Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση

Σχετικά έγγραφα
Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

Ασκήσεις σχ. Βιβλίου σελίδας Α ΟΜΑ ΑΣ 1.

Ερωτήσεις σωστού-λάθους

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

Ασκήσεις. x ' x οι ευθείες πάνω στις οποίες κινούνται οι εικόνες Μ(z).

Ισότητα μιγαδικών αριθμών πράξεις στο C Έστω z 1 =α+βi και z 2 =γ+δi δύο μιγαδικοί (α,β,γ,δ R) z 1 =z 2 α=γ και β=δ z 1 =0 α=0 και β=0

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΟΥΣ ΜΙΓΑ ΙΚΟΥΣ

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις

ΘΕΜΑ (επαναληπτικές) α. Δίνονται Να περιγράψετε οι μιγαδικοί γεωμετρικά αριθμοί το, σύνολο, (Σ) των εικόνων των μιγαδικών αριθμών 3 με 3 3. πο

Θέματα εξετάσεων στους μιγαδικούς

Μαθηματικά Γ! Λυκείου. Θετική και Τεχνολογική Κατεύθυνση. Μιγαδικοί αριθμοί. Θ ω μ ά ς. Ρ α ϊ κ ό φ τ σ α λ η ς

Κεφάλαιο 1ο. Μιγαδικοί Αριθμοί

ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

ΑΣΚΗΣΕΙΣ. x + 5= 6 (1) και. x = 1, οπότε η (2) γίνεται 1 5x + 1= 7 x = 1 ΘΕΜΑ Β. Άσκηση 1. Να βρείτε τον αριθμό x R όταν. Λύση.

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου].

ΠΡΟΛΟΓΟΣ. Επίσης. Ολες οι ασκήσεις ανα κεφάλαιο του Μαίου. Κλείνει με τις λύσεις όλων των θεμάτων του Μαίου

Θωμάς Ραϊκόφτσαλης 01

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

1 x και y = - λx είναι κάθετες

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

x R, να δείξετε ότι: i)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.

ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ ΚΑΙ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων

ΚΕΦΑΛΑΙΟ 2ο Μιγαδικοί Αριθμοί (Νο 1) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A

ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ. Ασκήσεις. Επιµέλεια.: Κάτσιος ηµήτρης. Μεθοδολογία Παραδείγµατα Ασκ ΜΕΘΟ ΟΛΟΓΙΑ 1

v a v av a, τότε να αποδείξετε ότι ν <4.

α) () z i z iz i Αν z i τότε i( yi) i + + y y y ( y) i i y + 4y + 4, y y 4. Άρα z i. 4 β) ( z) z i z z i z ( i) z, οπότε ( z ) i z z Άρα z z γ) Αν z τ

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΣΥΝΑΡΤΗΣΕΩΝ. f3 x = και

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

Ον/μο: Θετ-Τεχν. ΘΕΜΑ 1 0

Γ / ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

3 η δεκάδα θεµάτων επανάληψης

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΙΓΑ ΙΚΟΙ. iz+α. (z 1)(z + 1) f ( ) = f (z). (1993-2ο- 1) (1994-2ο) (1999-2ο) ΑΘΑΝΑΣΙΑΔΗΣ ΚΩΣΤΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

ΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

2.2 ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ R ΤΩΝ ΜΙΓΑΔΙΚΩΝ

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων Θεολόγης Καρκαλέτσης

Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο(0,0) τότε έχει εξίσωση της μορφής : x y και αντίστροφα. Ειδικότερα Ο κύκλος με κέντρο Ο(0,0)

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

= u u I, ως διαφορά συζυγών. z + 2. i) R. Λύση: α τρόπος. + z z = . Άρα. x 2 +y 2 +x-2=0. , ως. i) Re(z 2 )= -4, ii) Im(z 2 )=2, iii) Re(1+z 2 )=0.

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΑΣΚΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΙΣΟΤΗΤΑ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. α+βi =γ+δi α=γ και β=δ

Μαθηματικά Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x

Μιγαδικοί Αριθμοί. Στοιχεία Θεωρίας Μεθοδολογίες Λυμένα Παραδείγματα. Κωνσταντίνος Παπασταματίου

ΚΥΚΛΟΣ. Μ(x,y) Ο C ΘΕΩΡΙΑ ΕΠΙΜΕΛΕΙΑ: ΣΩΣΤΟ-ΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΧΡΑΣ ΓΙΑΝΝΗΣ ΑΣΚΗΣΕΙΣ. 3ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ

α έχει μοναδική λύση την x α

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1 ΘΕΩΡΙΑΣ...με απάντηση

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

Επαναληπτικά ϑέµατα στους Μιγαδικούς Αριθµούς

Transcript:

Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Υποδειγματικά Λυμένες Ασκήσεις Άλυτες Ασκήσεις ΛΑ Να βρείτε τις τιμές του λ R, ώστε ο ( λ 3)( ) να είναι: α) πραγματικός αριθμός β) φανταστικός αριθμός Θα φέρουμε τον μιγαδικό αριθμό στην μορφή α β, οπότε: για να είναι πραγματικός αρκεί β 0 και για να είναι φανταστικός αρκεί α 0 Έχουμε λ λ 6 3 λ 6 λ 3 (λ 3) (6 λ), οπότε: α) πραγματικός αν και μόνο αν 6 λ 0, δηλαδή λ 6 3 β) φανταστικός αν και μόνο αν λ 3 0, δηλαδή λ ΛΑ Να βρείτε τους πραγματικούς αριθμούς α) ( y) ( y) 3 β) 3 6 ( 3) γ) 9 7 (3 y) y, y για τους οποίους ισχύει: Οι μιγαδικοί α β και γ δ είναι ίσοι τότε και μόνον τότε όταν αγ και βδ, οπότε θα εξισώσουμε τα πραγματικά και τα φανταστικά τους μέρη και θα επιλύσουμε το σύστημα που θα προκύψει Πρόσεξε ότι η ισότητα δυο μιγαδικών αριθμών καταλήγει πάντα σε δυο ισότητες πραγματικών! y 3 α) Είναι: ( y) ( y) 3 (, y) (, ) y β) Είναι: 3 6 ( 3 6 0 3) 3 6 3 Όμως η (3) 3 4 ή Άρα, αφού μόνο αυτή επαληθεύει τις () και () () () (3)

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘMΟΙ 9 y 9 54 3 y 9 γ) Είναι: 9 7 (3 y) y 3 3 7 y y 7 y 7 45 5 3 (, y) ( 5,7) y 7 Aσκήσεις προς λύση Να βρείτε τους πραγματικούς αριθμούς και y ώστε να ισχύουν οι ισότητες: α) - y - - y β) y 3 - ( ) γ) 4y - 3y - - 5 9 δ) ( ) - - 3 Δίνονται οι μιγαδικοί αριθμοί - - 9 και w - y,, y R α) Να βρείτε τους, y ώστε w, β) Να βρείτε τον 3 Δίνεται ο μιγαδικός 6 - (3-4) - 3y - (3 - ) (4 - y),, y R α) Να γράψετε τον στη μορφή α β β) Να λύσετε τις εξισώσεις: ) Re () 0 ) Im () 0 ) Re () Im () v) 0 4 Δίνεται ο μιγαδικός αριθμός ( ) (y - ) - 5,, y R α) Να τον γράψετε στη μορφή α β β) Να γράψετε τον συναρτήσει του, αν Im () 0 γ) Να βρείτε τη σχέση που συνδέει τα και y, αν Re () Im () 5 Η ισότητα (y - ) 3 4 ισχύει αν και μόνο αν Α 3 ή y 5 Β 3 και y 4 Γ 3 ή y 4 Δ 3 και y 5 Ε y 7 6 Αν η εικόνα του μιγαδικού w ( ) (y - ),, y R, στο μιγαδικό επίπεδο είναι η αρχή των αξόνων, τότε ο y ισούται με Α - Β Γ - - Δ - E ΛΑ3 Να περιγράψετε γεωμετρικά το σύνολο των εικόνων των μιγαδικών αριθμών που ικανοποιούν τις σχέσεις: α) Το πραγματικό μέρος του είναι ίσο με μηδέν β) Το φανταστικό μέρος του είναι ίσο με μηδέν γ) Το πραγματικό μέρος του είναι ίσο με το φανταστικό του μέρος Μάθε τους πρώτους απλούς γεωμετρικούς τόπους! Κάνε επανάληψη και μάθε τις εξισώσεις: ευθείας, κύκλου, έλλειψης, παραβολής, υπερβολής γιατί θα σου χρειασθούν στη συνέχεια!

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ α) Αν y, τότε 0 Άρα, οι εικόνες του είναι τα σημεία της ευθείας με εξίσωση 0, δηλαδή τα σημεία M (0, y), οπότε το σύνολο των εικόνων των μιγαδικών αριθμών με πραγματικό μέρος ίσο με το μηδέν είναι τα σημεία του άξονα y y β) Αν y, τότε y 0 Άρα, οι εικόνες του είναι τα σημεία της ευθείας με εξίσωση y 0, δηλαδή τα σημεία M (,0), οπότε το σύνολο των εικόνων των μιγαδικών αριθμών με φανταστικό μέρος ίσο με το μηδέν είναι τα σημεία του άξονα Είναι 0 Άρα, οι εικόνες του είναι τα σημεία M (,0), δηλαδή τα σημεία του άξονα γ) Αν y, τότε y Άρα, οι εικόνες του είναι τα σημεία της ευθείας με εξίσωση y, δηλαδή τα σημεία M (, ), οπότε το σύνολο των εικόνων των μιγαδικών αριθμών με πραγματικό μέρος ίσο με το φανταστικό είναι τα σημεία της ευθείας που είναι διχοτόμος της ης και 3ης γωνίας των αξόνων Aσκήσεις προς λύση Η εικόνα κάθε φανταστικού αριθμού στο μιγαδικό επίπεδο βρίσκεται πάνω στην ευθεία με εξίσωση Α y Β y - Γ y 0 Δ 0 Ε σε καμία από τις προηγούμενες Οι εικόνες των μιγαδικών 3 και 3 στο μιγαδικό επίπεδο έχουν άξονα συμμετρίας την ευθεία Α Β y 3 Γ y Δ y - Ε 0 3 Αν η διανυσματική ακτίνα του μιγαδικού αριθμού στο μιγαδικό επίπεδο έχει φορέα τη διχοτόμο της ης και 4ης γωνίας των αξόνων του μιγαδικού επιπέδου, τότε ο μπορεί να είναι ο Α Β - Γ Δ - - Ε - - 4 Αν η εικόνα του μιγαδικού στο μιγαδικό επίπεδο είναι σημείο της ευθείας 3y - 0, τότε ο δεν μπορεί να είναι ο Α Β - 3 Γ 5-3 Δ 3 Ε ΛΑ4 Σε καθεμιά από τις παρακάτω περιπτώσεις να εκτελέσετε τις πράξεις που σημειώνονται και να γράψετε το αποτέλεσμα στη μορφή α β α) ( 4 6) (7 ) β) ( 3 ) (6 4) γ) ( 3 4) ( 8 7) (5 3) δ) ( 3 )(4 5) ε) 3 (6 ) στ) ( 4 3)(4 3) ζ) (3 )( )

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘMΟΙ Ας μάθουμε να κάνουμε απλές πράξεις με μιγαδικούς! α) ( 4 6) (7 ) ( 4 7) (6 ) 3 4 β) ( 3 ) (6 4) (3 6) ( 4) 3 6 γ) ( 3 4) ( 8 7) (5 3) (3 8 5) (4 7 3) 0 0 0 δ) (3 )(4 5) 3 4 3 5 4 5 0 5 8 3 ε) 3(6 ) 3 6 3 3 8 στ) (4 3)(4 3) 4 (3) 6 9 6 9( ) 6 9 5 ζ) (3 )( ) (6 3 ) (6 ) 7 7 ΛΑ5 Να γράψετε τους παρακάτω μιγαδικούς στη μορφή α) β) 6 γ) ( ) δ) ( 3) ε) Ας κάνουμε και άλλες πράξεις! α β : 3 στ) 6 ( ) α) ( )( ) 6 4 β) ( ) 0 γ) ( ) 0 δ) ( 3) 3 3 3 3 3 3 (3 ) ( ) 6 5 5 5 5( ) ε) ( )( ) 4 5 στ) 6 (6 ( ) ( ) ( ) 6 7 ) 6 7 4 3 7 3 ΛΑ6Αν 3, να βρείτε την τιμή της παράστασης Και άλλες πράξεις!

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Έχουμε 3 3 3, οπότε: 4 3 3 3 3 Άρα: 0 ΛΑ7Να αποδείξετε ότι ( α β) 0 ( β α) 0, όπου α, β R Ας κάνουμε κάτι πιο δύσκολο! Πρέπει να ξέρεις ότι: β α ( ) β α β α ( α β) Είναι β α ( α β) Επομένως: ( α β) 0 ( β α) 0 ( α β) 0 0 ( α β) 0 ( α β) 0 ( α β) 0 0 Aσκήσεις προς λύση Δίνονται οι μιγαδικοί, 3, 3 4 9, 4, 5, 8 7 6 54 Να βρείτε το άθροισμα των απείρων όρων w 3 4 5 Να γράψετε στη μορφή α β τους μιγαδικούς αριθμούς: α) 5 - - β) - - (- ) 3 Να γράψετε στη μορφή α β τους μιγαδικούς αριθμούς: 3 α) 3 (- 5) β) ( ) (- 3) γ) 4 δ) - ε) - - ζ) ( 3) (- ) - 4 Να γράψετε στη μορφή α β τους μιγαδικούς αριθμούς:

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘMΟΙ α) ( - 3) (4-5) 7 - β) - 3 3 γ) δ) 3 3 - ε) ( - ) -3 ΛΑ8 Να βρείτε τους, y R, για τους οποίους ισχύει: α) (3 ) ( y) y, β) y γ) ( 3 )( y) ( y) Οι μιγαδικοί α β και γ δ είναι ίσοι τότε και μόνον τότε όταν αγ και βδ, οπότε θα εξισώσουμε τα πραγματικά και τα φανταστικά τους μέρη και θα επιλύσουμε το σύστημα που θα προκύψει Πρόσεξε ότι η ισότητα δυο μιγαδικών αριθμών καταλήγει πάντα σε δυο ισότητες πραγματικών! α) Είναι: (3 ) ( y) y 9 4 y y 9 4 (5 ) 0 Αυτή όμως είναι αδύνατη, αφού το 0 β) Είναι: Άρα η σχέση γράφεται: y y και y y 5 5 y 5 γ) Είναι: ( 3 )( y) ( y) ( 3 )( y) ( y) ( )( y) ( ) y και y 0 Ασκήσεις προς λύση Να προσδιορίσετε τους πραγματικούς αριθμούς α, β ώστε οι μιγαδικοί α β και 8-3 5 3 3 να είναι ίσοι

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Να βρεθούν οι πραγματικοί αριθμοί α, β ώστε να ισχύει: (α β) 5 3 Να υπολογιστεί το R ώστε να ισχύει: 3 - ΛΑ9 Να υπολογίσετε τις παραστάσεις: α) 6 6 6 36 46 56 β) 4 75 03 Ας θυμηθούμε τις δυνάμεις του 0 4 3, 5 6 7 υ και γενικά n, όπου υ το υπόλοιπο της διαίρεσης του φυσικού αριθμού n δια του 4, οπότε υ 0,,, 3 Επίσης n, και γενικά n υ 6 6 6 36 46 56 0 0 0 α) 0 β) 4 75 03 3 3 3 ΛΑ0Να βρείτε την τιμή της παράστασης ( 0 0 ) ( ) Πρέπει να ξέρεις ότι: ( ), διότι ( ) ( ), διότι ( ) 0 ( ) ( ) (), 0 0 0 0 0 0 Είναι ( ) 0 0 0 0 0 0 (( ) ) ( ) ( ) 0 ( )

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘMΟΙ 0 0 0 0 0 0 Άρα ( ) ( ) ( ) 0 ΛΑΠόσες διαφορετικές τιμές μπορεί να πάρει η παράσταση ν ν ; Θα διακρίνουμε σε τέτοιες ασκήσεις 4 περιπτώσεις για το φυσικό ν η ν περίπτωση να είναι της μορφής ν 4 κ 0, οπότε η ν περίπτωση να είναι της μορφής ν 4 κ, οπότε 3 η ν περίπτωση να είναι της μορφής ν 4 κ, οπότε 4 η ν 3 περίπτωση να είναι της μορφής ν 4 κ 3, οπότε ν ν ν Έχουμε A Επομένως: ν Αν ν 4 κ, τότε ν, οπότε A Αν ν 4 κ, τότε ν, οπότε A 0 ν Αν ν 4 κ, τότε, οπότε A ν Αν ν 4 κ 3, τότε, οπότε A 0 Aσκήσεις προς λύση Αν - και [( ] ) 3 κ, τότε η μικρότερη τιμή του θετικού ακεραίου κ είναι Α Β 3 Γ 6 Δ Ε 5 Αν ν Ν, από τις παρακάτω ισότητες δεν είναι σωστή η Α 4ν Β 4ν - Γ 4ν - Δ ν4 ν Ε 4ν3-3 Για τις διάφορες τιμές του ν Ν να βρεθεί η τιμή της παράστασης ν f (ν) 4 Να αποδείξετε ότι για κάθε ν Ν ισχύει ( ) 0ν ( - ) 0ν ΛΑ Ποιος είναι ο, όταν: α) 5 7, β) 4 9, γ) 4, δ), ε), στ) 0

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Ας θυμηθούμε ότι Ο συζυγής ενός μιγαδικού αριθμού α β είναι ο α β Αν τότε και αντίστροφα Αν» τότε και αντίστροφα Οι εικόνες δυο συζυγών μιγάδων στο μιγαδικό επίπεδο είναι σημεία συμμετρικά ως προς τον άξονα των α) Για 5 7 είναι 5 7, β) Για 4 9 είναι 4 9 γ) Για 4 είναι 4, δ) Για είναι ε) Για είναι, στ) Για 0 είναι 0 ΛΑ3Με ποιες συμμετρίες μπορούν να προκύψουν από την εικόνα του μιγαδικού y οι εικόνες των μιγαδικών, και ; Μάθε τις συμμετρίες που έχουν οι εικόνες των,,, Αν M (, y) είναι η εικόνα στο μιγαδικό επίπεδο του μιγαδικού y, τότε η εικόνα του y είναι το σημείο M (, y), του y είναι το σημείο M (, y) και, τέλος, του y y είναι το σημείο M 3 (, y) Έτσι, μπορούμε M 3 (-,y) M(,y) να πούμε ότι: Ο προκύπτει από τον με συμμετρία ως προς τον άξονα Ο προκύπτει από τον με συμμετρία ως προς κέντρο το O (0,0) και τέλος: M (-,-y) M (,-y) y Ο προκύπτει από τον με συμμετρία ως προς τον άξονα y y 5 9 5 9 ΛΑ4Αν και, να δείξετε ότι ο είναι πραγματικός 7 4 7 4 αριθμός, ενώ ο φανταστικός αριθμός

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘMΟΙ Ας θυμηθούμε ότι Αν τότε Αν τότε» 5 9 5 9 Είναι, άρα είναι πραγματικός αριθμός 7 4 7 4 Ομοίως 5 9 5 9 ( ), άρα ο 7 4 7 4 είναι φανταστικός ΛΑ5Να περιγράψετε γεωμετρικά το σύνολο των εικόνων των μιγαδικών αριθμών που ικανοποιούν τις παρακάτω σχέσεις: α) 6 β) γ) δ) Να ξέρουμε ότι στους απλούς γεωμετρικούς τόπους θέτουμε y και αναζητούμε τη σχέση (συνήθως σχέση ισότητας) που συνδέει το με το y Αν y τότε: α) 6 y y 6 y 6 y 3 y 3 Άρα, οι εικόνες των μιγαδικών είναι τα σημεία της οριζόντιας ευθείας με εξίσωση y 3 β) ( y) ( y) ( y) ( y) 0 ( y y)( y y) 0 y 0 0 ή y 0 Άρα, οι εικόνες των μιγαδικών είναι τα σημεία των δύο αξόνων y y και γ) ( y) ( y) (y) y ( y y y y y ( y ) 0 y ± y) Άρα, οι εικόνες των μιγαδικών είναι τα σημεία των διχοτόμων των τεσσάρων τεταρτημορίων δ) y ( y) y ( ) y y y, y R y Άρα, οι εικόνες των μιγαδικών είναι τα σημεία της κατακόρυφης ευθείας

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΑ6Αν α β, γ α β είναι πραγματικός αριθμός γ δ, και δ είναι πραγματικοί αριθμοί, να εξετάσετε πότε το πηλίκο Ας θυμηθούμε ότι Αν τότε α β Αφού θέλουμε το να είναι πραγματικός αριθμός θα είναι και γ δ β α β α β α β αγ αδ βγ βδ γ δ γ δ γ δ γ δ βγ αδ βγ αδ α ος Τρόπος α β ( α β)( γ δ) ( αγ βδ) ( βγ αδ) Έχουμε: γ δ ( γ δ)( γ δ) γ δ Άρα: R βγ αδ 0 αδ βγ αγ αδ βγ βδ ΛΑ7Έστω ο μιγαδικός με 0 Να δείξετε ότι ο ότι είναι πραγματικός και Ας θυμηθούμε ότι αν τότε και αντίστροφα, οπότε ο είναι πραγματικός αφού ισούται με τον συζυγή του Στη συνέχεια θέλουμε να δείξουμε ότι Αν y, τότε θέλουμε να δείξουμε ότι (y) y (y) y ( y ) y y

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘMΟΙ y y y y ) y ( y 0 0 y y y y που ισχύουν και οι δύο Άρα ισχύει και η αρχική διπλή ανισότητα ΛΑ8Αν και και, να αποδείξετε ότι ο αριθμός u είναι πραγματικός, ενώ ο αριθμός v είναι φανταστικός Αρκεί να δείξουμε ότι u u και v v Επειδή και θα είναι: u u v ) ( v Aσκήσεις προς λύση Αν α β με αβ 0 και ο συζυγής του ποια από τις παρακάτω προτάσεις δεν είναι σωστή; Α πραγματικός αριθμός Β - φανταστικός αριθμός Γ φανταστικός αριθμός Δ - πραγματικός αριθμός Ε πραγματικός αριθμός Στο μιγαδικό επίπεδο, οι εικόνες δύο συζυγών μιγαδικών αριθμών είναι σημεία συμμετρικά Α ως προς τον άξονα y y Β ως προς τον άξονα Γ ως προς την ευθεία y Δ ως προς την ευθεία y - Ε ως προς την αρχή των αξόνων Ας θυμηθούμε για μια ακόμη φορά ότι αν τότε και αντίστροφα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ 3 Να βρεθούν τα, y R ώστε οι μιγαδικοί: y - και - (4 - y) να είναι συζυγείς 4 Αν φανταστικός αριθμός με - δείξτε ότι ο αριθμός ω πραγματικός αριθμός 3 - είναι αρνητικός 5 Αν οι εικόνες δύο μη μηδενικών μιγαδικών αριθμών και στο μιγαδικό επίπεδο είναι στο ίδιο τεταρτημόριο, ποια από τις παρακάτω σχέσεις μπορεί να ισχύει; Α - B Γ - Δ Ιm ( ) Im ( ) 0 E κανένα από τα παραπάνω 6 Να δείξετε ότι αν ω και ω R τότε ο είναι φανταστικός αριθμός ΛΑ9 Να λύσετε στο σύνολο των μιγαδικών αριθμών τις εξισώσεις: α) 3 0 β) 3 0 γ) Να ξέρουμε ότι τις δευτεροβάθμιες εξισώσεις με πραγματικούς συντελεστές τις λύνουμε κατά τον γνωστό τρόπο Αν αυτή έχει ρίζες μιγαδικές τότε οι ρίζες είναι συζυγείς μιγαδικοί Υπενθυμίζουμε ότι η τετραγωνική ρίζα ενός αρνητικού αριθμού υπάρχει στο Για παράδειγμα 6 6 (4) ± 4 3 ± 9 8 3 ± α) 3 0 ή ± 4 ± 8 ± 4 ± β) 3 0 ( ± ) ± γ) Είναι 0 και έχουμε: ± 4 ± 3 ± 0 3 ΛΑ0Αν μια ρίζα της εξίσωσης β γ 0, όπου β, γ R, είναι 3, να βρείτε τις τιμές των β και γ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘMΟΙ Να ξέρουμε ότι για τις ρίζες ρ, ρ μιας δευτεροβάθμιες εξίσωσης α β γ 0 με α 0, ισχύουν οι τύποι του Vetta: β γ ρ ρ και ρ ρ α α Αφού οι συντελεστές της εξίσωσης β γ 0 είναι πραγματικοί αριθμοί και μία ρίζα της είναι η 3, η άλλη θα είναι η 3, οπότε θα ισχύει: β β 6 β γ γ γ 6 3 Aσκήσεις προς λύση Η εξίσωση - 6 λ 0, λ R, μπορεί να έχει ρίζα τον αριθμό Α Β - Γ Δ - Ε 3 Η εξίσωση α 5 0, α R μπορεί να έχει ρίζα τον Α - 3 Β - Γ - Δ 3 - Ε - 3-3 Αν η εξίσωση - κ λ 0, κ, λ Ζ έχει ρίζα τον τότε ισχύει Α κ 6 και λ 5 Β κ 4 και λ Γ κ 3 και λ 4 Δ κ 4 και λ 5 Ε κ 5 και λ 4 4 Η εξίσωση α β 0, α, β R έχει ρίζα τον μιγαδικό αριθμό - α) Να βρείτε την άλλη ρίζα β) Να βρείτε τα α και β ΛΑΝα λύσετε τις εξισώσεις α), β) 3 Πρέπει να ξέρεις ότι τις απλές εξισώσεις και ανισώσεις τις λύνουμε θέτοντας y, οπότε καταλήγουμε σε σύστημα εξισώσεων με δυο αγνώστους τους, y το οποίο αφού το επιλύσουμε βρίσκουμε τα, y, άρα τον α) Αν y τότε έχουμε:

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ( )y 0 ( y ) ( )y 0 y 0 y ( y) y (y) y y y 0 ή y y 0 y 0 () () Αν 0, δηλαδή αν, τότε η () γράφεται: 3 3 3 3 y 0 y y ± Άρα: ή 4 4 Αν y 0, τότε η () γράφεται: 0 ( ) 0 0 ή Άρα: 0 ή 3 3 β) Αν y, έχουμε: y ( y) 3 3 3 3 y 3 y 3(y) (y) y 3 y 3y y y ( 3 3y ) (3 y )y 3 3y (3 y )y y ( 3y y(3 y ) 0 ) 0 0 y(3 ή y ) 0 3y 0 () () Αν 0, τότε η () γράφεται: y( y ) 0 y 0 ή y ± Άρα: 0 ή ή Αν 3y, τότε η () γράφεται: y[3(3y ) y ] y(8y 4) 0 y 0 Άρα, οπότε ή και επομένως ή Aσκήσεις προς λύση α) Να βρείτε τους μιγαδικούς αριθμούς που επαληθεύουν την ισότητα ( - ) 3 β) Να βρεθεί ο μιγαδικός αριθμός που ικανοποιεί την ισότητα - Να βρείτε τους μιγαδικούς y,, y R, για τους οποίους ισχύει: 0

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘMΟΙ ΛΑΝα βρείτε το γεωμετρικό τόπο των εικόνων των μιγαδικών για τους οποίους ισχύει: α) Re 5Re() β) Im 3Im() Να ξέρουμε ότι στους απλούς γεωμετρικούς τόπους θέτουμε y και αναζητούμε τη σχέση (συνήθως σχέση ισότητας) που συνδέει το με το y Κάνε ακόμα μια φορά επανάληψη και μάθε τις εξισώσεις: ευθείας, κύκλου, έλλειψης, παραβολής, υπερβολής γιατί θα σου χρειασθούν στη συνέχεια! y α) Έστω y Τότε Επομένως: y y Re 5 Re() 5 4 0 0 y y ή y 4 0 ή y Άρα, ο γεωμετρικός τόπος είναι ο άξονας y y με εξαίρεση το σημείο O (0,0) ή ο κύκλος με κέντρο O(0,0) και ακτίνα ρ y y β) Έχουμε: Im 3Im() y 3y 4y 0 y y y 4 0 y y 0 ή 4 y 0 ή y y Άρα, ο γεωμετρικός τόπος είναι ο άξονας με εξαίρεση το σημείο O (0,0) ή κύκλος με κέντρο O (0,0) και ακτίνα ρ Ασκήσεις προς λύση Δίνεται ο μιγαδικός αριθμός y,, y R α) Να γράψετε στη μορφή α β τον μιγαδικό w 8 6 β) Να βρείτε τη σχέση που συνδέει τα και y, αν Im (w) 0 γ) Να βρείτε τη σχέση που συνδέει τα και y, αν Re (w) 0 δ) Να δείξετε ότι η προηγούμενη σχέση (γ) είναι εξίσωση κύκλου και να βρείτε το κέντρο του και την ακτίνα του ε) Να δείξετε ότι ο προηγούμενος κύκλος διέρχεται από την αρχή των αξόνων

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η εξίσωση α β 0, α, β R έχει ρίζα τον μιγαδικό αριθμό - α) Να βρείτε την άλλη ρίζα β) Να βρείτε τα α και β 3 Αν η εικόνα του μιγαδικού λ (λ - ) στο μιγαδικό επίπεδο βρίσκεται στην ευθεία y 4, να βρεθεί ο λ R 4 Να συμπληρώσετε το διπλανό σχήμα με το σημείο Μ () Μετά να βρείτε τα σημεία Μ ( ), Μ 3 (-) και Μ 4 (- ) Να βρείτε το εμβαδόν του τετραπλεύρου Μ Μ Μ 3 Μ 4 5 Ο μιγαδικός να αναλυθεί σε άθροισμα δύο μιγαδικών, που οι εικόνες τους βρίσκονται αντίστοιχα στις ευθείες y - και y - Ερωτήσεις αντιστοίχισης Αν α β, να συμπληρώσετε τον παρακάτω πίνακα ώστε κάθε παράσταση της στήλης Α να αντιστοιχεί στην ίση της που βρίσκεται στη στήλη Β Στήλη Α Α α Στήλη Β Β α β Γ - 3 α β 4 α - β Δ 5 β 6 α Α Β Γ Δ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘMΟΙ Να συμπληρώσετε τον παρακάτω πίνακα ώστε σε κάθε σχέση της στήλης Α να αντιστοιχεί ο γεωμετρικός τόπος των εικόνων του που βρίσκεται στη στήλη Β Στήλη Α σχέση που ικανοποιεί ο μιγαδικός αριθμός Α το πραγματικό μέρος του είναι Στήλη Β γεωμετρική περιγραφή των εικόνων του στο μιγαδικό επίπεδο ο άξονας Β το πραγματικό μέρος του είναι ίσο με το φανταστικό μέρος του η ευθεία y 3 η ευθεία y - Γ το πραγματικό μέρος του είναι αντίθετο του φανταστικού μέρους του 4 η ευθεία 5 η ευθεία y - Α Β Γ 3 Αν η εικόνα του μιγαδικού αριθμού στο μιγαδικό επίπεδο είναι το σημείο Μ (, ), να συμπληρώσετε τον παρακάτω πίνακα ώστε κάθε μιγαδικός αριθμός της στήλης Α να αντιστοιχεί στην εικόνα του που βρίσκεται στη στήλη Β Στήλη Α μιγαδικός αριθμός Στήλη Β σημείο στο μιγαδικό επίπεδο Α (-, ) Β - ( 5, - 5 4 ) Γ 3 (, 5 4 )

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ 4 (-, ) 5 ( 5, 5 4 ) Α Β Γ 4 Να συμπληρώσετε τον παρακάτω πίνακα ώστε κάθε δύναμη του που υπάρχει στη στήλη Α να αντιστοιχεί στην τιμή της που βρίσκεται στη στήλη Β Στήλη Α δύναμη του Α 3 - Στήλη Β Β 4 3 - Γ 5 4 0 Δ 0 5 6 Α Β Γ Δ 5 Αν y,, y 0 και c σταθερός πραγματικός αριθμός, διάφορος του μηδενός, να συμπληρώσετε τον παρακάτω πίνακα ώστε σε κάθε παράσταση της στήλης Α να αντιστοιχεί ο γεωμετρικός τόπος των εικόνων του που βρίσκεται στη στήλη Β

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘMΟΙ Στήλη Α σχέση που ικανοποιεί ο μιγαδικός αριθμός Α Re () c Στήλη Β γεωμετρικός τόπος του στο μιγαδικό επίπεδο y c Β Im () c y c Γ Re () Im () c 3 y c 4 c y 0 5 c Α Β Γ Ερωτήσεις του τύπου «Σωστό - Λάθος» Αν α β, α, β R και 0, τότε α 0 και β 0 Σ Λ Αν α β και αβ 0, τότε α β Σ Λ 3 Αν κ λ κ, λ R, τότε Re () κ Σ Λ 4 Αν (y - ) και Ιm () 0, τότε y Σ Λ 5 Αν, C με Re ( ) 0, τότε Re ( ) Re ( ) 0 Σ Λ 6 Οι εικόνες των φανταστικών αριθμών στο μιγαδικό επίπεδο βρίσκονται πάνω στον άξονα y y Σ Λ 7 Αν - τότε 003 Σ Λ 8 Οι εικόνες των αντίθετων μιγαδικών αριθμών στο μιγαδικό επίπεδο είναι σημεία συμμετρικά ως προς τον άξονα Σ Λ 9 Για κάθε μιγαδικό αριθμό 0 ορίζεται Σ Λ 0 Αν Μ, Μ είναι οι εικόνες των μιγαδικών και αντιστοίχως στο μιγαδικό επίπεδο και ο άξονας είναι η μεσοκάθετος του ευθυγράμμου τμήματος Μ Μ, τότε είναι Σ Λ Αν α β, C, και α, τότε Σ Λ Αν Re() τότε οι εικόνες των μιγαδικών στο μιγαδικό επίπεδο βρίσκονται πάνω στην ευθεία Σ Λ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ 3 Αν Ιm ( ) 8 τότε οι εικόνες των μιγαδικών στο μιγαδικό επίπεδο βρίσκονται στην ευθεία y 8 Σ Λ 4 Η εξίσωση - λ 0, λ R, μπορεί να έχει ρίζες τους μιγαδικούς και - Σ Λ 5 Αν η εξίσωση α β γ 0, α 0, α, β, γ R έχει 5 ρίζα τον θα έχει και τον Σ Λ 6 Η εξίσωση α β γ 0, α, β, γ, R * έχει πάντοτε λύση στο C Σ Λ 7 Αν Re ( ) 0 τότε ισχύει πάντα Re ( ) Re ( ) 0 Σ Λ Επιλεγμένα Θέματα Να βρεθούν οι μιγαδικοί αριθμοί ώστε να ισχύουν: α) β)» Αν, είναι μιγαδικοί αριθμοί να βρεθούν οι ικανές και αναγκαίες συνθήκες ώστε ο αριθμός να είναι πραγματικός 3 Αν y, όπου, y,θ, να βρεθούν τα, y συναρτήσει συνθ ημθ του θ και να δειχθεί ότι (3 ) 9y 4 Αν,w και w 0, να δειχθεί ότι ο αριθμός w w 3 5 Να λυθεί η εξίσωση 0, αν γνωρίζουμε ότι έχει μια ρίζα πραγματική 6 Να λυθεί στο η εξίσωση: 0 3 7 Να δειχθεί ότι αν οι συζυγείς μιγαδικοί w y και w y είναι ρίζες της εξίσωσης α β 0, τότε α, β 8 Να δειχθεί ότι ο αριθμός ν ν ( ) ( ), είναι πραγματικός για κάθε ν Õ 9 Αν α β γ ( αβ βγ γα) δ δ, όπου α, β, γ, δ, να δειχθεί ότι α β γ α 0 Αν y, με α, β,, y * και θ, να δειχθεί ότι β συνθ ημθ ( β )( y ) α αβ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Έλεγχος των γνώσεων Ερωτήσεις του τύπου «Σωστό - Λάθος» Για κάθε μιγαδικό αριθμό ισχύει - Σ Λ Για κάθε, C ισχύει Σ Λ 3 Η εξίσωση - -, C, παριστάνει στο μιγαδικό επίπεδο τη μεσοκάθετο του ευθυγράμμου τμήματος που έχει άκρα τα σημεία Α ( ) και B ( ) Σ Λ 4 Η εξίσωση - - με άγνωστο το C και, C έχει μόνο μια λύση Σ Λ 5 Η εξίσωση - 0 ρ, ρ > 0 παριστάνει στο μιγαδικό επίπεδο κύκλο με κέντρο Κ ( 0 ) και ακτίνα ρ Σ Λ 6 Στο μιγαδικό επίπεδο η εικόνα του μιγαδικού αριθμού 3 είναι εσωτερικό σημείο του κύκλου 4 Σ Λ 7 Στο μιγαδικό επίπεδο του διπλανού σχήματος η εξίσωση του κύκλου είναι - 4 Σ Λ Ερωτήσεις πολλαπλής επιλογής Αν y ποια από τις παρακάτω ισότητες δεν είναι πάντα σωστή; Α Β - Γ Δ (-y ) Ε Αν 3 και 4 3 τότε η μεγαλύτερη τιμή του είναι Α 5 Β 8 Γ 9 Δ Ε 4 3 Αν και - 5 τότε η ελάχιστη τιμή του είναι Α B 3 Γ 5 Δ 7 E 0 4 Αν 3 y και 5, τότε μια τιμή του y είναι η Α 5 B 5 Γ - 4 Δ 3 E 3 5 Αν το σημείο Ρ (, y) είναι εικόνα του μιγαδικού y στο μιγαδικό επίπεδο για τον οποίο ισχύει - 3 5, το Ρ βρίσκεται πάνω σε Α ευθεία B έλλειψη Γ κύκλο

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘMΟΙ Δ παραβολή E υπερβολή 6 Η εξίσωση - ( ) 4 παριστάνει στο μιγαδικό επίπεδο κύκλο με Α κέντρο (-, ) και ακτίνα 4 B κέντρο (, - ) και ακτίνα Γ κέντρο (, - ) και ακτίνα 4 Δ κέντρο (, ) και ακτίνα E κέντρο (, ) και ακτίνα 4 7 Θεωρούμε στο μιγαδικό επίπεδο τον κύκλο με κέντρο το Ο (αρχή των αξόνων) και ακτίνα 0 Από τους παρακάτω αριθμούς έχει εικόνα πάνω στον κύκλο ο μιγαδικός αριθμός Α 3 B 3 7 Γ - 8 Δ 8 6 E 8 8 Ο γεωμετρικός τόπος των εικόνων του μιγαδικού αριθμού στο μιγαδικό επίπεδο για τον οποίο ισχύει - - είναι Α ο άξονας y y B η ευθεία y Γ ο άξονας Δ η μεσοκάθετος του ευθυγράμμου τμήματος με άκρα τα σημεία (, 0) και (0, ) E η μεσοκάθετος του ευθυγράμμου τμήματος με άκρα τα σημεία (0, ) και (, 0) 9 Στο μιγαδικό επίπεδο ο κύκλος με κέντρο το σημείο Κ (, ) και ακτίνα 3 είναι ο γεωμετρικός τόπος των εικόνων του μιγαδικού για τον οποίο ισχύει Α - ( - ) 3 B - ( ) 3 Γ - ( ) 9 Δ - ( ) 3 E ( ) 3 0 Οι μιγαδικοί αριθμοί που οι εικόνες τους στο μιγαδικό επίπεδο βρίσκονται στο γραμμοσκιασμένο τμήμα του σχήματος είναι αυτοί για τους οποίους ισχύει Α < και < B < και < Γ > και > Δ < και < Ε < και < Αν η εξίσωση κ επαληθεύεται από τους μιγαδικούς αριθμούς που η εικόνα τους στο μιγαδικό επίπεδο βρίσκεται στην ευθεία y, ο πραγματικός αριθμός κ ισούται με Α B - Γ Δ - E 4 Αν οι εικόνες των μιγαδικών,, 3 στο μιγαδικό επίπεδο δεν βρίσκονται στην ίδια ευθεία, τότε το πλήθος των λύσεων του συστήματος 3 με άγνωστο τον είναι Α B 3 Γ Δ 4 Ε 0