Quantitative Finance and Investments Advanced Formula Sheet. Fall 2016/Spring 2017
|
|
- Τιμοθέα Μπότσαρης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Quanave Fnance and Invesmens Advanced Formula Shee Fall 2016/Sprng 2017 Mornng and afernoon exam bookles wll nclude a formula package dencal o he one aached o hs sudy noe. The exam commee beleves ha by provdng many key formulas, canddaes wll be able o focus more of her exam preparaon me on he applcaon of he formulas and conceps o demonsrae her undersandng of he syllabus maeral and less me on he memorzaon of he formulas. The formula shee was developed sequenally by revewng he syllabus maeral for each major syllabus opc. Canddaes should be able o follow he flow of he formula package easly. We recommend ha canddaes use he formula package concurrenly wh he syllabus maeral. No every formula n he syllabus s n he formula package. Canddaes are responsble for all formulas on he syllabus, ncludng hose no on he formula shee. Canddaes should carefully observe he somemes suble dfferences n formulas and her applcaon o slghly dfferen suaons. Canddaes wll be expeced o recognze he correc formula o apply n a specfc suaon of an exam queson. Canddaes wll noe ha he formula package does no generally provde names or defnons of he formula or symbols used n he formula. Wh he wde varey of references and auhors of he syllabus, canddaes should recognze ha he leer convenons and use of symbols may vary from one par of he syllabus o anoher and hus from one formula o anoher. Werushayouwllfndhenclusonofheformulapackageobeavaluablesudyade ha wll allow for more of your preparaon me o be spen on maserng he learnng objecves and learnng oucomes. 1
2 Ineres Rae Models - Theory and racce, Brgo and Mercuro Chaper 3 Table 3.1 Summary of nsananeous shor rae models Model Dynamcs r > 0 r AB AO V dr = k[θ r ]d + σdw N N Y Y CIR dr = k[θ r ]d + σ r dw Y NCχ 2 Y Y D dr = ar d + σr dw Y LN Y N EV dr = r [η a ln r ]d + σr dw Y LN N N HW dr = k[θ r ]d + σdw N N Y Y BK dr = r [η ³ a ln r ]d + σr dw Y LN N N MM dr = r hη λ ln r d + σr dw Y LN N N γ 1+γ CIR++ r = x + ϕ, dx = k[θ x ]d + σ x dw Y* SNCχ 2 Y Y EEV r = x + ϕ, dx = x [η a ln x ]d + σx dw Y* SLN N N *raes are posve under suable condons for he deermnsc funcon ϕ. (3.5) dr() =k[θ r()]d + σdw(), r(0) = r 0 (3.6) r() =r(s)e k( s) + θ 1 e k( s) + σ R s e k( u) dw (u) (3.7) E {r() F s } = r(s)e k( s) + θ 1 e k( s) Var{r() F s } = σ2 1 e 2k( s) 2k (3.8) B(,T )r() (, T )=A(, T )e (3.9) dr() =[kθ B(, T )σ 2 kr()]d + σdw T () (3.11) dr() =[kθ (k + λσ)r()]d + σdw 0 (), r(0) = r 0 (3.12) dr() =[b ar()]d + σdw 0 () (3.13) r() =r(s)e a( s) + b 1 e a( s) + σ R s a dw 0 (u) (3.14) ˆα = n n r r 1 n r n r 1 n n r2 1 ( n r 1) 2 n (3.15) ˆβ = [r ˆαr 1 ] n(1 ˆα) (3.16) V c 2 = 1 h n r ˆαr 1 n ˆβ(1 2 ˆα) (3.19) E {r() F s } = r(s)e a( s) and Var{r() F s } = r 2 (s)e ³e 2a( s) σ2 ( s) 1 (3.20) (, T )= rp R sn(2 r snh y) R f(z)sn(yz)dzdy + 2 π Γ(2p) rp K 2p (2 r) (3.21) dr() =k(θ r())d + σ p r()dw (), r(0) = r 0 (3.22) dr() =[kθ (k + λσ)r()]d + σ p r()dw 0 (), r(0) = r 0 2
3 (3.23) E {r() F s } = r(s)e k( s) + θ 1 e k( s) Var{r() F s } = r(s) σ2 e k( s) e 2k( s) + θ σ2 1 e k( s) 2 k 2k (3.24) B(,T )r() (, T )=A(, T )e (3.25) 2kθ/σ 2 2h exp {(k + h)(t )/2} A(, T )= 2h +(k + h)(exp {(T )h} 1) B(, T )= 2(exp{(T )h} 1) 2h +(k + h)(exp {(T )h} 1), h = k 2 +2σ 2 (3.27) dr() =[kθ (k + B(, T )σ 2 )r()]d + σ p r()dw T () (3.28) p T r() r(s) (x) =p χ 2 (υ,δ(,s))/q(,s)(x) =q(, s)p χ 2 (υ,δ(,s))(q(, s)x) q(, s) =2[ρ( s)+ψ + B(, T )] and δ(, s) = 4ρ( s)2 r(s)e h( s) q(, s) age 68 R(, T )=α(, T )+β(, T )r(), B(,T )r() (, T )=A(, T )e (3.29) σ f (, T )= B(, T ) σ(, r()) T age 69 dr() = b(, r())d + σ(, r())dw () b(, x) =λ()x + η(), σ 2 (, x) =γ()x + δ() B(, T )+λ()b(, T ) 1 2 γ()b(, T )2 +1=0, B(T,T)=0 [ln A(, T )] η()b(, T )+1 2 δ()b(, T )2 =0, A(T,T)=1 age 69/70 Vascek λ() = k, η() =kθ, γ() =0, δ() =σ 2 age 70 CIR λ() = k, η() =kθ, γ() =σ 2, δ() =0 b(x) =λx + η, σ 2 (x) =γx + δ µ θ age 71 lm E{r() F s } =exp a + σ2 4a µ µ 2θ (3.31) lm Var{r() F s } =exp a + σ2 σ 2 exp 1 2a 2a (3.32) dr() =[ϑ() a()r()]d + σ()dw () (3.33) dr() =[ϑ() ar()]d + σdw() (3.34) ϑ() = fm (0,) + af M (0,)+ σ2 T 2a (1 e 2a ) (3.35) r() =r(s)e a( s) + R s e a( u) ϑ(u)du + σ R s e a( u) dw (u) = r(s)e a( s) + α() α(s)e a( s) + σ R s e a( u) dw (u) (3.36) where α() =f M (0,)+ σ2 2a 2 (1 e a ) 2 3
4 (3.37) E{r() F s } = r(s)e a( s) + α() α(s)e a( s) Var{r() F s } = σ2 1 e 2a( s) 2a (3.38) dx() = ax()d + σdw(), x(0) = 0 age 74 x() =x(s)e a( s) + σ R s e a( u) dw (u) (3.47) E{x( +1 ) x( )=x,j } = x,j e a =: M,j Var{x( +1 ) x( )=x,j } = σ2 1 e 2a =: V 2 2a r 3 (3.48) x = V 1 3=σ 2a [1 e 2a 1 µ M,j (3.49) k =round x +1 (3.50) p u = η2 j,k + η j,k 6V 2 2,p m = 2 3V 3 η2 j,k,p 3V 2 d = η2 j,k 6V 2 2 3V (3.64) dx α = μ(x α ; α)d + σ(x α ; α)dw x (3.65) x (, T )=Π x (, T, x α ; α) (3.66) r = x + ϕ(; α), 0 h (3.67) (, T )=exp R T ϕ(s; α)ds Π x (, T, r ϕ(; α); α) (3.68) ϕ(; α) =ϕ (; α) :=f M (o, ) f x (0,; α) (3.69) h exp R T ϕ(s; α)ds = Φ (, T, x 0 ; α) := M (0,T) Π x (0,,x 0 ; α) Π x (0,T,x 0 ; α) M (0,) (3.70) Π(, T, r ; α) =Φ (, T, x 0 ; α)π (, T, r ϕ (; α); α) (3.71) V x (, T, τ, K) =Ψ x (, T, τ, K, x α ; α) dϕ(; α) (3.74) dr = kθ + kϕ(; α)+ kr d + σdw d age 100 ϕ VAS (; α) =f M (0,)+(e k 1) k2 θ σ 2 /2 k 2 η j,k σ2 2k 2 e k (1 e k ) x 0 e k age 101 (, T )= M (0,T)A(0,)exp{ B(0,)x 0 } M (0,)A(0,T)exp{ B(0,T)x 0 } A(, T )exp{ B(, T )[r ϕ VAS (; α)]} (3.76) dx() =k(θ x())d + σ p x()dw (), x(0) = x 0, r() =x()+ϕ() (3.77) ϕ CIR (; α) =f M (0,) f CIR (0,; α) f CIR 2kθ(exp{h} 1) (0,; α) = 2h +(k + h)(exp{h} 1) + x 4h 2 exp{h} 0 [2h +(k + h)(exp{h} 1)] 2 h = k 2 +2σ 2 4
5 Chaper 4 (4.4) r = x()+y()+ϕ(), r(0) = r 0 (4.5) dx() = ax()d + σdw 1 (), x(0) = 0 dy() = by()d + ηdw 2 (), y(0) = 0 (4.6) E{r() F s } = x(s)e a( s) + y(s)e b( s) + ϕ() Var{r() F s } = σ2 1 e 2a( s) + η2 1 e 2b( s) +2ρ ση 1 e (a+b)( s) 2a 2b a + b (4.7) r() =σ R 0 e a( u) dw 1 (u)+η R 0 e b( u) dw 2 (u)+ϕ() (4.8) dx() = ax()d + σdfw 1 () dy() = by()d + ηρdfw 1 ()+η p 1 ρ 2 dfw 2 () where dw 1 () =ddfw 1 () and dw 2 () =ρdfw 1 ()+ p 1 ρ 2 dfw 2 () ) ) 1 e a(t 1 e b(t (4.9) M(, T )= x()+ y() a b (4.10) V (, T )= σ2 T + 2 a 2 a e a(t ) 1 2a e 2a(T ) 3 2a + η2 T + 2 b 2 b e b(t ) 1 2b e 2b(T ) 3 2b +2ρ ση ab (4.11) (, T )=exp T + e a(t ) 1 a ½ R T + e b(t ) 1 b ϕ(u)du 1 e a(t ) x() a e (a+b)(t ) 1 a + b ) 1 e b(t y()+ 1 ¾ b 2 V (, T ) (4.12) ϕ() =f M (0,T)+ σ2 1 e at 2 + η2 1 e bt 2 + ρ ση 2a 2 2b 2 ab (1 e at )(1 e bt ) n (4.13) exp R o T ϕ(u)du = M (0,T) ½ M (0,) exp 12 ¾ [V (0,T) V (0,)] (4.14) (, T )= M (0,T) exp {A(, T )} M (0,) A(, T ):= 1 ) ) 1 e a(t 1 e b(t [V (, T ) V (0,T)+V(0,)] x() y() 2 a b (4.15) (, T )=A(, T )exp{ B(a,, T )x() B(b,, T )y()} (4.16) σ f (, T )= p σ 2 e 2a(T ) + η 2 e 2b(T ) +2ρσηe (a+b)(t ) 5
6 age 152 Cov(df (, T 1 ),df(, T 2 )) d = σ 2 B T (a,, T 1) B T (a,, T 2)+η 2 B T (b,, T 1) B T (b,, T 2) B +ρση T (a,, T 1) B T (b,, T 2)+ B T (a,, T 2) B T (b,, T 1) = σ 2 e a(t 1+T 2 2) + η 2 e b(t 1+T 2 2) +ρση e at 1 bt 2 +(a+b) + e at 2 bt 1 +(a+b) Corr(df (, T 1 ),df(, T 2 )) = σ2 e a(t 1+T 2 2) + η 2 e b(t 1+T 2 2) σ f (, T 1 )σ f (, T 2 ) + ρση e at 1 bt 2 +(a+b) + e at 2 bt 1 +(a+b) σ f (, T 1 )σ f (, T 2 ) age 153 f(, T 1 T 2 )= ln (, T 1) ln (, T 2 ) T 2 T 1 df (, T 1,T 2 )=...d + B(a,, T 2) B(a,, T 1 ) σdw 1 () T 2 T 1 + B(b,, T 2) B(b,, T 1 ) ηdw 2 () T 2 T 1 σ f (, T 1,T 2 )= p σ 2 β(a,, T 1,T 2 ) 2 + η 2 β(b,, T 1,T 2 ) 2 +2ρσηβ(a,, T 1,T 2 )β(b,, T 1,T 2 ) where β(z,, T 1,T 2 )= B(z,, T 2) B(z,,T 1 ) T 2 T 1 Cov(df (, T 1,T 2 ),df(, T 3,T 4 )) d σ 2 B(a,, T 2) B(a,, T 1 ) B(a,, T 4 ) B(a,, T 3 ) T 2 T 1 T 4 T 3 +η 2 B(b,, T 2) B(b,, T 1 ) B(b,, T 4 ) B(b,, T 3 ) T 2 T 1 T 4 T 3 B(a,, T2 ) B(a,, T 1 ) B(b,, T 4 ) B(b,, T 3 ) +ρση T 2 T 1 T 4 T 3 + B(a,, T 4) B(a,, T 3 ) B(b,, T 2 ) B(b,, T 1 ) T 4 T 3 T 2 T 1 s age 160 σ 3 = dz 3 () = σ σ2 2 (ā b) 2 +2 ρ σ 1σ 2 b ā σ 1 dz 1 () σ 2 ā b dz 2(), σ 4 = σ 2 σ 3 ā b age 161 a =ā, b = b, σ = σ 3, η = σ 4, ρ = σ 1 ρ σ 4 σ 3 6
7 ϕ() =r 0 e ā + R 0 θ(v)e ā( v) dv ā = a, b = b, σ1 = p σ 2 + η 2 +2ρση, σ 2 = η(a b) ρ = σρ + η p σ2 + η 2 +2ρση, θ() =dϕ() + aϕ() d Managng Cred Rsk: The Grea Challenge for Global Fnancal Markes, Caouee, e. al. Chaper 20 (20.2) R p = N X EAR (20.3) V p = N j=1 (20.5) UAL p = N age 403 N X X j σ σ j ρ j j=1 N X X j σ σ j ρ j 1 CV ar(cl)=ead LGD µ µ ρφ 1 (CL)+Φ 1 (D) Φ D 1 ρ 1+(M 2.5) b(d) 1 1.5b(D) Bond-CDS Bass Handbook: Measurng, Tradng and Analysng Bass Trades, Elzalde, Docor, and Saluk age 13, Equaon 1 S = D (1 R) age 15, Equaon 2 FR = U AI RA + FC age 18, Equaon 3 V[c + p] B SS = RF A age 25, Equaon 4 BT1 =CN (100 R U C F C)+BN (R+CR B FC) age 25, Equaon 5 BT2 =BN (100 + CR B FC) CN (U + C + FC) age 43, Equaon 7 CN = B R 100 R U BN 7
8 A Survey of Behavoral Fnance, Barbers and Thaler (1) (x, p : y,q) =π(p)v(x) +π(q)v(y) (2) π v(x ) where v = xα f x 0 λ( x) α f x<0 and π = w( ) w( ), w( )= γ ( γ +(1 ) γ ) 1/γ (3) D +1 D = e g D+σ D ε +1 (4) (5) C +1 = e g C+σ C η +1 C µ µµ µ ε 0 1 w N, η 0 w 1 (6) E 0 ρ C1 γ =0 1 γ " µc+1 γ (7) 1 = ρe R +1# C,..d.over me (8) R +1 = D = 1+ +1/D +1 D +1 /D D (9) r +1 = d +1 +cons. d +1 d +cons. (10) E π v[(1 w)r f,+1 + wr +1 1] (11) E 0 ρ C1 γ 1 γ + b 0C γ ˆv(X +1 ) =0 (13) R +1 = +1 + D +1 (14) p d = E ρ d +1+j E (15) E 0 =0 j=0 j=0 ρ C1 γ 1 γ + b 0C γ ṽ(x +1,z ) ρ r +1+j + E lm ρ j (p +j d +j )+cons. j (16) r r f = β.1 (F 1 r f )+...+ β,k (F K r f ) (17) r r f, = α + β,1 (F 1, r f, )+...+ β,k (F K, r f, )+ε (18) R f = 1 ρ eγg C+0.5γ 2 σ 2 C (19) 1 = ρ 1+f e g D γg C +0.5(σD 2 +γ2 σc 2 2γσ Cσ D w) f (20) R +1 = D = 1+ +1/D +1 D +1 = 1+f /D D f e g D+σ D ε +1 8
9 CAIA Level II: Advanced Core Topcs n Alernave Invesmens, Black, Chambers, Kazem Chaper 16 (16.1) repored (16.2) repored (16.3) rue (16.4) rue = α + β 0 rue = α rue =(1/α) repored = repored 1 + β 1 rue 1 + β 2 rue α(1 α) rue 1 + α(1 α) 2 rue 2 + [(1 α)/α] repored 1 +[(1/α) ( repored repored 1 )] (16.5) R,repored β 0 R,rue + β 1 R 1,rue + β 2 R 2,rue + (16.6) repored (16.7) repored =(1 ρ) rue =(1 ρ) rue + ρ repored 1 + ρ repored 1 (16.8) R,repored (1 ρ)r,rue + ρr 1,repored (16.9) R,rue =(R,repored ρr 1,repored )/(1 ρ) (16.10) ˆρ = corr(r,repored R 1,repored ) (16.11) ρ,j = σ j /(σ σ j ) (16.12) R repored Chaper 21 age 262 = α + β 1 R repored 1 + β 2 R repored β k R repored k + ε Y = S I E H where Y = yeld, S = oal solar radaon over he area per perod, I = fracon of solar radaon capured by he crop canopy, E = phoosynhec effcency of he crop (oal plan dry maer per un of solar radaon), H = harves ndex (fracon of oal dry maer ha s harvesable) Managng Invesmen orfolo: A Dynamc rocess, Magnn, Tule, no, McLeavey Chaper 8 age 523 TRCI = CR + RR + SR age 553 RR n, =(R + R 1 + R R n )/n age 554 r n DD = r, 0)] 2 n 1 age 555 ARR rf Sharpe Rao = SD age 556 ARR rf Sorno Rao = DD 9
10 The Secular and Cyclc Deermnans of Capalzaon Raes: The Role of ropery Fundamenals, Macroeconc Facors, and "Srucural Changes," Chervachdze, Cosello, Wheaon (1) Log(C j, )=a 0 + a 1 log(c j, 1 )+a 2 log(c j, 4 )+a 3 log(rri j, )+a 4 RTB + a 7 Q2 (1.1) RRI j, s = RR j, /M RR j +a 8 Q3 + a 9 Q4 + a 10 D j (2) Log(C j, )=a 0 + a 1 log(c j, 1 )+a 2 log(c j, 4 )+a 3 log(rri j, s )+a 4 RTB (2.1) DEBTFLOW = TNBL /GD +a 5 SREAD + a 6 DEBTFLOW + a 7 Q2 + a 8 Q3 + a 9 Q4 + a 10 D j (3) Log(C j, )=a 0 + a 1 log(c j, 1 )+a 2 log(c j, 4 )+a 3 log(rri j, s )+a 4 RTB +a 5 SREAD + a 6 DEBTFLOW + a 7 Q2 + a 8 Q3 + a 9 Q4 (4) Log(C j, )=a 0 + a 1 yearq + a 2 log(c j, 1 )+a 3 log(c j, 4 )+a 4 log(rri j, s )+a 5 RT B +a 6 SREAD + a 7 DEBTFLOW + a 7 Q2 + a 8 Q3 + a 9 Q4 + a 10 D j Analyss of Fnancal Tme Seres, Tsay Chaper 9 (9.1) r = α + β 1 f β m f m +, =1,...,T,,...,k (9.2) r = α + βf +, =1,...,T (9.3) R = α 1 T + Fβ 0 + E (9.4) R = Gξ 0 + E (9.5) r = α + β r m +, =1,...,k =1,...,T (9.11) Var(y )=wσ 0 r w, =1,...,k (9.12) Cov(y,y j )=wσ 0 r w j,, j =1,...,k (9.13) k Var(r )=r(σ r )= k λ = k Var(y ) (9.14) ˆΣ r [ˆσ j,r ]= 1 T 1 (9.15) ˆρ r = Ŝ 1 ˆΣ r Ŝ 1 T =1(r r)(r r) 0, r = 1 T T r =1 (9.16) r μ = βf + (9.17) Σr = Cov(r )=E[(r μ)(r μ) 0 ]=E[(βf + )(βf + ) 0 ]=ββ 0 + D (9.18) Cov(r, f )=E[(r μ)f]=βe(f 0 f)+e( 0 f)=β 0 (9.19) ˆβ [ ˆβ j ]= hpˆλ1 ê 1 pˆλ2 ê 2 pˆλm ê m (9.20) LR(m) = T 1 16 (2k +5) 23 m ³ ln ˆΣ r ln ˆβ ˆβ 0 + ˆD 10
11 Handbook of Fxed Income Secures, Fabozz Chaper 69 (69 4) Asse Allocaon s (w s w B s ) R B s (69 5) Secury Selecon s w s (R s R B s ) (69 12) α k f k αb k f B k = s α k,s f k,s s α B k,s f B k,s Chaper 70 (70 1) Asse Allocaon w µ w s s w wb s (TR B w B s TR B ) (70 2) Secor Managemen ws (TRs TRs B ) s (70 3) Top-Level Exposure (w w B ) TR B (70 4) Asse Allocaon w µ w s s w wb s (ER B w B s ER B ) (70 5) Secor Managemen ws (ERs ERs B ) s (70 6) Top-Level Exposure (w w B ) ER B (70 7) Ouperformance from average carry yavg yavg B (70 8) Key rae conrbuons ω j yj yavg ω B j yj yavg B j (70 9) Ouperformance from avg. parallel shfs OAD OAD B y avg (70 10) Ouperformance from reshapng KRD j KRDj B ( yj y avg ) j (70 11) Asse Allocaon OASD µ w s OASDs wb s OASDs B OASD OASD B s (70 12) Secury Selecon s OAS s B OAS B w s OASD s OAS s OAS B s (70 13) Spread Duraon Msmach (OASD OASD B ) OAS B w s OASDs ws B OASDs B OAS B s (70 14) Asse Allocaon s (70 15) Secury Selecon s w s OASD s OAS s OAS B s 11
12 Inroducon o Cred Rsk Modelng, 2nd ed., Bluhm, Overbeck, Wagner Chaper 6 age 237 M n = M1 n Guaranees and Targe Volaly Funds, Morrson and Tadrowsk age 4 w equy ˆσ equy =mn µ σarge ˆσ equy 2 = λ ˆσ equy, 100% 2 +(1 λ) 1 µ µ 2 S ln S roxy Funcons for he rojecon of Varable Annuy Greeks, Clayon, Morrson, Turnbull, and Vysnasuskas age 4 ( ˆV V proxy (S,R σ )) 2 proxy (S, R, σ) = S V proxy (S, R, σ) ρ proxy (S, R, σ) = R V proxy (S, R, σ) V proxy (S, R, σ) = σ V proxy (S, R, σ) age 5 S sress1 S sress2 S sress3 S base S base S base R sress1 R sress2 R sress3 R base R base R base ( ˆ proxy (S,R,σ )) 2 (ˆρ ρ proxy (S,R,σ )) 2 ( ˆV V proxy (S,R,σ )) 2 ( ˆV base V proxy (S,R,σ )) 2 σ sress1 σ sress2 σ sress3 σ base σ base σ base ˆ ˆρ ˆV = ˆV sress1 ˆV sress2 ˆV sress3 ˆV base ˆV base base ˆV 12
13 age 6 µ S S w h S µ S w h S, R R h R, S S h S, σ σ ³ ˆV base h σ V proxy, R R h R 2 (S,R,σ ), σ σ ³ 2 ˆV base h σ V proxy (, S,R,σ ) Recen Advances n Cred Rsk Modelng, Capuano, Chan-Lau, Gasha, Mederos, Sanos, and Souo (II.1) E =max(0,v D) ln V µ D + μ 1 2 σ2 T (II.2) DD T = σ T (II.3) x = a M + p 1 a 2 Z (II.4) rob{x < x M} = q ( M) =Φ Ã! x a M p 1 a 2 (II.5) p K+1 (0, M) =p K (0, M)(1 q K+1 ( M)) (II.6) p K+1 (l, M) =p K (l, M)(1 q K+1 ( M)) + p K (l 1, M)q K+1 ( M), l =1,...,K (II.7) p K+1 (K +1, M) =p K (K, M)q K+1 ( M) (II.8) p(l, ) = R pn (l, M)φ(M)dM (III.1) τ =nf{ 0 V K} 13
14 Marke Models: A Gude o Fnancal Daa Analyss, Chaper 6, Aledander (6.1) = XW (6.2) X = w w w k k (6.3) σ K σ AT M = b(k S) (6.4) (σ K σ AT M )=w K1 1 + w K2 2 + w K3 3 (6.5) = γ S + ε (6.6) σ AT M = α + β S + ε (6.7) β K, = β + Σw K γ (6.8) y = a + b + e (6.9) y = a + X b + e (6.10) y = c + Xd + e (6.11) rcac = (1.45) (14.71) rparbas (17.21) rsocgen (20.55) rdan (6.12) Sochasc Modelng, Theory and Realy from an Acuaral erspecve (I.B-1) ds = μsd + σsdz (I.B-2) ln S T N(ln S 0 +(r σ 2 /2)T,σ T ) (I.B-3) μ =lns 0 +(r σ 2 /2)T, σ = σ T (I.B-4) ĉ = 1 N c N (I.B-5) c = S 0 N(d 1 ) Ke rt N(d 2 ) (I.B-6) d 1 = ln(s 0/K)+(r + σ 2 /2)T σ, d 2 = d 1 σ T T (I.B-7) MC samplng error = 1 Sdev(c ) N (I.B-8) 1 f = 2 (f(u 1)+f(u 2 )) (I.B-9) 1 Sdev( f) N (I.B-10) (I.B-11) f (u) g (u)+g(u) 1 Sdev(f(u) g(u)) N 14
15 (I.B-12) h = 1 n N (I.B-13) (I.B-14) j=1 f(v (j) ) k ˆf = (x +1 x )h k (x +1 x ) Sdev(h(j) lm of he sum should be k) 1 N f(z ) (I.B-15) N g(z ) µ N f(z ) (I.B-16) Sdev g(z ) ) n (I.B-17) S 0 = e r [ps 0 u +(1 p)s 0 d] (I.B-18) (I.B-19) p = er d u d u = e σ and d = u 1 (here s an error n he book formula, he upper (I.B-20) C 0 = e r [pc u +(1 p)c d ] (I.B-21) S m = S 0 u n d m n, n =0, 1,...,m (here s an error n he book formula, s n ha goes from 0 o m) (I.B-22) S m = S 0 (1 η)u n d m n, n =0, 1,...,m (same error) r (I.B-23) p = µr 12 12σ 2 σ , p 0 = 2 3, p + = p + 2 6, u = e σ 3, d = u 1 µ S (I.B-24) log N(μ( r),σ 2 ( r)) (I.B-25) log S r µ S+1 S ρ() N(μ ρ(),σ 2 ρ() ) (I.B-26) p j =r(ρ( +1)=j ρ() =), =1, 2,...,K, j =1, 2,...,K (here s an error n he book formula, y +1should be +1) (I.B-27) L(Θ) =f(y 1 Θ)f(y 2 Θ,y 1 )f(y 3 Θ,y 1,y 2 ) f(y n Θ,y 1,y 2,...,y n 1 ) (I.B-28) f(ρ(),ρ( 1),y Θ,y 1,y 2,...,y 1 ) for ρ() =1, 2 and ρ( 1) = 1, 2 (I.B-29) π 1 p(ρ( 1) = Θ,y 1,y 2,...,y 1 ) (I.B-30) p j = p(ρ() =j ρ( 1) =, Θ) µ y μ j (I.B-31) g j, = f(y ρ() =j, Θ) =φ = σ j " 1 exp 1 σ j 2π 2 µ # 2 y μ j σ j 15
16 (I.B-32) π = 2 π k, 1 p k g k=1 2 j=1 2 π 1 p j g j, p 21 p 12 (I.B-33) π 1,0 =, π 2,0 = p 12 + p 21 p 12 + p 21 (I.B-34) f(y 1 Θ) =f(ρ(0) = 1,y 1 Θ)+f(ρ(0) = 2,y 1 Θ) µ µ y1 μ 1 y1 μ 2 = π 1,0 φ + π 2,0 φ σ 1 (II.A-1) S(0, 1) = ln{1/[1 + C(0, 1)]} S(0, 2) = (1/2) ln{[1 C(0, 2) exp( S(0, 1))]/[1 + C(0, 2)]} S(0, 3) = (1/3) ln{[1 C(0, 3) exp( S(0, 1) C(0, 3) exp( 2S(0, 2))]/[1 + C(0, 3)]} (II.A-2) r = σ(r/ r) γ φ (II.A-3) F ( + T )=F 1 ( + T )+ Λ q,t+1 φ q, q (II.A-4) F ( + T )=F 1 ( + T )+ µ Λ g,t+1 φ q, + Λ q,t+1 Λ q,t+1 /2+ T +1 Λ q, q (II.A-5) E[exp( F 0 (0) F 1 (1) F 2 (2) F N (N))] =exp( F 0 (0) F 0 (1) F 0 (2) F 0 (N)) (II.A-6) V = E[exp( F 0 (0) F 1 (1) F 2 (2) F N (N))CF N ] (II.A-7) F ( + T )=F 1 ( + T )+[ Λ q,t+1 φ q, ] g +[δ arge (1/ arge )(F ( arge + T ) F 0 ( arge + T ))] +[(1 δ arge )(F ( arge + T ) F ( arge + T +1)] µ (II.A-8) F ( + T )=F 1 ( + T )+k T Λ q.t+1 φ q, + Λ q,t+1 Λ q,t+1 /2+ T +1 Λ q, (II.A-9) Λ 1,j = Λ 1,1 exp[ a(j 1)], Λ >1,j =0 (II.A-10) Facor1=Facor1 (0) + ρ 12 Facor2 (0) + ρ 13 Facor3 (0) Facor2=(1 ρ 2 12) 1/2 Facor2 (0) + ρ 13 Facor3 (0) q σ 2 Facor3=(1 ρ 2 13 ρ 2 13) 1/2 Facor3 (0) (II.A-11) S = S 1 exp[f 1 ( 1) + σ 1 φ (e) 1 σ 1/2] 2 (II.A-12) X( +1) =X() exp(rff RFD) (II.A-13) X( + ) =X() exp((rf F RF D vol 2 /2) + sqr( ) vol Z) (II.A-14) ds = μ S d + σ S dw (II.A-15) ds = S exp{(μ σ 2 /2)d + σ dw } (II.A-16) S = S 1 exp{(μ σ 2 /2)d + σ φ } 16
17 (II.A-17) S = S 1 exp{(f ( + d) σ 2 /2)d + σ φ } (II.A-18) S = S 1 exp{(f ( + d) q σ 3 /2)d + σ φ } (II.A-19) ds = μ S d + σ(s,)dw (II.A-20) ds = μ S d + σ()s α dw (II.A-21) ds = μ S d + V S dw, dv = κ(θ V )d + v V dz, d[s, V ]=ρd (II.A-22) μ = F ( + d)+rp (σ S (II.A-23) σ F = sqr ) 2 σ 1 S 1 1 (II.A-24) mn n (σ model w σ marke ) 2 σ model (II.A-25) E(Value of Equy) =A(Value of Asses) N(d 1 ) F (Face Value of Deb) e T N(d 2 ) d 1 = log(a/f )+(r + σ2 A/2) T σ A T d 2 = d 1 σ A T (II.A-26) (II.A-27) (II.A-28) (II.A-29) Spread = (II.A-30) σ E = σ A N(d 1 ) A E Rsk Neural robably of Defaul = N( d 2 ) Recovery Rae = A N( d 1) N( d 2 ) Threshold = Φ 1 (D) h q() =h() exp R h(τ)dτ 0 π() 1 R q(τ)dτ τ=0 R T =0 R T [1 R A() r]q()ν()d =0 q() {u()+e()]d + π(t ) u(t ) d ln(h )=α(β ln(h ))d + γdz 17
Quantitative Finance and Investments Advanced Formula Sheet. Fall 2017/Spring 2018
Quanave Fnance and Invesmens Advanced Formula Shee Fall 2017/Sprng 2018 Mornng and afernoon exam bookles wll nclude a formula package dencal o he one aached o hs sudy noe. The exam commee beleves ha by
Quantitative Finance and Investments Advanced Formula Sheet. Fall 2013/Spring 2014
Quaniaive Finance and Invesmens Advanced Formula Shee Fall 013/Spring 014 ThisishesamesheeusedforFall013.Theonlychangeisonhiscoverpage. Morning and afernoon exam bookles will include a formula package
Quantitative Finance and Investments Advanced Formula Sheet. Fall 2014/Spring 2015
Quaniaive Finance and Invemen Advanced Formula Shee Fall 2014/Spring 2015 Morning and afernoon exam bookle will include a formula package idenical o he one aached o hi udy noe. The exam commiee believe
coupon effects Fisher Cohen, Kramer and Waugh Ordinary Least Squares OLS log
coupon effecs Fsher Cohen, Kramer and Waugh Ordnary Leas SquaresOLS 3 j τ = a0 a j m a4 log m a5c a6c a7 log C j= τ = a a a [ ] 0 m log m [ a, b] f Pn E f = max f x P x = f P n ( ) ( ) n ( ) a x b n ξ
Z = 1.2 X 1 + 1, 4 X 2 + 3, 3 X 3 + 0, 6 X 4 + 0, 999 X 5. X 1 X 2 X 2 X 3 X 4 X 4 X 5 X 4 X 4 Z = 0.717 X 1 + 0.847 X 2 + 3.107 X 3 + 0.420 X 4 + 0.998 X 5. X 5 X 4 Z = 6.56 X 1 + 3.26 X 2 + 6.72 X 3
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
(... )..!, ".. (! ) # - $ % % $ & % 2007
(! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-
8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.
8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure
m 1, m 2 F 12, F 21 F12 = F 21
m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m
: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A
2012 4 Chinese Journal of Applied Probability and Statistics Vol.28 No.2 Apr. 2012 730000. :. : O211.9. 1..... Johnson Stulz [3] 1987. Merton 1974 Johnson Stulz 1987. Hull White 1995 Klein 1996 2008 Klein
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X
X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω
The one-dimensional periodic Schrödinger equation
The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.
9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing an AR(1) Error Model 9.4 Tesing for Auocorrelaion 9.5 An Inroducion o Forecasing: Auoregressive Models 9.6 Finie Disribued Lags 9.7
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
Teor imov r. ta matem. statist. Vip. 94, 2016, stor
eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process
A 1 A 2 A 3 B 1 B 2 B 3
16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F
.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o
G G - - -- - W - - - R S - q k RS ˆ W q q k M G W R S L [ RS - q k M S 4 R q k S [ RS [ M L ˆ L [M O S 4] L ˆ ˆ L ˆ [ M ˆ S 4 ] ˆ - O - ˆ q k ˆ RS q k q k M - j [ RS ] [ M - j - L ˆ ˆ ˆ O ˆ [ RS ] [ M
m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx
m r = F m r = F ( r) m r = F ( v) x F = F (x) m dv dt = F (x) d dt = dx dv dt dx = v dv dx vdv = F (x)dx 2 mv2 x 2 mv2 0 = F (x )dx x 0 K = 2 mv2 W x0 x = x x 0 F (x)dx K K 0 = W x0 x x, x 2 x K 2 K =
ITU-R P (2009/10)
ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
(1) P(Ω) = 1. i=1 A i) = i=1 P(A i)
Χρηματοοικονομικά Μαθηματικά Το συνεχές μοντέλο συνεχούς χρόνου Σ. Ξανθόπουλος Παν. Αιγαίου Χειμερινό Εξάμηνο 2015-2016 Χειμερινό Εξάμηνο 2015-2016 1 / Σύνοψη 1 Προκαταρκτικά 2 Διαδικασία Wiener ή Κίνηση
Solutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence
( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( )
3 3 Vol.3.3 0 3 JournalofHarbinEngineeringUniversity Mar.0 doi:0.3969/j.isn.006-7043.0.03.0 ARIMA GARCH,, 5000 :!""#$%&' *+&,$-.,/0 ' 3$,456$*+7&'89 $:;,/0 ?4@A$ ARI MA GARCHBCDE FG%&HIJKL$ B
Quantitative Finance and Investment Core Formula Sheet. Spring 2017
Quaniaive Finance and Invesmen Core Formula Shee Spring 7 Morning and afernoon exam bookles will include a formula package idenical o he one aached o his sudy noe. The exam commiee believe ha by providing
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:
(B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds
F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2
F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =
Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a
Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then
Geodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
Sample BKC-10 Mn. Sample BKC-23 Mn. BKC-10 grt Path A Path B Path C. garnet resorption. garnet resorption. BKC-23 grt Path A Path B Path C
0.5 0.45 0.4 0.35 0.3 Sample BKC-10 Mn BKC-10 grt Path A Path B Path C 0.12 0.1 0.08 Mg 0.25 0.06 0.2 0.15 0.04 0.1 0.05 0.02 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 Core Rim 0.9 0.8 Fe 0 0 0.01 0.02
Quantitative Finance and Investments Core Formula Sheet. Spring 2016
Quaniaive Finance and Invesmens Core Formula Shee Spring 6 Morning and afernoon exam bookles will include a formula package idenical o he one aached o his sudy noe. The exam commiee believe ha by providing
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine
r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s
r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
#%" )*& ##+," $ -,!./" %#/%0! %,!
-!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
W τ R W j N H = 2 F obj b q N F aug F obj b q Ψ F aug Ψ ( ) ϱ t + + p = 0 = 0 Ω f = Γ Γ b ϱ = (, t) = (, t) Ω f Γ b ( ) ϱ t + + p = V max 4 3 2 1 0-1 -2-3 -4-4 -3-2 -1 0 1 2 3 4 x 4 x 1 V mn V max
LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni
LEM WORKING PAPER SERIES Non-linear externalities in firm localization Giulio Bottazzi Ugo Gragnolati * Fabio Vanni Institute of Economics, Scuola Superiore Sant'Anna, Pisa, Italy * University of Paris
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
TeSys contactors a.c. coils for 3-pole contactors LC1-D
References a.c. coils for 3-pole contactors LC1-D Control circuit voltage Average resistance Inductance of Reference (1) Weight Uc at 0 C ± 10 % closed circuit For 3-pole " contactors LC1-D09...D38 and
u(x, y) =f(x, y) Ω=(0, 1) (0, 1)
u(x, y) =f(x, y) Ω=(0, 1) (0, 1) u(x, y) =g(x, y) Γ=δΩ ={0, 1} {0, 1} Ω Ω Ω h Ω h h ˆ Ω ˆ u v = fv Ω u = f in Ω v V H 1 (Ω) V V h V h ψ 1,ψ 2,...,ψ N, ˆ ˆ u v = Ω Ω fv v V ˆ ˆ u v = Ω ˆ ˆ u ψ i = Ω Ω Ω
Points de torsion des courbes elliptiques et équations diophantiennes
Points de torsion des courbes elliptiques et équations diophantiennes Nicolas Billerey To cite this version: Nicolas Billerey. Points de torsion des courbes elliptiques et équations diophantiennes. Mathématiques
Assessment of otoacoustic emission probe fit at the workfloor
Assessment of otoacoustic emission probe fit at the workfloor t s st tt r st s s r r t rs t2 t P t rs str t t r 1 t s ér r tr st tr r2 t r r t s t t t r t s r ss r rr t 2 s r r 1 s r r t s s s r t s t
... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK
RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.
A Probabilistic Numerical Method for Fully Non-linear Parabolic Partial Differential Equations
A Probabilistic Numerical Metod for Fully Non-linear Parabolic Partial Differential Equations Aras Faim To cite tis version: Aras Faim. A Probabilistic Numerical Metod for Fully Non-linear Parabolic Partial
d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i
d d S = ()SI d d I = ()SI ()I d d R = ()I d d S = ()SI μs + fi + hr d d I = + ()SI (μ + + f + ())I d d R = ()I (μ + h)r d d P(S,I,) = ()(S +1)(I 1)P(S +1, I 1, ) +()(I +1)P(S,I +1, ) (()SI + ()I)P(S,I,)
!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Noureddine Rhayma To cite this version: Noureddine Rhayma. Contribution à l évolution des méthodologies
a(z) = k 0 1 z k = k 0 2 k z k = k 0 z k = (1 + z) n. k
!" #$%% $&$'$ # %( $)%*&%' '+ &'&% ! " " # $ " " % " & ' # () *+ (, *,-.$ / " " " * $ 0 * " # " $ * $ 0 # % " & ', # ' * # " & #! " # %& *%& $ % & ' " ( z D log! ) * (% % (+, ) " " -. // 0 ', % 0 ', %
Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής
ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.
f H f H ψ n( x) α = 0.01 n( x) α = 1 n( x) α = 3 n( x) α = 10 n( x) α = 30 ū i ( x) α = 1 ū i ( x) α = 3 ū i ( x) α = 10 ū i ( x) α = 30 δū ij ( x) α = 1 δū ij ( x) α = 3 δū ij ( x) α = 10 δū ij ( x)
Alterazioni del sistema cardiovascolare nel volo spaziale
POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016
Coupling strategies for compressible - low Mach number flows
Coupling strategies for compressible - low Mach number flows Yohan Penel, Stéphane Dellacherie, Bruno Després To cite this version: Yohan Penel, Stéphane Dellacherie, Bruno Després. Coupling strategies
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 2006.. 3, º 2(131).. 105Ä110 Š 537.311.5; 538.945 Œ ƒ ˆ ƒ Ÿ ˆŠ ˆ ƒ Ÿ ƒ ˆ œ ƒ Œ ƒ ˆ ˆ Š ˆ 4 ². ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö μ ² ³ μ É ³ Í ² Ö Ê³ μ μ ³ É μ μ μ²ö
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Pierre Coucheney, Patrick Maillé, runo Tuffin To cite this version: Pierre Coucheney, Patrick
Empirical best prediction under area-level Poisson mixed models
Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date
! : ;, - "9 <5 =*<
ITU-R M.473- (00/0)! (TDMA/FDMA) ""# $ %!& ' " ( ) 34 --./ 0, (MSS) * * )! +, 56 78 89 : ;, - "9
Lecture 7: Overdispersion in Poisson regression
Lecture 7: Overdispersion in Poisson regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction Modeling overdispersion through mixing Score test for
Errata (Includes critical corrections only for the 1 st & 2 nd reprint)
Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
UNIVtrRSITA DEGLI STUDI DI TRIESTE
UNIVtrRSITA DEGLI STUDI DI TRIESTE XXVNI CICLO DEL DOTTORATO DI RICERCA IN ASSICURAZIONE E FINANZA: MATEMATICA E GESTIONE PRICING AND HEDGING GLWB AND GMWB IN THE HESTON AND IN THE BLACK-SCHOLES \MITH
χ (1) χ (3) χ (1) χ (3) L x, L y, L z ( ) ħ2 2 2m x + 2 2 y + 2 ψ (x, y, z) = E 2 z 2 x,y,z ψ (x, y, z) E x,y,z E x E y E z ħ2 2m 2 x 2ψ (x) = E xψ (x) ħ2 2m 2 y 2ψ (y) = E yψ (y) ħ2 2m 2 z 2ψ (z)
Answer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne
SECTION II: PROBABILITY MODELS
SECTION II: PROBABILITY MODELS 1 SECTION II: Aggregate Data. Fraction of births with low birth weight per province. Model A: OLS, using observations 1 260 Heteroskedasticity-robust standard errors, variant
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
! " #! $ %&! '( #)!' * +#, " -! %&! "!! ! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**.
! " #! $ %&! '( #)!' * +#, " -! %&! "!!! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / 0123 4 # ' -. + &' (, % #. -5 0126, 2**., 2, + &' %., 0, $!, 3,. 7 8 ', $$, 9, # / 3:*,*2;
Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 006.. 3, º 1(130).. 7Ä16 Š 530.145 ˆ ƒ ˆ ˆŒ ˆŸ Š ƒ.. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É μ ² Ö Ó μ μ Ö μ μ²õ μ É μ ÌÉ ±ÊÎ É ² ³ É μ - Î ±μ μ ÊÌ ±μ Ëμ ³ μ- ±² μ ÒÌ ³μ ²ÖÌ Ê ±. ³ É ÔÉμ μ μ μ Ö, Ö ²ÖÖ Ó ±μ³
Na/K (mole) A/CNK
Li, W.-C., Chen, R.-X., Zheng, Y.-F., Tang, H., and Hu, Z., 206, Two episodes of partial melting in ultrahigh-pressure migmatites from deeply subducted continental crust in the Sulu orogen, China: GSA
MÉTHODES ET EXERCICES
J.-M. MONIER I G. HABERER I C. LARDON MATHS PCSI PTSI MÉTHODES ET EXERCICES 4 e édition Création graphique de la couverture : Hokus Pokus Créations Dunod, 2018 11 rue Paul Bert, 92240 Malakoff www.dunod.com
CNS.1 Compressible Navier-Stokes Time Averaged
CNS.1 Compressble Naver-Sokes Tme Averaged Insananeos flow conservaon prncples, compressble flow D M : L( ρ) = ρ + ( ρ ) = 0 x ρ D P : L( ρ ) = + ρ + pδ = 0 x D E : L( ρe) = ( ρe+ ρ / ) + ( ρh+ ρ / q)
CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital
C RAM 3002 C RAROC Rsk-Adjusted Return on Captal C C RAM Rsk-Adjusted erformance Measure C RAM RAM Bootstrap RAM C RAROC RAM Bootstrap F830.9 A CAM 2 CAM 3 Value at Rsk RAROC Rsk-Adjusted Return on Captal
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Vers un assistant à la preuve en langue naturelle
Vers un assistant à la preuve en langue naturelle Thévenon Patrick To cite this version: Thévenon Patrick. Vers un assistant à la preuve en langue naturelle. Autre [cs.oh]. Université de Savoie, 2006.
Exam Statistics 6 th September 2017 Solution
Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
!"#$ % &# &%#'()(! $ * +
,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))
γ n ϑ n n ψ T 8 Q 6 j, k, m, n, p, r, r t, x, y f m (x) (f(x)) m / a/b (f g)(x) = f(g(x)) n f f n I J α β I = α + βj N, Z, Q ϕ Εὐκλείδης ὁ Ἀλεξανδρεύς Στοιχεῖα ἄκρος καὶ μέσος λόγος ὕδωρ αἰθήρ ϕ φ Φ τ
ITU-R SA (2010/01)! " # $% & '( ) * +,
(010/01)! " # $% & '( ) * +, SA ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS BT F M P RA S RS SA SF SM SNG TF V
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t