Quantitative Finance and Investments Advanced Formula Sheet. Fall 2017/Spring 2018

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Quantitative Finance and Investments Advanced Formula Sheet. Fall 2017/Spring 2018"

Transcript

1 Quanave Fnance and Invesmens Advanced Formula Shee Fall 2017/Sprng 2018 Mornng and afernoon exam bookles wll nclude a formula package dencal o he one aached o hs sudy noe. The exam commee beleves ha by provdng many key formulas, canddaes wll be able o focus more of her exam preparaon me on he applcaon of he formulas and conceps o demonsrae her undersandng of he syllabus maeral and less me on he memorzaon of he formulas. The formula shee was developed sequenally by revewng he syllabus maeral for each major syllabus opc. Canddaes should be able o follow he flow of he formula package easly. We recommend ha canddaes use he formula package concurrenly wh he syllabus maeral. No every formula n he syllabus s n he formula package. Canddaes are responsble for all formulas on he syllabus, ncludng hose no on he formula shee. Canddaes should carefully observe he somemes suble dfferences n formulas and her applcaon o slghly dfferen suaons. Canddaes wll be expeced o recognze he correc formula o apply n a specfc suaon of an exam queson. Canddaes wll noe ha he formula package does no generally provde names or defnons of he formula or symbols used n he formula. Wh he wde varey of references and auhors of he syllabus, canddaes should recognze ha he leer convenons and use of symbols may vary from one par of he syllabus o anoher and hus from one formula o anoher. We rus ha you wll fnd he ncluson of he formula package o be a valuable sudy ade ha wll allow for more of your preparaon me o be spen on maserng he learnng objecves and learnng oucomes. 1

2 Ineres Rae Models - Theory and Pracce, Brgo and Mercuro Chaper 3 Table 3.1 Summary of nsananeous shor rae models Model Dynamcs r > 0 r AB AO V dr = kθ r d + σdw N N Y Y CIR dr = kθ r d + σ r dw Y NCχ 2 Y Y D dr = ar d + σr dw Y LN Y N EV dr = r η a ln r d + σr dw Y LN N N HW dr = kθ r d + σdw N N Y Y BK dr = r η a ln r d + σr dw Y LN N N MM dr = r η λ γ 1+γ ln r d + σr dw Y LN N N CIR++ r = x + ϕ, dx = kθ x d + σ x dw Y* SNCχ 2 Y Y EEV r = x + ϕ, dx = x η a ln x d + σx dw Y* SLN N N *raes are posve under suable condons for he deermnsc funcon ϕ. 3.5 dr = kθ rd + σdw, r0 = r r = rse k s + θ 1 e k s + σ s e k u dw u 3.7 E {r F s } = rse k s + θ 1 e k s Var{r F s } = σ2 1 e 2k s 2k B,T r 3.8 P, T = A, T e 3.9 dr = kθ B, T σ 2 krd + σdw T 3.11 dr = kθ k + λσrd + σdw 0, r0 = r dr = b ard + σdw r = rse a s + b 1 e a s + σ s a e a u dw 0 u 3.14 ˆα = n n r r 1 n r n r 1 n n r2 1 n r 1 2 n 3.15 ˆβ = r ˆαr 1 n1 ˆα 3.16 V 2 = 1 n r ˆαr 1 n ˆβ1 2 ˆα 3.19 E {r F s } = rse a s and Var{r F s } = r 2 se e 2a s σ2 s P, T = rp π 2 0 sn2 r snh y 0 fz snyzdzdy + 2 Γ2p rp K 2p 2 r 3.21 dr = kθ rd + σ rdw, r0 = r dr = kθ k + λσrd + σ rdw 0, r0 = r 0 2

3 3.23 E {r F s } = rse k s + θ 1 e k s Var{r F s } = rs σ2 e k s e 2k s + θ σ2 1 e k s 2 k 2k 3.24 B,T r P, T = A, T e kθ/σ 2 2h exp {k + ht /2} A, T = 2h + k + hexp {T h} 1 B, T = 2exp{T h} 1 2h + k + hexp {T h} 1, h = k 2 + 2σ dr = kθ k + B, T σ 2 rd + σ rdw T 3.28 p T r rs x = p χ 2 υ,δ,s/q,sx = q, sp χ 2 υ,δ,sq, sx q, s = 2ρ s + ψ + B, T and δ, s = 4ρ s2 rse h s q, s B,T r Page 68 R, T = α, T + β, T r, P, T = A, T e 3.29 σ f, T = B, T σ, r T Page 69 dr = b, rd + σ, rdw b, x = λx + η, σ 2, x = γx + δ B, T + λb, T 1 2 γb, T = 0, BT, T = 0 ln A, T ηb, T δb, T 2 = 0, AT, T = 1 Page 69/70 Vascek λ = k, η = kθ, γ = 0, δ = σ 2 Page 70 CIR λ = k, η = kθ, γ = σ 2, δ = 0 Page 71 bx = λx + η, σ 2 x = γx + δ θ lm E{r F s } = exp a + σ2 4a 2θ a + σ2 2a 3.31 lm Var{r F s } = exp exp 3.32 dr = ϑ ard + σdw 3.33 dr = ϑ ard + σdw σ 2 2a ϑ = f M 0, + af M 0, + σ2 T 2a 1 e 2a 3.35 r = rse a s + s e a u ϑudu + σ s e a u dw u = rse a s + α αse a s + σ s e a u dw u 3.36 where α = f M 0, + σ2 2a 2 1 e a 2 3

4 3.37 E{r F s } = rse a s + α αse a s Var{r F s } = σ2 1 e 2a s 2a 3.38 dx = axd + σdw, x0 = 0 Page 74 Page 74 Page 75 x = xse a s + σ s e a u dw u α Q{r < 0} = Φ σ 2 2α 1 e 2α T rudu F N B, T r α + ln P M 0, + 1V 0, T V 0,, V, T P M 0,T 2 where B, T = 1 a 1 e at and V, T = σ2 a T a e at 1 2a e 2aT 3 2a B,T r 3.39 P, T = A, T e where A, T = P M 0,T P M 0, exp { B, T f M 0, σ2 4a 1 e 2a B, T 2 } 3.40 ZBC, T, S, X = P, SΦh XP, T Φh σ p 1 e 2aT where σ p = σ BT, S and h = 1 2a σ p ln P,S + σp P,T X ZBP, T, S, X = XP, T Φ h + σ p P, SΦ h 3.42 Cap, T, N, X = N n 1 + Xτ 1 ZBP, 1,, 1+Xτ or Cap, T, N, X = N n P, 1Φ h + σp 1 + Xτ P, Φ h, where σp 1 e = σ 2a 1 B 2a 1, and h = 1 ln P, 1+Xτ σp P, 1 + σ p Flr, T, N, X = N n 1 + Xτ P, Φh P, 1 Φh σp 3.44 CBO, T, T, c, X = n c ZBO, T, T, X 3.45 PS, T, T, N, X = N n c ZBP, T,, X 3.46 RS, T, T, N, X = N n c ZBC, T,, X 3.47 E{x +1 x = x,j } = x,j e a =: M,j Var{x +1 x = x,j } = σ2 1 e 2a =: V 2 2a x = V 1 3 = σ 2a 1 e 2a 1 M,j 3.49 k =round x p u = η2 j,k + η j,k 6V 2 2, p m = 2 3V 3 η2 j,k, p 3V 2 d = η2 j,k 6V 2 2 3V 3.64 dx α = µx α ; αd + σx α ; αdw x η j,k 4

5 3.65 P x, T = Π x, T, x α ; α 3.66 r = x + ϕ; α, P, T = exp T ϕs; αds Π x, T, r ϕ; α; α 3.68 ϕ; α = ϕ ; α := f M o, f x 0, ; α 3.69 exp T ϕs; αds = Φ, T, x 0 ; α := P M 0, T Π x 0,, x 0 ; α Π x 0, T, x 0 ; α P M 0, 3.70 Π, T, r ; α = Φ, T, x 0 ; απ, T, r ϕ ; α; α 3.71 V x, T, τ, K = Ψ x, T, τ, K, x α ; α dϕ; α 3.74 dr = kθ + kϕ; α + kr d + σdw d Page 100 ϕ V AS ; α = f M 0, + e k 1 k2 θ σ 2 /2 k 2 Page 101 P, T = P M 0, T A0, exp{ B0, x 0 } P M 0, A0, T exp{ B0, T x 0 } A, T exp{ B, T r ϕ V AS ; α} σ2 2k 2 e k 1 e k x 0 e k 3.76 dx = kθ xd + σ xdw, x0 = x 0, r = x + ϕ 3.77 ϕ CIR ; α = f M 0, f CIR 0, ; α f CIR 0, ; α = h = k 2 + 2σ 2 Chaper r = x + y + ϕ, r0 = r dx = axd + σdw 1, x0 = 0 2kθexp{h} 1 2h + k + hexp{h} 1 + x 4h 2 exp{h} 0 2h + k + hexp{h} 1 2 dy = byd + ηdw 2, y0 = E{r F s } = xse a s + yse b s + ϕ Var{r F s } = σ2 1 e 2a s + η2 1 e 2b s + 2ρ ση 1 e a+b s 2a 2b a + b 4.7 r = σ 0 e a u dw 1 u + η 0 e b u dw 2 u + ϕ 4.8 dx = axd + σd W 1 dy = byd + ηρd W 1 + η 1 ρ 2 d W M, T = where dw 1 = d W 1 and dw 2 = ρd W ρ 2 d W 2 1 e at 1 e bt x + y a b 5

6 4.10 V, T = σ2 a 2 T + 2 a e at 1 2a e 2aT 3 2a + η2 T + 2 b 2 b e bt 1 2b e 2bT 3 2b +2ρ ση ab 4.11 P, T = exp T + e at 1 a { T + e bt 1 b e a+bt 1 a + b ϕudu 1 e at 1 e bt x y + 1 } a b 2 V, T 4.12 ϕt = f M 0, T + σ2 1 e at 2 η e bt 2 ση + ρ 2a 2 2b 2 ab 1 e at 1 e bt { 4.13 exp } T ϕudu = P M 0, T { P M 0, exp 12 } V 0, T V 0, 4.14 P, T = P M 0, T P M 0, exp {A, T } A, T := 1 1 e at 1 e bt V, T V 0, T + V 0, x y 2 a b 4.15 P, T = A, T exp{ Ba,, T x Bb,, T y} 4.16 σ f, T = σ 2 e 2aT + η 2 e 2bT + 2ρσηe a+bt Page 152 Covdf, T 1, df, T 2 d = σ 2 B T a,, T 1 B T a,, T 2 + η 2 B T b,, T 1 B T b,, T 2 B +ρση T a,, T 1 B T b,, T 2 + B T a,, T 2 B T b,, T 1 = σ 2 e at 1+T η 2 e bt 1+T 2 2 +ρση e at 1 bt 2 +a+b + e at 2 bt 1 +a+b Corrdf, T 1, df, T 2 = σ2 e at 1+T η 2 e bt 1+T 2 2 σ f, T 1 σ f, T 2 + ρση e at 1 bt 2 +a+b + e at 2 bt 1 +a+b σ f, T 1 σ f, T 2 6

7 Page 153 f, T 1 T 2 = ln P, T 1 ln P, T 2 T 2 T 1 df, T 1, T 2 =...d + Ba,, T 2 Ba,, T 1 σdw 1 T 2 T 1 + Bb,, T 2 Bb,, T 1 ηdw 2 T 2 T 1 σ f, T 1, T 2 = σ 2 βa,, T 1, T η 2 βb,, T 1, T ρσηβa,, T 1, T 2 βb,, T 1, T 2 where βz,, T 1, T 2 = Bz,, T 2 Bz,, T 1 T 2 T 1 Covdf, T 1, T 2, df, T 3, T 4 d σ 2 Ba,, T 2 Ba,, T 1 Ba,, T 4 Ba,, T 3 T 2 T 1 T 4 T 3 +η 2 Bb,, T 2 Bb,, T 1 Bb,, T 4 Bb,, T 3 T 2 T 1 T 4 T 3 Ba,, T2 Ba,, T 1 Bb,, T 4 Bb,, T 3 +ρση T 2 T 1 T 4 T 3 + Ba,, T 4 Ba,, T 3 Bb,, T 2 Bb,, T 1 T 4 T 3 T 2 T 1 Page 160 σ 3 = dz 3 = σ σ2 2 ā b ρ σ 1σ 2 b ā σ 1 dz 1 σ 2 ā b dz 2, σ 4 = σ 2 σ 3 ā b Page 161 a = ā, b = b, σ = σ 3, η = σ 4, ρ = σ 1 ρ σ 4 σ 3 ϕ = r 0 e ā + 0 θve ā v dv ā = a, b = b, σ1 = σ 2 + η 2 + 2ρση, σ 2 = ηa b ρ = σρ + η σ2 + η 2 + 2ρση, dϕ θ = + aϕ d Managng Cred Rsk: The Grea Challenge for Global Fnancal Markes, Caouee, e. al. Chaper R p = N X EAR 20.3 V p = N j=1 N X X j σ σ j ρ j 7

8 20.5 UAL p = N N X X j σ σ j ρ j 1 Page 403 j=1 CV arcl = EAD LGD ρφ 1 CL + Φ 1 P D Φ P D 1 ρ 1 + M 2.5 bp D 1 1.5bP D Bond-CDS Bass Handbook: Measurng, Tradng and Analysng Bass Trades, Elzalde, Docor, and Saluk Page 13, Equaon 1 S = P D 1 R Page 15, Equaon 2 F R = U AI RA + F C Page 18, Equaon 3 P V c + p BP SS = RF A Page 25, Equaon 4 BT P 1 = CN 100 R U CP F C+BN R+CR BP F C Page 25, Equaon 5 BT P 2 = BN CR BP F C CN U + CP + F C Page 43, Equaon 7 CN = BP R 100 R U BN A Survey of Behavoral Fnance, Barbers and Thaler 1 x, p : y, q = πpvx + πqvy 2 π vx where v = xα f x 0 λ x α f x < 0 and π = wp wp, wp = P γ P γ + 1 P γ 1/γ 3 D +1 D = e g D+σ D ε C +1 = e g C+σ C η +1 C ε 0 1 w N, 0 w 1 η 6 E 0 ρ C1 γ =0 1 γ C+1 γ 7 1 = ρe R +1 C,..d.over me 8 R +1 = D +1 + P +1 P = 1 + P +1/D +1 P /D D +1 D 9 r +1 = d +1 +cons. d +1 d +cons. 8

9 10 E π v1 wr f,+1 + wr E 0 ρ C1 γ 1 γ + b 0C γ ˆvX +1 =0 13 R +1 = P +1 + D +1 P 14 p d = E ρ d +1+j E 15 E 0 =0 j=0 j=0 ρ C1 γ 1 γ + b 0C γ ṽx +1, z 16 r r f = β.1 F 1 r f β,k F K r f ρ r +1+j + E lm ρ j p +j d +j +cons. j 17 r, r f, = α + β,1 F 1, r f, β,k F K, r f, + ε, 18 R f = 1 ρ eγg C+0.5γ 2 σ 2 C 19 1 = ρ 1 + f e g D γg C +0.5σD 2 +γ2 σc 2 2γσ Cσ D w f 20 R +1 = D +1 + P +1 P = 1 + P +1/D +1 P /D D +1 D = 1 + f e g D+σ D ε +1 f CAIA Level II: Advanced Core Topcs n Alernave Invesmens, Black, Chambers, Kazem Chaper P repored 16.2 P repored 16.3 P rue 16.4 P rue = α + β 0 P rue = αp rue = 1/α P repored = P repored 1 + β 1 P rue 1 + β 2 P rue α1 αp rue 1 + α1 α 2 P rue α/α P repored 1 + 1/α P repored P repored R,repored β 0 R,rue + β 1 R 1,rue + β 2 R 2,rue P repored 16.7 P repored = 1 ρp rue = 1 ρ P rue + ρp repored 1 + ρ P repored R,repored 1 ρr,rue + ρr 1,repored 16.9 R,rue = R,repored ρr 1,repored /1 ρ ˆρ = corrr,repored R 1,repored ρ,j = σ j /σ σ j R repored = α + β 1 R repored 1 + β 2 R repored β k R repored k + ε 9

10 Managng Invesmen Porfolo: A Dynamc Process, Magnn, Tule, Pno, McLeavey Chaper 8 Page 523 T RCI = CR + RR + SR Page 553 RR n, = R + R 1 + R R n /n Page 554 n DD = r, 0 2 n 1 Page 555 ARR rf Sharpe Rao = SD Page 556 ARR rf Sorno Rao = DD The Secular and Cyclc Deermnans of Capalzaon Raes: The Role of Propery Fundamenals, Macroeconc Facors, and Srucural Changes, Chervachdze, Cosello, Wheaon 1 LogC j, = a 0 + a 1 logc j, 1 + a 2 logc j, 4 + a 3 logrri j, + a 4 RT B + a 7 Q2 1.1 RRI j, s = RR j, /MRR j +a 8 Q3 + a 9 Q4 + a 10 D j 2 LogC j, = a 0 + a 1 logc j, 1 + a 2 logc j, 4 + a 3 logrri j, s + a 4 RT B 2.1 DEBT F LOW = T NBL /GDP +a 5 SP READ + a 6 DEBT F LOW + a 7 Q2 + a 8 Q3 + a 9 Q4 + a 10 D j 3 LogC j, = a 0 + a 1 logc j, 1 + a 2 logc j, 4 + a 3 logrri j, s + a 4 RT B +a 5 SP READ + a 6 DEBT F LOW + a 7 Q2 + a 8 Q3 + a 9 Q4 4 LogC j, = a 0 + a 1 yearq + a 2 logc j, 1 + a 3 logc j, 4 + a 4 logrri j, s + a 5 RT B +a 6 SP READ + a 7 DEBT F LOW + a 7 Q2 + a 8 Q3 + a 9 Q4 + a 10 D j Analyss of Fnancal Tme Seres, Tsay Chaper r = α + β 1 f β m f m + ɛ, = 1,..., T, = 1,..., k 9.2 r = α + βf + ɛ, = 1,..., T 9.3 R = α 1 T + Fβ + E 9.4 R = Gξ + E 9.5 r = α + β r m + ɛ, = 1,..., k = 1,..., T 9.11 Vary = w Σ r w, = 1,..., k 9.12 Covy, y j = w Σ r w j,, j = 1,..., k 10

11 9.13 k Varr = rσ r = k λ = k Vary 9.14 ˆΣ r ˆσ j,r = 1 T ˆρ r = Ŝ 1 ˆΣ r Ŝ 1 T =1r rr r, r = 1 T T r = r µ = βf + ɛ 9.17 Σ r = Covr = Er µr µ = Eβf + ɛ βf + ɛ = ββ + D 9.18 Covr, f = Er µf = βef f + Eɛ f = β 9.19 ˆβ ˆβj = ˆλ1 ê 1 ˆλ2 ê 2 ˆλm ê m 9.20 LRm = T k m ln ˆΣ r ln ˆβ ˆβ + ˆD Handbook of Fxed Income Secures, Fabozz Chaper Asse Allocaon s w P s w B s R B s 69 5 Secury Selecon s w P s R P s R B s α P k f P k αb k f B k = s α P k,s f P k,s s α B k,s f B k,s Chaper Asse Allocaon w P 70 2 Secor Managemen s s w P s w wb s T R B P w B s T R B w P s T R P s T R B s 70 3 Top-Level Exposure w P w B T R B 70 4 Asse Allocaon w P w P s w wb s ER B P w B s ER B 70 5 Secor Managemen s s w P s ER P s ER B s 70 6 Top-Level Exposure w P w B ER B 70 7 Ouperformance from average carry yavg P yavg B 70 8 Key rae conrbuons ω P j yj yavg P ω B j yj yavg B j 70 9 Ouperformance from avg. parallel shfs OAD P OAD B y avg Ouperformance from reshapng KRD P j KRDj B yj y avg j 11

12 70 11 Asse Allocaon OASD P w P s OASDs P wb s OASDs B OASD P OASD B s Secury Selecon s OAS s B OAS B w P s OASD P s OAS P s OAS B s Spread Duraon Msmach OASD P OASD B OAS B w P s OASDs P ws B OASDs B OAS B s Asse Allocaon s Secury Selecon s w P s OASD P s OAS P s OAS B s Inroducon o Cred Rsk Modelng, 2nd ed., Bluhm, Overbeck, Wagner Chaper 6 Page 237 M n = M n 1 Guaranees and Targe Volaly Funds, Morrson and Tadrowsk Page 4 w equy ˆσ equy = mn σarge 2 = λ ˆσ equy ˆσ equy, 100% S + 1 λ ln S Proxy Funcons for he Projecon of Varable Annuy Greeks, Clayon, Morrson, Turnbull, and Vysnasuskas Page 4 ˆV, V proxy S,, R, σ, 2 proxy S, R, σ = S V proxy S, R, σ ρ proxy S, R, σ = R V proxy S, R, σ V proxy S, R, σ = σ V proxy S, R, σ 12

13 Page 5 S sress1, S sress2, S sress3, S base, S base, S base, R sress1, R sress2, R sress3, R base, R base, R base, ˆ, proxy S,, R,, σ, 2 ˆρ, ρ proxy S,, R,, σ, 2 ˆV, V proxy S,, R,, σ, 2 ˆV base, Page 6 S, S w V proxy S,, R,, σ, 2 h S s w, h S σ sress1, σ sress2, σ sress3, σ base, σ base, σ base,, R, R, σ, σ ˆV base h R h σ, V proxy, S, S h S, R, R, σ, σ h R h σ ˆ, ˆρ, ˆV, S,, R,, σ, = 2 ˆV, sress1 ˆV, sress2 ˆV, sress3 2 ˆV base, V proxy, S,, R,, σ, base ˆV, base ˆV, base ˆV, Recen Advances n Cred Rsk Modelng, Capuano, Chan-Lau, Gasha, Mederos, Sanos, and Souo II.1 E = max0, V D ln V D + µ 1 2 σ2 T II.2 DD T = σ T II.3 II.4 II.5 II.6 II.7 x = a M + 1 a 2 Z Prob{x < x M} = q M = Φ x a M 1 a 2 p K+1 0, M = p K 0, M1 q K+1 M p K+1 l, M = p K l, M1 q K+1 M + p K l 1, Mq K+1 M, l = 1,..., K p K+1 K + 1, M = p K K, Mq K+1 M II.8 pl, = pn l, MφMdM III.1 τ = nf{ 0 V K} 13

14 Marke Models: A Gude o Fnancal Daa Analyss, Chaper 6, Aledander 6.1 P = XW 6.2 X = w 1 P 1 + w 2 P w k P k 6.3 σ K σ AT M = bk S 6.4 σ K σ AT M = w K1 P 1 + w K2 P 2 + w K3 P P, = γ, S + ε, 6.6 σ AT M = α + β S + ε 6.7 β K, = β + Σw K γ, 6.8 y = a + Pb + e 6.9 y = a + X b + e 6.10 y = c + Xd + e 6.11 rcac = rparbas rsocgen P P P P 4 Sochasc Modelng, Theory and Realy from an Acuaral Perspecve I.B-1 ds = µsd + σsdz I.B-2 ln S T Nln S 0 + r σ 2 /2T, σ T I.B-3 µ = ln S 0 + r σ 2 /2T, σ = σ T I.B-4 ĉ = 1 N c N I.B-5 c = S 0 Nd 1 Ke rt Nd 2 I.B-6 d 1 = lns 0/K + r + σ 2 /2T σ, d 2 = d 1 σ T T I.B-7 MC samplng error = 1 Sdevc N I.B-8 1 f = 2 fu 1 + fu 2 I.B-9 1 Sdev f N rdan I.B-10 I.B-11 f u g u + gu 1 Sdevfu gu N 14

15 I.B-12 h = 1 n N I.B-13 I.B-14 j=1 fv j k ˆf = x +1 x h k x +1 x Sdevhj lm of he sum should be k 1 N fz I.B-15 N gz N fz I.B-16 Sdev gz n I.B-17 S 0 = e r ps 0 u + 1 ps 0 d I.B-18 I.B-19 p = er d u d u = e σ and d = u 1 I.B-20 C 0 = e r pc u + 1 pc d I.B-21 S m = S 0 u n d m n, n = 0, 1,..., m here s an error n he book formula, he upper here s an error n he book formula, s n ha goes from 0 o m I.B-22 S m = S 0 1 ηu n d m n, n = 0, 1,..., m same error I.B-23 p = r 12 12σ 2 σ , p 0 = 2 3, p + = p + 2 6, I.B-24 I.B-25 u = e σ3, d = u 1 S log Nµ r, σ 2 r log S r S+1 S ρ Nµ ρ, σ 2 ρ I.B-26 p j = Prρ + 1 = j ρ =, = 1, 2,..., K, j = 1, 2,..., K here s an error n he book formula, y + 1 should be + 1 I.B-27 LΘ = fy 1 Θfy 2 Θ, y 1 fy 3 Θ, y 1, y 2 fy n Θ, y 1, y 2,..., y n 1 I.B-28 fρ, ρ 1, y Θ, y 1, y 2,..., y 1 for ρ = 1, 2 and ρ 1 = 1, 2 I.B-29 π, 1 pρ 1 = Θ, y 1, y 2,..., y 1 I.B-30 p j = pρ = j ρ 1 =, Θ y µ j I.B-31 g j, = fy ρ = j, Θ = φ = σ j 1 exp 1 σ j 2π 2 2 y µ j σ j 15

16 I.B-32 π, = 2 π k, 1 p k g, k=1 2 j=1 2 π, 1 p j g j, p 21 p 12 I.B-33 π 1,0 =, π 2,0 = p 12 + p 21 p 12 + p 21 I.B-34 fy 1 Θ = fρ0 = 1, y 1 Θ + fρ0 = 2, y 1 Θ y1 µ 1 y1 µ 2 = π 1,0 φ + π 2,0 φ II.A-1 S0, 1 = ln{1/1 + C0, 1} II.A-2 II.A-3 II.A-4 II.A-5 σ 1 S0, 2 = 1/2 ln{1 C0, 2 exp S0, 1/1 + C0, 2} σ 2 S0, 3 = 1/3 ln{1 C0, 3 exp S0, 1 C0, 3 exp 2S0, 2/1 + C0, 3} r = σr/ r γ φ F + T = F 1 + T + q F + T = F 1 + T + q Λ q,t +1 φ q, Eexp F 0 0 F 1 1 F 2 2 F N N = exp F 0 0 F 0 1 F 0 2 F 0 N Λ g,t +1 φ q, + Λ q,t +1 Λ q,t +1 /2 + T +1 Λ q, II.A-6 P V = Eexp F 0 0 F 1 1 F 2 2 F N NCF N II.A-7 II.A-8 F + T = F 1 + T + g Λ q,t +1 φ q, +δ arge 1/ arge F arge + T F 0 arge + T +1 δ arge F arge + T F arge + T + 1 F + T = F 1 + T + k T Λ q.t +1 φ q, + Λ q,t +1 Λ q,t +1 /2 + T +1 Λ q, II.A-9 Λ 1,j = Λ 1,1 exp aj 1, Λ >1,j = 0 II.A-10 F acor1 = F acor1 0 + ρ 12 F acor2 0 + ρ 13 F acor3 0 II.A-11 F acor2 = 1 ρ /2 F acor2 0 + ρ 13 F acor3 0 F acor3 = 1 ρ 2 13 ρ /2 F acor3 0 S = S 1 expf σ 1 φ e 1 σ 2 1/2 II.A-12 X + 1 = X exprf F RF D q II.A-13 X + = X exprf F RF D vol 2 /2 + sqr vol Z II.A-14 ds = µ S d + σ S dw II.A-15 ds = S exp{µ σ 2 /2d + σ dw } II.A-16 S = S 1 exp{µ σ 2 /2d + σ φ } 16

17 II.A-17 S = S 1 exp{f + d σ 2 /2d + σ φ } II.A-18 S = S 1 exp{f + d q σ 2 /2d + σ φ } II.A-19 II.A-20 ds = µ S d + σs, dw ds = µ S d + σs α dw II.A-21 ds = µ S d + V S dw, dv = κθ V d + v V dz, ds, V = ρd II.A-22 µ = F + d + rp σ S II.A-23 σ F = sqr 2 σ 1 S 1 1 II.A-24 mn n σ model w σ marke 2 σ model II.A-25 EValue of Equy = AValue of Asses Nd 1 II.A-26 II.A-27 II.A-28 F Face Value of Deb e rt Nd 2 d 1 = loga/f + r + σ2 A /2 T σ A T d 2 = d 1 σ A T II.A-29 Spread = II.A-30 σ E = σ A Nd 1 A E Rsk Neural Probably of Defaul = N d 2 Recovery Rae = A N d 1 N d 2 T hreshold = Φ 1 D q = h exp hτdτ 0 π 1 qτdτ τ=0 T =0 T 1 R A rqνd =0 q {u + ed + πt ut d lnh = αβ lnh d + γdz 17

Quantitative Finance and Investments Advanced Formula Sheet. Fall 2016/Spring 2017

Quantitative Finance and Investments Advanced Formula Sheet. Fall 2016/Spring 2017 Quanave Fnance and Invesmens Advanced Formula Shee Fall 2016/Sprng 2017 Mornng and afernoon exam bookles wll nclude a formula package dencal o he one aached o hs sudy noe. The exam commee beleves ha by

Διαβάστε περισσότερα

Quantitative Finance and Investments Advanced Formula Sheet. Fall 2013/Spring 2014

Quantitative Finance and Investments Advanced Formula Sheet. Fall 2013/Spring 2014 Quaniaive Finance and Invesmens Advanced Formula Shee Fall 013/Spring 014 ThisishesamesheeusedforFall013.Theonlychangeisonhiscoverpage. Morning and afernoon exam bookles will include a formula package

Διαβάστε περισσότερα

Quantitative Finance and Investments Advanced Formula Sheet. Fall 2014/Spring 2015

Quantitative Finance and Investments Advanced Formula Sheet. Fall 2014/Spring 2015 Quaniaive Finance and Invemen Advanced Formula Shee Fall 2014/Spring 2015 Morning and afernoon exam bookle will include a formula package idenical o he one aached o hi udy noe. The exam commiee believe

Διαβάστε περισσότερα

coupon effects Fisher Cohen, Kramer and Waugh Ordinary Least Squares OLS log

coupon effects Fisher Cohen, Kramer and Waugh Ordinary Least Squares OLS log coupon effecs Fsher Cohen, Kramer and Waugh Ordnary Leas SquaresOLS 3 j τ = a0 a j m a4 log m a5c a6c a7 log C j= τ = a a a [ ] 0 m log m [ a, b] f Pn E f = max f x P x = f P n ( ) ( ) n ( ) a x b n ξ

Διαβάστε περισσότερα

Z = 1.2 X 1 + 1, 4 X 2 + 3, 3 X 3 + 0, 6 X 4 + 0, 999 X 5. X 1 X 2 X 2 X 3 X 4 X 4 X 5 X 4 X 4 Z = 0.717 X 1 + 0.847 X 2 + 3.107 X 3 + 0.420 X 4 + 0.998 X 5. X 5 X 4 Z = 6.56 X 1 + 3.26 X 2 + 6.72 X 3

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

The one-dimensional periodic Schrödinger equation

The one-dimensional periodic Schrödinger equation The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A 2012 4 Chinese Journal of Applied Probability and Statistics Vol.28 No.2 Apr. 2012 730000. :. : O211.9. 1..... Johnson Stulz [3] 1987. Merton 1974 Johnson Stulz 1987. Hull White 1995 Klein 1996 2008 Klein

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

(... )..!, ".. (! ) # - $ % % $ & % 2007

(... )..!, .. (! ) # - $ % % $ & % 2007 (! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-

Διαβάστε περισσότερα

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

ITU-R P (2009/10)

ITU-R P (2009/10) ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R

Διαβάστε περισσότερα

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Teor imov r. ta matem. statist. Vip. 94, 2016, stor eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process

Διαβάστε περισσότερα

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx m r = F m r = F ( r) m r = F ( v) x F = F (x) m dv dt = F (x) d dt = dx dv dt dx = v dv dx vdv = F (x)dx 2 mv2 x 2 mv2 0 = F (x )dx x 0 K = 2 mv2 W x0 x = x x 0 F (x)dx K K 0 = W x0 x x, x 2 x K 2 K =

Διαβάστε περισσότερα

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2 F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =

Διαβάστε περισσότερα

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o G G - - -- - W - - - R S - q k RS ˆ W q q k M G W R S L [ RS - q k M S 4 R q k S [ RS [ M L ˆ L [M O S 4] L ˆ ˆ L ˆ [ M ˆ S 4 ] ˆ - O - ˆ q k ˆ RS q k q k M - j [ RS ] [ M - j - L ˆ ˆ ˆ O ˆ [ RS ] [ M

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Jeux d inondation dans les graphes

Jeux d inondation dans les graphes Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488

Διαβάστε περισσότερα

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9. 9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing an AR(1) Error Model 9.4 Tesing for Auocorrelaion 9.5 An Inroducion o Forecasing: Auoregressive Models 9.6 Finie Disribued Lags 9.7

Διαβάστε περισσότερα

Solutions - Chapter 4

Solutions - Chapter 4 Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

W τ R W j N H = 2 F obj b q N F aug F obj b q Ψ F aug Ψ ( ) ϱ t + + p = 0 = 0 Ω f = Γ Γ b ϱ = (, t) = (, t) Ω f Γ b ( ) ϱ t + + p = V max 4 3 2 1 0-1 -2-3 -4-4 -3-2 -1 0 1 2 3 4 x 4 x 1 V mn V max

Διαβάστε περισσότερα

Quantitative Finance and Investment Core Formula Sheet. Spring 2017

Quantitative Finance and Investment Core Formula Sheet. Spring 2017 Quaniaive Finance and Invesmen Core Formula Shee Spring 7 Morning and afernoon exam bookles will include a formula package idenical o he one aached o his sudy noe. The exam commiee believe ha by providing

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

m 1, m 2 F 12, F 21 F12 = F 21

m 1, m 2 F 12, F 21 F12 = F 21 m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m

Διαβάστε περισσότερα

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence

Διαβάστε περισσότερα

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio

Διαβάστε περισσότερα

Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs

Διαβάστε περισσότερα

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s

Διαβάστε περισσότερα

(1) P(Ω) = 1. i=1 A i) = i=1 P(A i)

(1) P(Ω) = 1. i=1 A i) = i=1 P(A i) Χρηματοοικονομικά Μαθηματικά Το συνεχές μοντέλο συνεχούς χρόνου Σ. Ξανθόπουλος Παν. Αιγαίου Χειμερινό Εξάμηνο 2015-2016 Χειμερινό Εξάμηνο 2015-2016 1 / Σύνοψη 1 Προκαταρκτικά 2 Διαδικασία Wiener ή Κίνηση

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

#%" )*& ##+," $ -,!./" %#/%0! %,!

#% )*& ##+, $ -,!./ %#/%0! %,! -!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3

Διαβάστε περισσότερα

Coupling strategies for compressible - low Mach number flows

Coupling strategies for compressible - low Mach number flows Coupling strategies for compressible - low Mach number flows Yohan Penel, Stéphane Dellacherie, Bruno Després To cite this version: Yohan Penel, Stéphane Dellacherie, Bruno Després. Coupling strategies

Διαβάστε περισσότερα

Points de torsion des courbes elliptiques et équations diophantiennes

Points de torsion des courbes elliptiques et équations diophantiennes Points de torsion des courbes elliptiques et équations diophantiennes Nicolas Billerey To cite this version: Nicolas Billerey. Points de torsion des courbes elliptiques et équations diophantiennes. Mathématiques

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then

Διαβάστε περισσότερα

Quantitative Finance and Investments Core Formula Sheet. Spring 2016

Quantitative Finance and Investments Core Formula Sheet. Spring 2016 Quaniaive Finance and Invesmens Core Formula Shee Spring 6 Morning and afernoon exam bookles will include a formula package idenical o he one aached o his sudy noe. The exam commiee believe ha by providing

Διαβάστε περισσότερα

γ n ϑ n n ψ T 8 Q 6 j, k, m, n, p, r, r t, x, y f m (x) (f(x)) m / a/b (f g)(x) = f(g(x)) n f f n I J α β I = α + βj N, Z, Q ϕ Εὐκλείδης ὁ Ἀλεξανδρεύς Στοιχεῖα ἄκρος καὶ μέσος λόγος ὕδωρ αἰθήρ ϕ φ Φ τ

Διαβάστε περισσότερα

u(x, y) =f(x, y) Ω=(0, 1) (0, 1)

u(x, y) =f(x, y) Ω=(0, 1) (0, 1) u(x, y) =f(x, y) Ω=(0, 1) (0, 1) u(x, y) =g(x, y) Γ=δΩ ={0, 1} {0, 1} Ω Ω Ω h Ω h h ˆ Ω ˆ u v = fv Ω u = f in Ω v V H 1 (Ω) V V h V h ψ 1,ψ 2,...,ψ N, ˆ ˆ u v = Ω Ω fv v V ˆ ˆ u v = Ω ˆ ˆ u ψ i = Ω Ω Ω

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

f H f H ψ n( x) α = 0.01 n( x) α = 1 n( x) α = 3 n( x) α = 10 n( x) α = 30 ū i ( x) α = 1 ū i ( x) α = 3 ū i ( x) α = 10 ū i ( x) α = 30 δū ij ( x) α = 1 δū ij ( x) α = 3 δū ij ( x) α = 10 δū ij ( x)

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω

Διαβάστε περισσότερα

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é

Διαβάστε περισσότερα

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Noureddine Rhayma To cite this version: Noureddine Rhayma. Contribution à l évolution des méthodologies

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Exam Statistics 6 th September 2017 Solution

Exam Statistics 6 th September 2017 Solution Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be

Διαβάστε περισσότερα

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ó³ Ÿ. 2006.. 3, º 2(131).. 105Ä110 Š 537.311.5; 538.945 Œ ƒ ˆ ƒ Ÿ ˆŠ ˆ ƒ Ÿ ƒ ˆ œ ƒ Œ ƒ ˆ ˆ Š ˆ 4 ². ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö μ ² ³ μ É ³ Í ² Ö Ê³ μ μ ³ É μ μ μ²ö

Διαβάστε περισσότερα

a(z) = k 0 1 z k = k 0 2 k z k = k 0 z k = (1 + z) n. k

a(z) = k 0 1 z k = k 0 2 k z k = k 0 z k = (1 + z) n. k !" #$%% $&$'$ # %( $)%*&%' '+ &'&% ! " " # $ " " % " & ' # () *+ (, *,-.$ / " " " * $ 0 * " # " $ * $ 0 # % " & ', # ' * # " & #! " # %& *%& $ % & ' " ( z D log! ) * (% % (+, ) " " -. // 0 ', % 0 ', %

Διαβάστε περισσότερα

Sample BKC-10 Mn. Sample BKC-23 Mn. BKC-10 grt Path A Path B Path C. garnet resorption. garnet resorption. BKC-23 grt Path A Path B Path C

Sample BKC-10 Mn. Sample BKC-23 Mn. BKC-10 grt Path A Path B Path C. garnet resorption. garnet resorption. BKC-23 grt Path A Path B Path C 0.5 0.45 0.4 0.35 0.3 Sample BKC-10 Mn BKC-10 grt Path A Path B Path C 0.12 0.1 0.08 Mg 0.25 0.06 0.2 0.15 0.04 0.1 0.05 0.02 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 Core Rim 0.9 0.8 Fe 0 0 0.01 0.02

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

CNS.1 Compressible Navier-Stokes Time Averaged

CNS.1 Compressible Navier-Stokes Time Averaged CNS.1 Compressble Naver-Sokes Tme Averaged Insananeos flow conservaon prncples, compressble flow D M : L( ρ) = ρ + ( ρ ) = 0 x ρ D P : L( ρ ) = + ρ + pδ = 0 x D E : L( ρe) = ( ρe+ ρ / ) + ( ρh+ ρ / q)

Διαβάστε περισσότερα

Alterazioni del sistema cardiovascolare nel volo spaziale

Alterazioni del sistema cardiovascolare nel volo spaziale POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i d d S = ()SI d d I = ()SI ()I d d R = ()I d d S = ()SI μs + fi + hr d d I = + ()SI (μ + + f + ())I d d R = ()I (μ + h)r d d P(S,I,) = ()(S +1)(I 1)P(S +1, I 1, ) +()(I +1)P(S,I +1, ) (()SI + ()I)P(S,I,)

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

A Probabilistic Numerical Method for Fully Non-linear Parabolic Partial Differential Equations

A Probabilistic Numerical Method for Fully Non-linear Parabolic Partial Differential Equations A Probabilistic Numerical Metod for Fully Non-linear Parabolic Partial Differential Equations Aras Faim To cite tis version: Aras Faim. A Probabilistic Numerical Metod for Fully Non-linear Parabolic Partial

Διαβάστε περισσότερα

LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni

LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni LEM WORKING PAPER SERIES Non-linear externalities in firm localization Giulio Bottazzi Ugo Gragnolati * Fabio Vanni Institute of Economics, Scuola Superiore Sant'Anna, Pisa, Italy * University of Paris

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Lecture 7: Overdispersion in Poisson regression

Lecture 7: Overdispersion in Poisson regression Lecture 7: Overdispersion in Poisson regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction Modeling overdispersion through mixing Score test for

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( )

( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( ) 3 3 Vol.3.3 0 3 JournalofHarbinEngineeringUniversity Mar.0 doi:0.3969/j.isn.006-7043.0.03.0 ARIMA GARCH,, 5000 :!""#$%&' *+&,$-.,/0 ' 3$,456$*+7&'89 $:;,/0 ?4@A$ ARI MA GARCHBCDE FG%&HIJKL$ B

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Errata (Includes critical corrections only for the 1 st & 2 nd reprint) Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y

Διαβάστε περισσότερα

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Pierre Coucheney, Patrick Maillé, runo Tuffin To cite this version: Pierre Coucheney, Patrick

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,

Διαβάστε περισσότερα

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital C RAM 3002 C RAROC Rsk-Adjusted Return on Captal C C RAM Rsk-Adjusted erformance Measure C RAM RAM Bootstrap RAM C RAROC RAM Bootstrap F830.9 A CAM 2 CAM 3 Value at Rsk RAROC Rsk-Adjusted Return on Captal

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Financial Economic Theory and Engineering Formula Sheet

Financial Economic Theory and Engineering Formula Sheet Financial Economic heory and Engineering Formula Sheet 2011 Morning and afternoon exam booklets will include a formula package identical to the one attached to this study note. he exam committee felt that

Διαβάστε περισσότερα

Mantel & Haenzel (1959) Mantel-Haenszel

Mantel & Haenzel (1959) Mantel-Haenszel Mantel-Haenszel 2008 6 12 1 / 39 1 (, (, (,,, pp719 730 2 2 2 3 1 4 pp730 746 2 2, i j 3 / 39 Mantel & Haenzel (1959 Mantel N, Haenszel W Statistical aspects of the analysis of data from retrospective

Διαβάστε περισσότερα

!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8

Διαβάστε περισσότερα

ˆ ˆ Œ Ÿ Š Œ ƒˆ Šˆ ˆ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ

ˆ ˆ Œ Ÿ Š Œ ƒˆ Šˆ ˆ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ Ó³ Ÿ. 2015.. 12, º 2(193).. 281Ä298 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ ˆ ˆ Œ Ÿ Š Œ ƒˆ Šˆ ˆ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ.. Ê 1 Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ± Í Œ Ì ²ÖÉ É ±μ É μ É Í ( ƒ) μ μ²ö É μ μ ÉÓ É ²Ó- ÊÕ ² ±Í

Διαβάστε περισσότερα

Answers to practice exercises

Answers to practice exercises Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)

Διαβάστε περισσότερα

Ax = b. 7x = 21. x = 21 7 = 3.

Ax = b. 7x = 21. x = 21 7 = 3. 3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

ˆ ˆ œ - ˆ Š ˆ Š ˆ ˆ Œ ˆ

ˆ ˆ œ - ˆ Š ˆ Š ˆ ˆ Œ ˆ ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2016.. 47.. 2 ˆ ˆ œ - ˆ Š ˆ Š ˆ ˆ Œ ˆ Ÿ ˆ Œ.. ŠÊ±² 1, ƒ. ƒ. ³Ö 1,,.. Éμ ±μ 1,2 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 2 μ³ ± μ² É Ì Î ± Ê É É, μ³ ±, μ Ö ˆ 390 ˆ Š ˆ ˆ 392 ˆ ˆ Š ƒ 397 œ - ˆ Po ˆ Rn 408

Διαβάστε περισσότερα

FORMULAS FOR STATISTICS 1

FORMULAS FOR STATISTICS 1 FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα