί αριθμοί και w με 3i, οι οποίοι ικανοποιούν τις σχέσεις: 3i 3i και w 3i 3i B. Να βρείτε τον γεωμετρικό τόπο των εικόνων των μιγαδικών αριθμών B. Να αποδείξετε ότι 3i 3i B 3. Να αποδείξετε ότι ο w είναι πραγματικός αριθμός και ότι w B 4. Να αποδείξετε ότι: w ΘΕΜΑ 0 (Επαναληπτικές) Δίνονται οι μιγαδικοί αριθμοί, w, οι οποίοι ικανοποιούν αντίστοιχα τις σχέσεις: i = +Im() () w( w +3i) = i(3 w +i) () B. Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων των μιγαδικών αριθμών είναι η παραβολή με εξίσωση y = 4 x B. Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων των μιγαδικών αριθμών w είναι ο κύκλος με κέντρο το σημείο Κ(0,3) και ακτίνα ρ=. B3. Να βρείτε τα σημεία Α και Β του μιγαδικού επιπέδου, τα οποία είναι εικόνες των 6

ΘΕΜΑ 0 Θεωρούμε τους μιγαδικούς αριθμούς και w για τους οποίους ισχύουν οι επόμενες σχέσεις: 4 () και w 5w () B. Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων των μιγαδικών αριθμών στο επίπεδο είναι κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ = B. Αν, είναι δύο από τους παραπάνω μιγαδικούς αριθμούς με τότε, να βρείτε το B3. Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων των μιγαδικών αριθμών w στο επίπεδο είναι η έλλειψη με εξίσωση μέγιστη και την ελάχιστη τιμή του w x y 9 4 και στη συνέχεια να βρείτε τη B4. Για τους μιγαδικούς αριθμούς,w που επαληθεύουν τις σχέσεις () και () να αποδείξετε ότι: w 4 7

ΘΕΜΑ 0 (Επαναληπτικές) Θεωρούμε τους μιγαδικούς αριθμούς, με για τους οποίους ο αριθμός είναι φανταστικός. Να αποδείξετε ότι: B. = w = B. O αριθμός B3. 4 είναι πραγματικός. 4 όπου, δύο από τους παραπάνω μιγαδικούς αριθμούς i B4. Οι εικόνες των μιγαδικών αριθμών u, για τους οποίους ισχύειuui= w, w 0 w ανήκουν στην υπερβολή x y = 8

ΘΕΜΑ 03 Θεωρούμε τους μιγαδικούς αριθμούς για τους οποίους ισχύει ότι: ( )( ) Β. Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων των μιγαδικών αριθμών είναι κύκλος με κέντρο Κ(,0) και ακτίνα ρ=. Στη συνέχεια για κάθε μιγαδικό που ανήκει στον παραπάνω γεωμετρικό τόπο, να αποδείξετε ότι 3 Β. Αν οι μιγαδικοί αριθμοί, που ανήκουν στον παραπάνω γεωμετρικό τόπο είναι ρίζες της εξίσωσης w w 3 0, με w μιγαδικό αριθμό,, και Im( ) Im( ) να αποδείξετε ότι 4 και 5 Β3. Θεωρούμε τους μιγαδικούς αριθμούς a0, a, a οι οποίοι ανήκουν στον γεωμετρικό τόπο του ερωτήματος Β. Αν ο μιγαδικός αριθμός v ικανοποιεί την σχέση v a a v a να αποδείξετε ότι 4 3 0 0 9

ΘΕΜΑ 03 (Επαναληπτικές) Θεωρούμε τους μιγαδικούς αριθμούς,w για τους οποίους η εξίσωση x w 4 3i x, x έχει διπλή ρίζα, την x=. B. Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων του στο μιγαδικό επίπεδο είναι κύκλος με κέντρο την αρχή των αξόνων και ακτίνα, καθώς επίσης ότι ο γεωμετρικός τόπος των εικόνων του w στο μιγαδικό επίπεδο είνια κύκλος με κέντρο Κ(4,3) και ακτίνα 4 Β. Να αποδείξετε ότι υπάρχει μοναδικός αριθμός η εικόνα του οποίου ανήκει και στους δύο παραπάνω γεωμτερικούς τόπους. Β3. Για τους παραπάνω μιγαδικούς αριθμούς του ερωτήματος Β να αποδείξετε ότι w 0 και w 0 Β4. Από τους παραπάνω μιγαδικούς αριθμούς του ερωτήματος Β να βρείτε εκε ινους, για τους οποίους ισχύει: 3 5 0