Mulţimea lui Mandelbrot

Σχετικά έγγραφα
Laborator 11. Mulţimi Julia. Temă

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

Metode iterative pentru probleme neliniare - contractii

Curs 4 Serii de numere reale

Curs 1 Şiruri de numere reale

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Curs 2 Şiruri de numere reale

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

z a + c 0 + c 1 (z a)

Integrala nedefinită (primitive)

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

Sisteme diferenţiale liniare de ordinul 1

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

Subiecte Clasa a VIII-a

Metode de interpolare bazate pe diferenţe divizate

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Asupra unei inegalităţi date la barajul OBMJ 2006

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

riptografie şi Securitate

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Subiecte Clasa a VII-a

Geometrie computationala 2. Preliminarii geometrice

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15

Teorema de punct fix a lui Banach

CURS VII-IX. Capitolul IV: Funcţii derivabile. Derivate şi diferenţiale. 1 Derivata unei funcţii. Interpretarea geometrică.

MARCAREA REZISTOARELOR

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

Seminar 5 Analiza stabilității sistemelor liniare

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Criptosisteme cu cheie publică III

Conice - Câteva proprietǎţi elementare

8 Intervale de încredere

1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =.

Profesor Blaga Mirela-Gabriela DREAPTA

Criterii de comutativitate a grupurilor

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

Funcţii Ciudate. Beniamin Bogoşel

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <


* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

Ecuatii trigonometrice

Progresii aritmetice si geometrice. Progresia aritmetica.

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

Principiul Inductiei Matematice.

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

( ) ( ) ( ) Funcţii diferenţiabile. cos x cos x 2. Fie D R o mulţime deschisă f : D R şi x0 D. Funcţia f este

Timp alocat: 180 minute. In itemii 1-4 completati casetele libere, astfel incat propozitiile obtinute sa fie adevarate.

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1)

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Seminariile Capitolul IX. Integrale curbilinii

ELEMENTE DE GEOMETRIA COMPUTAŢIONALĂ A CURBELOR Interpolare cu ajutorul funcţiilor polinomiale

1.3 Baza a unui spaţiu vectorial. Dimensiune

Puncte de extrem pentru funcţii reale de mai multe variabile reale.

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2016 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

a. 11 % b. 12 % c. 13 % d. 14 %

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx +

Subiecte Clasa a VIII-a

SEMINAR TRANSFORMAREA FOURIER. 1. Probleme

Problema a II - a (10 puncte) Diferite circuite electrice

Examen AG. Student:... Grupa:... ianuarie 2011

Siruri de numere reale

Concurs MATE-INFO UBB, 25 martie 2018 Proba scrisă la MATEMATICĂ

O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013

Probleme pentru clasa a XI-a

5.4. MULTIPLEXOARE A 0 A 1 A 2

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015

INTERPOLARE. y i L i (x). L(x) = i=0

există n0 N astfel ca pentru orice 1.Teoremă. Orice şir (xn)n din Q convergent la un, x Q are loc xn+p-xn ε (propritatea lui Cauchy).

Numere complexe în grafica 2D

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

1Reziduuri şi aplicaţii

TESTE GRILĂ DE MATEMATICĂ 2018

Transcript:

Cursul 12 Mulţimea lui Mandelbrot După cum ştim, mulţimile şi funcţiile cu caracter excepţional (mulţimea lui Cantor, insula lui von Koch, funcţiile lui Weierstrass şi Takagi, curba lui Peano, mulţimile Julia, ş.a.) au fost studiate intens de matematicieni încă de la apariţia lor, în analiza matematică mai ales, în a doua jumătate a secolului al XIX-lea. Cel care a reuşit să facă cunoscute aceste obiecte matematice publicului larg a fost Benoît Mandelbrot (1924 2010) care, prin două cărţi fundamentale: Les objets fractals, forme, hasard et dimension (apărută în 1975) şi The Fractal Geometry of Nature (1982), a introdus denumirea de fractal şi a argumentat în mod convingător utilitatea lor în diverse domenii. O bună parte din succesul popularizării acestor noţiuni atât de abstracte a fost însă asigurat de reprezentările lor grafice computerizate, care au dezvăluit o adevărată lume ascunsă, plină de forme şi culori încântătoare. Frumuseţea vizuală a fractalilor este indiscutabilă, şi dintre ei cel mai faimos este, de departe, mulţimea lui Mandelbrot, despre care vom vorbi în continuare. 1. Mulţimi Julia pentru funcţii pătratice. Plecăm de la studiul mulţimilor Julia J c asociate funcţiilor pătratice f c : C C, f c (z) = z 2 + c, unde c joacă rolul unui parametru care parcurge mulţimea numerelor complexe. Deoarece f c este un polinom, ştim că J c este frontiera bazinului de atracţie a punctului de la infinit (care este un atractor) sau, în mod echivalent, frontiera mulţimii Julia plină, P c = z 0 C şirul (fc n (z 0 )) este mărginit. Pentru implemetarea unui algoritm de trasare a mulţimilor P c, este util următorul rezultat: dacă există k N astfel încât (f k (z 0 )) > 2 atunci f n (z 0 ) pentru n şi, prin urmare, z 0 P c. Prin intermediul funcţiilor f c, asociem fiecărui număr complex c C mulţimea Julia J c, şi suntem interesaţi să determinăm valorile parametrului c pentru care mulţimea asociată J c este conexă. Amintim că o mulţime A C este conexă dacă nu există submulţimile deschise D 1 şi D 2 cu A D 1, A D 2, A D 1 D 2 = şi A D 1 D 2. 1

Definiţia 1. Mulţimea lui Mandelbrot, M, este mulţimea valorilor lui c pentru care J c este conexă: 2 M = c C J c este conexă. De exemplu, pentru c = 0 avem f 0 (z) = z 2 şi, prin urmare, f n 0 (z) = z 2n. Obţinem, P 0 = z 0 C şirul (z 2n 0 ) este mărginit = z 0 C z 0 1, de unde urmează că J 0 este cercul de rază unu centrat în origine, care este în mod evident mulţime conexă. În concluzie, 0 M. Programul următor trasează mulţimea J c pentru c = 1.0 + 0.35i. public class Julia : FractalForm Complex f(complex z, Complex c) return z * z + c; public override void makeimage() Complex c = new Complex(-1, 0.35); setxminxmaxyminymax(-2, 2, -2, 2); int nriter = 1000; for (int ii = imin; ii <= imax; ii++) for (int jj = jmin; jj <= jmax; jj++) Complex z = getz(ii, jj); int k = 0; for (; k < nriter && z.ro2 < 4; k++) z = f(z, c); setpixel(ii, jj, getcolor(3 * k)); if (!resetscreen()) return; Examinând rezultatul arătat în Figura 1, observăm că mulţimea P c nu este conexă şi, cu atât mai mult, nici frontiera sa J c nu este conexă, deci c = 1.0 + 0.35i / M.

3 Figura 1. Mulţimea J c pentru c = 1.0 + 0.35i. 2. Trasarea mulţimii lui Mandelbrot. Stabilirea conectivităţii unei mulţimi pe cale algoritmică este extrem de dificilă şi din acest motiv Definiţia 1 nu este proprice reprezentării grafice a mulţimii M (dar este utilă în stabilirea, pe cale riguroasă, a proprietăţilor ei). O metodă foarte simplă de trasare a mulţimii M se obţine pe baza următorului rezultat 1 stabilit de Hans Brolin în 1965: mulţimea Julia asociată unui polinom de grad mai mare decât unu este conexă dacă şi numai dacă nici unul dintre punctele sale critice (zerourile derivatei) nu se află în bazinul de atracţie al punctului de la infinit. În cazul nostru f c (z) = z 2 + c are derivata f (z) = 2z şi deci z = 0 este singurul punct critic al lui f c. Mulţimea J c este conexă dacă şi numai dacă z = 0 nu se află în bazinul de atracţie al punctului de la infinit. Este uşor de văzut că şirul (fc n (0)) tinde la infinit dacă şi numai dacă este nemărginit, şi am justificat astfel următoarea caracterizare: Teorema 1. Mulţimea lui Mandelbrot este mulţimea valorilor lui c pentru care şirul (fc n (0)) este mărginit: M = c C şirul (fc n (0)) este mărginit. Pentru a testa dacă parametrul c C este sau nu în mulţimea lui Mandelbrot calculăm termenii şirului z 0 = 0, z 1 = z0 2 + c,..., z N = zn 1 2 + c, unde N 1 H. Brolin, Invariant sets under iteration of rational functions, Arkiv för Matematik, 6(1965) p. 103 144.

este un număr suficient de mare. Dacă toţi z n sunt în modul mai mici decât doi, considerăm că şirul (z n ) este mărginit şi, prin urmare, c M. Pixelul corespunzător lui c va fi colorat cu negru (de exemplu) dacă c M şi cu alb în caz contrar. Se obţine o imagine ca în Figura 2, unde este reprezentată regiunea [ 2.5, 1.5] [ 2.0, 2.0] din planul complex. 4 Figura 2. Mulţimea lui Mandelbrot Imagini mult mai interesante se obţin prin metoda de colorare ETA, când fixăm culoarea pixelului corespunzător lui c în funcţie de numărul de termeni ai şirului (fc n (0)) care au modulul mai mic decât doi. public class Mandelbrot: FractalForm public override void makeimage() double x0 = 0.27314055; double y0 = 0.486; double r0 = 2.0 / 1000; setxminxmaxyminymax(x0 - r0, x0 + r0, y0 - r0, y0 + r0); int nriter = 1425; for (int ii = imin; ii <= imax; ii++) for (int jj = jmin ; jj <= jmax; jj++) Complex c = getz(ii,jj); Complex z = 0;

5 int k=0; for (; k < nriter && z.ro2 < 4; k++) z = z * z + c; if (k == nriter) setpixel(ii, jj, Color.Black); else setpixel(ii, jj, getcolor(700 + k)); if (!resetscreen()) return; Figura 3. class Mandelbrot Mulţimea lui Mandelbrot este o mulţime compactă şi conexă, cuprinsă în pătratul [ 2, 2] [ 2, 2], şi este formată, în linii mari, dintr-un corp principal dat de cardioida 1 (ω 1)2 C 0 = c C c = cu ω 1, 4 un cap circular C 1 = c C c + 1 1/4 şi dintr-un şir infinit de bulbi. Corpul C 0 este format din valorile lui c pentru care funcţia f c are un punct fix atractor. Într-adevăr, cu parametrizarea c = (1 (ω 1)2 )/4, soluţiile ecuaţiei

f c (z) = z, adică z 2 z + c = 0. (1) sunt z 1 = ω/2 şi z 2 = 1 ω/2. Impunând ca f c(z) = 2z să fie subunitară în modul obţinem că aceste două puncte fixe nu pot fi în acelaşi timp de tip atractor, iar valorile lui c pentru care cel puţin unul dintre ele este de tip atractor sunt date de apartenenţa c C 0. 6 Figura 4. Mulţimea lui Mandelbrot. Detaliu; Punctele c C 1 sunt caracterizate de existenţa unei orbite periodice atractive de perioadă doi. Să justificăm: punctele z 3 şi z 4 formează o orbită periodică dacă sunt distincte şi f c (z 3 ) = z 4 iar f c (z 4 ) = z 3. Rezultă imediat că ele sunt soluţii pentru ecuaţia (f c f c )(z) = z, care are forma z 4 + 2cz 2 z + c 2 + c = 0. (2) Ecuţia polinomială (2) are exact patru rădăcini în C, şi anume punctele z 3 şi z 4 ale orbitei căutate şi cele două puncte fixe z 1 şi z 2 ale lui f c determinate mai înainte. Deci rădăcinile ecuaţiei (1) sunt şi rădăcini pentru (2), rezultă de aici o relaţie de divizibilitate între polinoame care se verifică printr-o simplă împărţire: z 4 + 2cz 2 z + c 2 + c = (z 2 z + c)(z 2 + z + c + 1). Obţinem că z 3 şi z 4 sunt radăcinile ecuaţiei z 2 + z + c + 1 = 0. (3) Să calculăm acum valoarea derivatei (f c f c ) în punctele z 3 şi z 4. Avem (f c f c ) (z 3 ) = f c(f c (z 3 ))f c(z 3 ) = f c(z 4 )f c(z 3 ) = 4z 3 z 4.

Din ecuaţia (3) rezultă că z 3 z 4 = c + 1. Deci (f c f c ) (z 3 ) = (f c f c ) (z 4 ) = 4(c + 1), şi, prin urmare, orbita z 3, z 4 este atractoare dacă şi numai dacă c + 1 < 1/4, adică c C 1. Caracterizări asemănătoare relative la existenţa orbitelor periodice au loc şi pentru ceilalţi bulbi. Mărind la scară regiunile aflate în preajma frontierei, se observă că aceasta este compusă, pe lângă componentele deja enumerate, şi din numeroase filamente în care se află prinse copii mai mici ale mulţimii M. 7 Figura 5. Filamente Imagini foarte frumoase se obţin în regiuni care conţin puncte de frontieră, vezi de exemplu Figura 4 în care este redată vecinătatea punctului c 0 = 0.27314+ 0.486i. 3. Cazul real. In cele ce urmează vom analiza intersecţia mulţimii lui Mandelbrot cu axa reală, adică mulţimea valorilor lui c R pentru care şirul x n+1 = x 2 n + c, pentru n 1, (4) x 0 = 0, este mărginit. Vom justifica egalitatea M R = [ 2.0, 0.25], utilizând pentru ilustrarea comportamentului şirului (x n ) următoarea clasă C # :

8 public class MandelbrotReal : FractalForm double f(double x, double c) return x * x + c; public override void makeimage() setxminxmaxyminymax(-2, 2, -2, 2); ScreenColor = Color.White; setaxis(); setline(xmin, Xmin, Xmax, Xmax, PenColor); double c = -1.812; // GRAFICUL y=f(x,c) double x, y, xv, yv; xv = getx(imin); yv = f(xv, c); for (int k = imin; k < imax; k++) x = getx(k); y = f(x, c); setline(xv, yv, x, y, PenColor); xv = x; yv = y; // SIRUL x_n xv = 0; double xp = f(xv, c); int kol = 500; for (int k = 0; k < 100000; k++) Color col = getcolor(kol + k); setline(xv, xp, xp, xp, col); xv = xp; xp = f(xv, c); setline(xv, xv, xv, xp, col); if (!resetscreen() xp < -2 xp > 2) break;

1. Cazul c > 0.25. Parabola y = x 2 + c nu intersectează prima bisectoare, şirul (x n ) este monoton crescător şi nemărgit, c M. 9 Figura 6. c=0.26 2. Cazul c = 0.25 Ecuaţia x = f c (x) are radacina dublă x = 0.5, şirul (x n ) tine la x, deci este mărginit. Figura 7. c=0.25

3. Cazul 0.75 < c < 0.25. Funcţia f c are două puncte fixe reale, x 1 = (1 + 1 4c)/2 şi x 2 = (1 1 4c)/2, dintre care x 1 este repulsor iar x 2 este atractor. Sirul (x n ) converge la x 2 în mod oscilant. 10 Figura 8. c=-0.30 4. Cazul c = 0.75 Atractorul x 2 devine punct fix neutru, x n x 2. Figura 9. c=-0.75

5. Cazul 1.25 < c < 0.75 Punctul fix x 2 este repulsor, apare o orbită periodică de perioadă doi de tip atractor. 11 Figura 10. c=-0.80 6. Cazul c = 1.25. Orbita de ordin doi devine neutră, pentru c < 1.25 apare o orbită atractoare periodică cu perioada patru. Figura 11. c=-1.25

7. Cazul 2 < c < 1.25. Sirul (x n ) rămâne în intervalul [ 2.0, 2.0] având în general un comportament oscilant neregulat, haotic. Apar un şir de ferestre de stabilitate, formate din valorile lui c pentru care x n tinde catre un ciclu limită periodic. 12 Figura 12. c=-1.29 Figura 13. c= -1.7499

13 Figura 14. c=-1.7501 Figura 15. c= -1.98

8. Cazul c = 2. Avem z 0 = 0, z 1 = 2, z 2 = 2, z 3 = 2,.... Sirul (x n ) este constant egal cu 2 pentru n 2, deci c = 2 M. 14 Figura 16. c=-2.0 9. Cazul c < 2. Avem x 0 = 0, x 1 = c < 2, x 2 > 2,..., x n +, deci c M. 4. Diagrama Feigenbaum. Analiza comportării şirului x n = fc n (0) în funcţie de parametrul real c efectuată în paragraful precedent poate fi sintetizată în aşa numita diagramă Feigenbaum, o reprezentare grafică în care pe vericală sunt puse valorile lui c iar pe orizontală punctele limită ale şirului (x n ) corespunzător. Metoda practică este următoarea: în dreptul fiecărui c [ 2.0, 2.0] reprezentăm (pe orizontală) toţi termenii x n din domeniul n 10000, 10001,..., 11000, de exemplu. Valorile lor aproximează suficient de bine punctele limită ale şirului. public class Feigenbaum : FractalForm double f(double x, double c) return x * x + c; public override void makeimage() setxminxmaxyminymax(-2, 2, -2.1, 1.1); ScreenColor = Color.White; setaxis();

15 for (int jj = jmax; jj >= jmin; jj--) double c = gety(jj); double x = 0; for (int k = 0; k < 11000; k++) x = f(x, c); if (k < 10000) continue; setpixel(geti(x), jj, PenColor); if (!resetscreen()) break; for (double y = -2; y <= 2; y += 0.25) setline(xmax - 0.5, y, Xmax, y, Color.Green); for (double y = -2; y <= 2; y += 1) setline(xmax - 0.5, y, Xmax, y, Color.Red); resetscreen(); Figura 17. Diagrama Feigenbaum