f f x f x = x x x f x f x0 x

Σχετικά έγγραφα
********* Β ομάδα Κυρτότητα Σημεία καμπής*********

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

και γνησίως αύξουσα στο 0,

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

2. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ.

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρείτε τις ασύμπτωτες της γραφικής παράστασης της συνάρτησης f με τύπο

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

β β g( x) και du=g (x)dx g( x)

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Ερωτήσεις πολλαπλής επιλογής

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

Κεφάλαιο 4: Διαφορικός Λογισμός

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Σελίδα 1 από 8. f στο, τότε

f κυρτή στο [1,5] f x x f η Επαναληπτική f [ 2,10], επιπλέον για την f ισχύουν lim 2 x f 8 1,0 και

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΝΑΛΥΣΗΣ (Γ Λυκείου) α) νδο η συνάρτηση f '' = c. (Υπόδ: παραγωγίζω την δοσμένη σχέση 2 φορές)

( x) β ], παρουσιάζει ελάχιστη τιµή α, δηλαδή υπάρχει. ξ µε g( ξ ) = 0. Το ξ είναι ρίζα της δοσµένης εξίσωσης.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Θέματα Πανελλαδικών στις Παραγώγους. Εφαπτομένη

Θ.Rolle Θ.Μ.T. Συνέπειες Θ.Μ.Τ

Σχόλια στις Παραγώγους. Μια συνάρτηση θα λέγεται παραγωγίσιμη σε ένα σημείο x 0 του. f(x h) f(x )

( ) ( ) ( 3 ) ( ) = ( ) ( ) ( ) ( ) ( ) ( 1) ( ) (( ) ( )) ( ) + = = και και και και. ζ να ταυτισθούν, δηλαδή θα πρέπει: f x ημ x. 6 x x x.

ΜΕΡΟΣ Β ΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΡΟΡΑΜΑΤΑ ΣΤΟ ΒΙΒΛΙΟ ΤΟΥ Η. ΡΟΥΣΑΛΗ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. ΤΟ 3ο ΚΑΙ ΤΟ 4ο ΘΕΜΑ (ΕΚΔΟΣΕΙΣ ΠΑΤΑΚΗ)

ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE

και είναι παραγωγισιμη στο σημειο αυτό, τότε : f ( x 0

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΘΕΜΑ Α A1. Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του x 0, στο οποίο όμως η f είναι συνεχής.

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2016

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α

Βασικές Μεθοδολογίες για την επίλυση ασκήσεων

Κατηγορία 1 η. Σταθερή συνάρτηση Δίνεται παραγωγίσιμη συνάρτηση f : 0, f '( x) 0 για κάθε εσωτερικό σημείο x του Δ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει

ΜΑΘΗΜΑ ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ Κοίλα κυρτά συνάρτησης Σηµεία καµπής Θεωρία Σχόλια Μέθοδοι Ασκήσεις

7 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 61. Έστω συνάρτηση f παραγωγίσιµη στο R, τέτοια ώστε. (e + 1)dt = x 1

Λύσεις του διαγωνίσματος στις παραγώγους

f(x) γν. φθίνουσα ολ.ελ. γν. αύξουσα

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle.

ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

Ερωτήσεις πολλαπλής επιλογής

ΜΑΘΗΜΑΤ ΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤ ΗΣΕΙΣ ΣΤ Α ΘΕΜΑΤ Α ΕΞΕΤ ΑΣΕΩΝ 2016.

f ( x) f ( x ) για κάθε x A

ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2019 ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ windowslive. com.

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΥΠΟΨΗΦΙΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ 2013

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

ΜΕΘΟΔΟΙ ΠΟΥ ΧΡΕΙΑΖΟΝΤΑΙ ΜΙΑ ΔΕΥΤΕΡΗ ΜΑΤΙΑ

2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

35 Χρήσιμες Προτάσεις με αποδείξεις Γ Λυκείου Μαθηματικά Κατεύθυνσης

Α2. Να διατυπώσετε το θεώρημα του Fermat. (Απάντηση : Θεώρημα σελ. 260 σχολικού βιβλίου) Μονάδες 4

1. Υπολογίστε, όπου αυτές υπάρχουν, τις παραγώγους των συναρτήσεων:

ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΑΝΙΣΩΣΕΩΝ ΣΥΝΑΡΤΗΣΙΑΚΩΝ ΜΟΡΦΩΝ MIAΣ ΜΕΤΑΒΛΗΤΗΣ

Μαθηματικά Προσανατολισμού Γ Λυκείου Ημερομηνία: 03 Μαρτίου 2019 Απαντήσεις

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2008

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β:

x είναι f 1 f 0 f κ λ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0.

ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2018

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

f(x) x 3x 2, όπου R, y 2x 2

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

Πες το με μία γραφική παράσταση

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

ΘΕΩΡΗΜΑ ROLLE. τέτοιο ώστε. στο οποίο η εφαπτομένη είναι παράλληλη στον άξονα χχ. της γραφικής παράστασης της f x με. Κατηγορίες Ασκήσεων

Ασκήσεις Επανάληψης Γ Λυκείου

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες

#Ευθύνη_Μαθηματικά ΤΕΛΟΣ 1ΗΣ ΑΠΟ 11 ΣΕΛΙΔΕΣ

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x

. Β2. Η συνάρτηση f είναι παραγωγίσιμη με: 1 1 1, και f ( x) ( ln(ln x) ).

Γ1. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (0, + ).

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

V. Διαφορικός Λογισμός. math-gr

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Συνθήκες Θ.Μ.Τ. Τρόπος αντιμετώπισης: 1. Για να ισχύει το Θ.Μ.Τ. για μια συνάρτηση f σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, )

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

Transcript:

1 Παράγωγος 1. για να βρω την παράγωγο της f σε διάστηµα χρησιµοποιώ βασικές παραγώγους και κανόνες παραγωγισης. για να βρω την παράγωγο σε σηµείο αλλαγής τύπου η σε άκρο διαστήµατος δουλεύω µε ορισµό 3. η f και η παράγωγος της δεν έχουν απαραίτητα το ίδιο πεδίο ορισµού 4. για να βρω τα α και β ώστε φ παραγωγισιµη σε σηµείο a. παραδέχοµαι ότι είναι συνεχής και παίρνω σχέση για τα α και β b. επιστρέφω στον τύπο της φ χρησιµοποιώ τη σχέση που βρήκα και κερδίζω άγνωστο και παίρνω την συνθήκη για να είναι φ παραγωγίσιµη 1 5. για την παράγωγο της αντίστροφης χρησιµοποιώ τη σχεση f ( f ) = οπότε 1 1 ( ( ))( ) ( ) = 1. f f f 6. αν δίνεται συναρτησιακή σχέση ΙΣΟΤΗΤΑ και a. f παραγωγίσιµη τότε παραγωγίζω b. αν f δεν γνωρίζω ότι είναι παραγωγίσιµη δουλεύω µε ορισµό και προσπαθώ να εκµεταλλευτώ τη σχέση που δίνεται και τον ορισµό lim R= 7. Έτσι αν δίνεται f ( + h) a. f ( + y) =... χρησιµοποιώ lim h h b. f ( y ) =... i. Θέλω να κάνω το = f ( h) οποτε για να ειναι = h θέτω h = h = µε h 1 οταν ii. Σπανιότερα a= h = h µε h aοταν a 8. να θυµάµαι όταν f παραγωγίσιµη στο είναι f ( + ah) lim = a, a h h 9. Αν δίνεται ανισότητα και συναρτησιακή σχέση εµφανίζουµε τον ορισµό και δουλευουµε µε αυτόν π.χ δείξετε ότι f παραγωγίσιµη και µάλιστα σταθερή a., y Rισχυει f ( y) y να, y Rισχυει f ( y) y (1) ετσι y= f f φανερά για (1) ( ) ( ) = ισχύει σαν 1

ισότητα. αν (1) < παρεµβολής = = c f ( ) lim = = f ( ) αρα και απο κριτήριο 1. η εξίσωση εφαπτοµένης a. µιας παραγωγίσιµης συνάρτησης f σε σηµείο της γραφικής της παράστασης M (, f ( )) είναι y = ( ) b. Αν δεν λέει που φέρνω την εφαπτοµένη θεωρώ σηµείο επαφής M (, f ( )) και εκµεταλλεύοµαι τα υπόλοιπα δεδοµένα. c. η ευθεία y= a+ β εφάπτεται της c f στο M (, f ( )) αν και µόνο αν = a και = a+ β d. οι c f,c g δέχονται κοινή εφαπτοµένη στο κοινό τους σηµείο M (, f ( )) αν και µόνο αν = g ' και = g e. για να βρω την κοινή εφαπτοµένη των c f,c g.θεωρώ A( 1, f ( 1 )), B(, g( )) τα σηµεία επαφής της κοινής εφαπτοµένης (ε) των c f,c g. Βρίσκω την εφαπτοµένη της µιας π.χ της c f στο Α και την αναγκάζω να περνά από το άλλο σηµείο Β. 11. Ρυθµός µεταβολής =παράγωγος a. οριακό κόστος, οριακό κέρδος =παράγωγος b. ΠΡΟΣΕΧΩ τι παραγωγίζω και πως c. Αν τα µεγέθη,y συνδέονται µε τη σχέση y=f() απλά παργωγίζω ως προς χ d. Ενώ αν τα µεγέθη,y µεταβάλλονται συναρτήσει µιας άλλης µεταβλητής t,τότε παραγωγίζουµε την σχέση y( t) = f ( ( t)) 1. Θ.Rolle-ΘΜΤ a. Όταν στην εξίσωση που θέλω να δείξω ότι έχει ρίζα στο (α,β) υπάρχει παράγωγος είναι µεγάλες οι πιθανότητες να χρειάζεται Rolle. b. Για να ανακαλύψω τη συνάρτηση για την οποία θα εφαρµόσω Θ.Rolle.Βγάζω το και στη θέση του βάζω το και προσπαθώ να ανακαλύψω την αρχική της f. π.χ i. ( g) g ' = ( f ( g)' ii. = (ln ) ',, iii. = (ln( ))',οταν >

3 1 iv. = ( )', v. = ( )' οταν > vi. e = ( e ) ' ν+ 1 ν vii. = ( ) ', ν 1 ν + 1 viii. + κ = e + κe = ( e )' πολλαπλασιαζω µε e i. κ κ κ κ g f e e g f e f g g g ( ) + '( ) ( ) = ( ) + '( ) ( ) = ( ( ))' πολλαπλασιαζω µε e g. g + g ' = ( g)' i. g g ' = ( )' = g c. Άλλες φορές πάλι εκµεταλλεύοµαι δοσµένη σχέση f ( a) = f ( β ) οπότε παίρνω Θ.Rolle για f d. Να µη ξεχνώ να ελέγχω µήπως είναι κρυµµένο Bolzano παρά την ύπαρξη παραγώγου 13. ΕΞΙΣΩΣΕΙΣ a. Το πολύ ν ρίζες i. Υποθέτω ότι υπάρχει µια παραπάνω δηλαδή ν+1 ρίζες και παίρνω Θ.Rolle στa [ ρ1, ρ],[ ρ, ρ3 ],...[ ρv, ρ v + 1] και καταλήγω σε άτοπο b. Τουλάχιστον µια λύση. i. είχνω ότι υπάρχει προφανής λύση,ή Bolzano για κατάλληλη συνάρτηση,ή Rolle για κατάλληλη αρχική, ή βρίσκω το σύνολο τιµών c. Μοναδική λυση i. είχνω ότι η ρίζα υπάρχει και µετά µε τη βοήθεια της µονοτονίας η Rolle δείχνω ότι είναι µία d. Τουλάχιστον δυο ρίζες i. Σπάω ανάλογα µε το πλήθος των ριζών, δοσµένα διαστήµατα µε κατάλληλα επιλεγµένους πραγµατικούς e. Πλήθος ριζών i. Της f ( ) = 1. βρίσκω το σύνολο τιµών της f και βλέπω σε ποια από τα επιµέρους σύνολα τιµών βρίσκεται το. 3

4 ii. Της = α, α R 1. βρίσκω το σύνολο τιµών της f και βλέπω σε ποια από τα επιµέρους σύνολα τιµών βρίσκεται το α διακρίνοντας περιπτώσεις για τον α. 14. ΧΡΗΣΙΜΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ a. αν σε προηγούµενο ερώτηµα υπάρχει ερώτηµα για τη µονοτονία και µετά ζητάµε να λυθεί εξίσωση να σκέπτοµαι ότι κάθε γνήσια µονότονη συνάρτηση είναι και 1-1 b. η ρίζα που ψάχνω, πολλές φορές είναι και ρίζα της παραγώγου της. c. Αν έχω στον έκθετη ή γνωρίζω f ( ) > ή έχω µε να σκέφτοµαι να λογαριθµω, d. Πολλές φορές πίσω από την ερώτηση να λυθεί µια εξίσωση κρύβεται πρόβληµα µοναδικότητας ρίζας. e. Όταν κολλήσω και υπάρχει παραγωγος µηπως χρειάζεται καποιο ΘΜΤ 15. Ανισώσεις a. Αν ζητηθεί να δείξουµε διπλή ανισοισότητα µε δυο µεταβλητές i. Μελετώ χωριστά το α=β ii. πιθανό ΘΜΤ στο [α,β] για κατάλληλαa επιλεγµένη f b. αν ζητηθεί να δείξω ότι < g < h πιθανό ΘΜΤ αλλά πρέπει να βρούµε για ποια συνάρτηση.αλλιώς έχω δυο ανισώσεις µιας µεταβλητής < g και g < h 16. να δειξετε ότι < g, a. < g g < θετω h()= g και δείχνω ότι h()< b. Να θυµάµαι ότι δεν πάει µε αφαίρεση ίσως πάει µε διαίρεση < g < 1 µε g( ) >.οποτε θετω h()= g g ( και ) δειχνω ότι h()<1 c. µήπως πρέπει να λογαριθµησω όταν έχω στον έκθετη η γνωρίζω f ( ) > η έχω, µε f < g f < g k f <ϕ g k ( ) ( ) ( ) ( ) ( ) ϕ k ϕ ln ( ) ln ( ) ( ) ln( ( )) ( )ln( ( )) µε g >, > και συνεχίζω όπως προηγούµενα. 17. να δείξετε ότι g, 4

5 a. g g. αν h = g θα δείξω ότι h, και µελετάµε την h ως προς τη µονοτονία και τα ακρότατα b. Να θυµάµαι όταν δεν ξέρω το πρόσηµο της f παραγωγίζω. 18. Για να δείξω µια απλή ανισότητα δύο µεταβλητών a. Εκµεταλλεύοµαι την µονοτονία συνάρτησης από προηγούµενο ερώτηµα και τον αντίστοιχο ορισµό b. Προσπαθώ να αποµονώσω τα α από τα β και επιλέγω κατάλληλη συνάρτηση (βγάζω το α και στη θέση του βάζω ) και µελετώ την f ως προς τη µονοτονία c. Από την αρχή βάζω οπου α το η όπου β το και δουλεύω όπως στην ανισότητα µιας µεταβλητής 19. ΒΑΣΙΚΟ: εν παραγωγίζω ανισώσεις!!!. Σταθερή συνάρτηση a. Συνήθως προσπαθω να δείξω ότι η παραγωγος της είναι σε διάστηµα εκτός αν προκύπτει άµεσα ότι f σταθερή. b. Για να δείξω ότι = g i. Θετω h = g και δείχνω ότι h =, ii. Η θέτω h =, g, και δείχνω ότι g h = 1, iii. Αν = g, τότε = g + c, iv. ΠΡΟΣΟΧΗ αν έχω ένωση διαστηµάτων έχω διαφορετικές σταθερές c. = = ce, c R 1. Μονοτονία συνάρτησης i. Εξετάζω το προσηµο της f ii. Σε περίπτωση πολλαπλού τύπου εξετάζω αν φ συνεχής στα σηµεία αλλαγής τυπου iii. Αν δεν µπορώ να παραγωγίσω δουλεύω µε ορισµό. Ακρότατα a. Βρίσκω πεδίο ορισµού και την παράγωγο της f b. Βρίσκω τις ρίζες της f ()= c. Κάνω πίνακα µεταβολών d. Χρησιµοποιώ το κριτήριο πρώτης παραγώγου e. Σε περίπτωση πολλαπλού τύπου εξετάζω αν f συνεχής στα σηµεία αλλαγής τύπου f. Να θυµαµαι 5

6 i. Στο µε = έχω ακρότατο µόνο αν έχω εναλλαγή πρόσηµου εκατέρωθεν του ii. Αν δεν υπάρχει η παράγωγος της f στο όµως η f αλλάζει πρόσηµο εκατέρωθεν του θα εχω ακρότατο αν f είναι συνεχής στο. iii. Να µην ξεχνώ τα άκρα διαστήµατος 3. θ.fermat a. αν γνωριζω µια ανισοισότητα και θελω να καταλήξω σε ισότητα b. όταν θέλω να δείξω ότι η παραγωγίσιµη f δεν εχει ακρότατα υποθέτω ότι εχει ακρότατο στο οπότε από θ.fermat ( ) = και µέσα από δοσµένη σχέση καταλήγω σε άτοπο c. δίνεται συνεχής f σε κλειστό [α,β] και το f([a,β])=[γ,δ] και f ( α) γ, δ και f ( β ) γ, δ και επειδή από θεωρηµα µεγιστης ελάχιστης τιµής η f θα εχει σίγουρα µέγιστη και ελάχιστη τιµή στο [α,β] αυτή δεν θα την εχει στα α,β αρα σε εσωτερικά σηµεία του (α,β) και ετσι από θ.fermat θα υπάρχουν 1 ( a, β ) : ( 1 ) = και ( a, β ) : ( ) = και συνθηκες για Rolle για την f. 4. Κυρτότητα a. Εξεταζω το προσηµο της f b. Για τα σηµεια καµπής θελω ( ) = και εναλλαγή πρόσηµου c. Επίσης η c f πρέπει να δέχεται εφαπτοµένη σε αυτό(βασικά για τις ασκήσεις µας αρκεί να είναι f παραγωγισιµη στο ) d. Αν f κυρτή στο και ε εφαπτοµένη της, τότε ε, e. Αν f κοίλη στο και ε εφαπτοµένη της, τότε ε, 5. Ασύµπτωτες a. κατακόρυφες,=a i. ψάχνω στα σηµεία όπου δεν ορίζεται η f,η στα άκρα διαστήµατος όπου f δεν είναι συνεχής ii. έχω την χ=α κατακόρυφη ασύµπτωτη όταν κάποιο από τα όρια lim η lim η lim είναι + η -. α α+ α b. Οριζόντια η y=β στο + lim = β + c. Οριζόντια η y=β στο lim = β d. Ψάχνω στο + και στο 6

7 e. Πλάγια ασύµπτωτη στο + η y=λ+κ lim ( ( λ+ κ)) = + f. Πλάγια ασύµπτωτη στο η y=λ+κ lim ( ( λ+ κ)) = g. Για να βρω την πλάγια ασύµπτωτη στο + βρίσκω lim = λ + και τότε η y=λ+κ είναι πλάγια ασύµπτωτη lim ( λ)) = κ + στο +. h. Αντίστοιχα η y=λ+κ είναι πλάγια ασύµπτωτη στο lim = λ lim ( λ)) = κ 6. κανόνας de L Hospital a. εφαρµόζεται µόνο στις µορφές ± η ± b. όταν δεν έχω αυτές τις µορφές µετατρέπω την µορφή µου σε αυτήν f g i. ( + ) fig = η fi g = 1 1 g f g f g= f (1 ) f ii. ( + ) -(+ ) f f g= g( 1) g iii. g g ln f g ln f f = e = e c. προσοχή στις προϋποθέσεις του θεωρήµατος i. εχω τη µορφή ± η ±? ii. µπορώ να παραγωγίσω? iii. Υπάρχει το όριο lim? g ( ) 7