Quantitative Finance and Investments Advanced Formula Sheet. Fall 2017/Spring 2018
|
|
- Χαρά Αλαφούζος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Quanave Fnance and Invesmens Advanced Formula Shee Fall 2017/Sprng 2018 Mornng and afernoon exam bookles wll nclude a formula package dencal o he one aached o hs sudy noe. The exam commee beleves ha by provdng many key formulas, canddaes wll be able o focus more of her exam preparaon me on he applcaon of he formulas and conceps o demonsrae her undersandng of he syllabus maeral and less me on he memorzaon of he formulas. The formula shee was developed sequenally by revewng he syllabus maeral for each major syllabus opc. Canddaes should be able o follow he flow of he formula package easly. We recommend ha canddaes use he formula package concurrenly wh he syllabus maeral. No every formula n he syllabus s n he formula package. Canddaes are responsble for all formulas on he syllabus, ncludng hose no on he formula shee. Canddaes should carefully observe he somemes suble dfferences n formulas and her applcaon o slghly dfferen suaons. Canddaes wll be expeced o recognze he correc formula o apply n a specfc suaon of an exam queson. Canddaes wll noe ha he formula package does no generally provde names or defnons of he formula or symbols used n he formula. Wh he wde varey of references and auhors of he syllabus, canddaes should recognze ha he leer convenons and use of symbols may vary from one par of he syllabus o anoher and hus from one formula o anoher. We rus ha you wll fnd he ncluson of he formula package o be a valuable sudy ade ha wll allow for more of your preparaon me o be spen on maserng he learnng objecves and learnng oucomes. 1
2 Ineres Rae Models - Theory and Pracce, Brgo and Mercuro Chaper 3 Table 3.1 Summary of nsananeous shor rae models Model Dynamcs r > 0 r AB AO V dr = kθ r d + σdw N N Y Y CIR dr = kθ r d + σ r dw Y NCχ 2 Y Y D dr = ar d + σr dw Y LN Y N EV dr = r η a ln r d + σr dw Y LN N N HW dr = kθ r d + σdw N N Y Y BK dr = r η a ln r d + σr dw Y LN N N MM dr = r η λ γ 1+γ ln r d + σr dw Y LN N N CIR++ r = x + ϕ, dx = kθ x d + σ x dw Y* SNCχ 2 Y Y EEV r = x + ϕ, dx = x η a ln x d + σx dw Y* SLN N N *raes are posve under suable condons for he deermnsc funcon ϕ. 3.5 dr = kθ rd + σdw, r0 = r r = rse k s + θ 1 e k s + σ s e k u dw u 3.7 E {r F s } = rse k s + θ 1 e k s Var{r F s } = σ2 1 e 2k s 2k B,T r 3.8 P, T = A, T e 3.9 dr = kθ B, T σ 2 krd + σdw T 3.11 dr = kθ k + λσrd + σdw 0, r0 = r dr = b ard + σdw r = rse a s + b 1 e a s + σ s a e a u dw 0 u 3.14 ˆα = n n r r 1 n r n r 1 n n r2 1 n r 1 2 n 3.15 ˆβ = r ˆαr 1 n1 ˆα 3.16 V 2 = 1 n r ˆαr 1 n ˆβ1 2 ˆα 3.19 E {r F s } = rse a s and Var{r F s } = r 2 se e 2a s σ2 s P, T = rp π 2 0 sn2 r snh y 0 fz snyzdzdy + 2 Γ2p rp K 2p 2 r 3.21 dr = kθ rd + σ rdw, r0 = r dr = kθ k + λσrd + σ rdw 0, r0 = r 0 2
3 3.23 E {r F s } = rse k s + θ 1 e k s Var{r F s } = rs σ2 e k s e 2k s + θ σ2 1 e k s 2 k 2k 3.24 B,T r P, T = A, T e kθ/σ 2 2h exp {k + ht /2} A, T = 2h + k + hexp {T h} 1 B, T = 2exp{T h} 1 2h + k + hexp {T h} 1, h = k 2 + 2σ dr = kθ k + B, T σ 2 rd + σ rdw T 3.28 p T r rs x = p χ 2 υ,δ,s/q,sx = q, sp χ 2 υ,δ,sq, sx q, s = 2ρ s + ψ + B, T and δ, s = 4ρ s2 rse h s q, s B,T r Page 68 R, T = α, T + β, T r, P, T = A, T e 3.29 σ f, T = B, T σ, r T Page 69 dr = b, rd + σ, rdw b, x = λx + η, σ 2, x = γx + δ B, T + λb, T 1 2 γb, T = 0, BT, T = 0 ln A, T ηb, T δb, T 2 = 0, AT, T = 1 Page 69/70 Vascek λ = k, η = kθ, γ = 0, δ = σ 2 Page 70 CIR λ = k, η = kθ, γ = σ 2, δ = 0 Page 71 bx = λx + η, σ 2 x = γx + δ θ lm E{r F s } = exp a + σ2 4a 2θ a + σ2 2a 3.31 lm Var{r F s } = exp exp 3.32 dr = ϑ ard + σdw 3.33 dr = ϑ ard + σdw σ 2 2a ϑ = f M 0, + af M 0, + σ2 T 2a 1 e 2a 3.35 r = rse a s + s e a u ϑudu + σ s e a u dw u = rse a s + α αse a s + σ s e a u dw u 3.36 where α = f M 0, + σ2 2a 2 1 e a 2 3
4 3.37 E{r F s } = rse a s + α αse a s Var{r F s } = σ2 1 e 2a s 2a 3.38 dx = axd + σdw, x0 = 0 Page 74 Page 74 Page 75 x = xse a s + σ s e a u dw u α Q{r < 0} = Φ σ 2 2α 1 e 2α T rudu F N B, T r α + ln P M 0, + 1V 0, T V 0,, V, T P M 0,T 2 where B, T = 1 a 1 e at and V, T = σ2 a T a e at 1 2a e 2aT 3 2a B,T r 3.39 P, T = A, T e where A, T = P M 0,T P M 0, exp { B, T f M 0, σ2 4a 1 e 2a B, T 2 } 3.40 ZBC, T, S, X = P, SΦh XP, T Φh σ p 1 e 2aT where σ p = σ BT, S and h = 1 2a σ p ln P,S + σp P,T X ZBP, T, S, X = XP, T Φ h + σ p P, SΦ h 3.42 Cap, T, N, X = N n 1 + Xτ 1 ZBP, 1,, 1+Xτ or Cap, T, N, X = N n P, 1Φ h + σp 1 + Xτ P, Φ h, where σp 1 e = σ 2a 1 B 2a 1, and h = 1 ln P, 1+Xτ σp P, 1 + σ p Flr, T, N, X = N n 1 + Xτ P, Φh P, 1 Φh σp 3.44 CBO, T, T, c, X = n c ZBO, T, T, X 3.45 PS, T, T, N, X = N n c ZBP, T,, X 3.46 RS, T, T, N, X = N n c ZBC, T,, X 3.47 E{x +1 x = x,j } = x,j e a =: M,j Var{x +1 x = x,j } = σ2 1 e 2a =: V 2 2a x = V 1 3 = σ 2a 1 e 2a 1 M,j 3.49 k =round x p u = η2 j,k + η j,k 6V 2 2, p m = 2 3V 3 η2 j,k, p 3V 2 d = η2 j,k 6V 2 2 3V 3.64 dx α = µx α ; αd + σx α ; αdw x η j,k 4
5 3.65 P x, T = Π x, T, x α ; α 3.66 r = x + ϕ; α, P, T = exp T ϕs; αds Π x, T, r ϕ; α; α 3.68 ϕ; α = ϕ ; α := f M o, f x 0, ; α 3.69 exp T ϕs; αds = Φ, T, x 0 ; α := P M 0, T Π x 0,, x 0 ; α Π x 0, T, x 0 ; α P M 0, 3.70 Π, T, r ; α = Φ, T, x 0 ; απ, T, r ϕ ; α; α 3.71 V x, T, τ, K = Ψ x, T, τ, K, x α ; α dϕ; α 3.74 dr = kθ + kϕ; α + kr d + σdw d Page 100 ϕ V AS ; α = f M 0, + e k 1 k2 θ σ 2 /2 k 2 Page 101 P, T = P M 0, T A0, exp{ B0, x 0 } P M 0, A0, T exp{ B0, T x 0 } A, T exp{ B, T r ϕ V AS ; α} σ2 2k 2 e k 1 e k x 0 e k 3.76 dx = kθ xd + σ xdw, x0 = x 0, r = x + ϕ 3.77 ϕ CIR ; α = f M 0, f CIR 0, ; α f CIR 0, ; α = h = k 2 + 2σ 2 Chaper r = x + y + ϕ, r0 = r dx = axd + σdw 1, x0 = 0 2kθexp{h} 1 2h + k + hexp{h} 1 + x 4h 2 exp{h} 0 2h + k + hexp{h} 1 2 dy = byd + ηdw 2, y0 = E{r F s } = xse a s + yse b s + ϕ Var{r F s } = σ2 1 e 2a s + η2 1 e 2b s + 2ρ ση 1 e a+b s 2a 2b a + b 4.7 r = σ 0 e a u dw 1 u + η 0 e b u dw 2 u + ϕ 4.8 dx = axd + σd W 1 dy = byd + ηρd W 1 + η 1 ρ 2 d W M, T = where dw 1 = d W 1 and dw 2 = ρd W ρ 2 d W 2 1 e at 1 e bt x + y a b 5
6 4.10 V, T = σ2 a 2 T + 2 a e at 1 2a e 2aT 3 2a + η2 T + 2 b 2 b e bt 1 2b e 2bT 3 2b +2ρ ση ab 4.11 P, T = exp T + e at 1 a { T + e bt 1 b e a+bt 1 a + b ϕudu 1 e at 1 e bt x y + 1 } a b 2 V, T 4.12 ϕt = f M 0, T + σ2 1 e at 2 η e bt 2 ση + ρ 2a 2 2b 2 ab 1 e at 1 e bt { 4.13 exp } T ϕudu = P M 0, T { P M 0, exp 12 } V 0, T V 0, 4.14 P, T = P M 0, T P M 0, exp {A, T } A, T := 1 1 e at 1 e bt V, T V 0, T + V 0, x y 2 a b 4.15 P, T = A, T exp{ Ba,, T x Bb,, T y} 4.16 σ f, T = σ 2 e 2aT + η 2 e 2bT + 2ρσηe a+bt Page 152 Covdf, T 1, df, T 2 d = σ 2 B T a,, T 1 B T a,, T 2 + η 2 B T b,, T 1 B T b,, T 2 B +ρση T a,, T 1 B T b,, T 2 + B T a,, T 2 B T b,, T 1 = σ 2 e at 1+T η 2 e bt 1+T 2 2 +ρση e at 1 bt 2 +a+b + e at 2 bt 1 +a+b Corrdf, T 1, df, T 2 = σ2 e at 1+T η 2 e bt 1+T 2 2 σ f, T 1 σ f, T 2 + ρση e at 1 bt 2 +a+b + e at 2 bt 1 +a+b σ f, T 1 σ f, T 2 6
7 Page 153 f, T 1 T 2 = ln P, T 1 ln P, T 2 T 2 T 1 df, T 1, T 2 =...d + Ba,, T 2 Ba,, T 1 σdw 1 T 2 T 1 + Bb,, T 2 Bb,, T 1 ηdw 2 T 2 T 1 σ f, T 1, T 2 = σ 2 βa,, T 1, T η 2 βb,, T 1, T ρσηβa,, T 1, T 2 βb,, T 1, T 2 where βz,, T 1, T 2 = Bz,, T 2 Bz,, T 1 T 2 T 1 Covdf, T 1, T 2, df, T 3, T 4 d σ 2 Ba,, T 2 Ba,, T 1 Ba,, T 4 Ba,, T 3 T 2 T 1 T 4 T 3 +η 2 Bb,, T 2 Bb,, T 1 Bb,, T 4 Bb,, T 3 T 2 T 1 T 4 T 3 Ba,, T2 Ba,, T 1 Bb,, T 4 Bb,, T 3 +ρση T 2 T 1 T 4 T 3 + Ba,, T 4 Ba,, T 3 Bb,, T 2 Bb,, T 1 T 4 T 3 T 2 T 1 Page 160 σ 3 = dz 3 = σ σ2 2 ā b ρ σ 1σ 2 b ā σ 1 dz 1 σ 2 ā b dz 2, σ 4 = σ 2 σ 3 ā b Page 161 a = ā, b = b, σ = σ 3, η = σ 4, ρ = σ 1 ρ σ 4 σ 3 ϕ = r 0 e ā + 0 θve ā v dv ā = a, b = b, σ1 = σ 2 + η 2 + 2ρση, σ 2 = ηa b ρ = σρ + η σ2 + η 2 + 2ρση, dϕ θ = + aϕ d Managng Cred Rsk: The Grea Challenge for Global Fnancal Markes, Caouee, e. al. Chaper R p = N X EAR 20.3 V p = N j=1 N X X j σ σ j ρ j 7
8 20.5 UAL p = N N X X j σ σ j ρ j 1 Page 403 j=1 CV arcl = EAD LGD ρφ 1 CL + Φ 1 P D Φ P D 1 ρ 1 + M 2.5 bp D 1 1.5bP D Bond-CDS Bass Handbook: Measurng, Tradng and Analysng Bass Trades, Elzalde, Docor, and Saluk Page 13, Equaon 1 S = P D 1 R Page 15, Equaon 2 F R = U AI RA + F C Page 18, Equaon 3 P V c + p BP SS = RF A Page 25, Equaon 4 BT P 1 = CN 100 R U CP F C+BN R+CR BP F C Page 25, Equaon 5 BT P 2 = BN CR BP F C CN U + CP + F C Page 43, Equaon 7 CN = BP R 100 R U BN A Survey of Behavoral Fnance, Barbers and Thaler 1 x, p : y, q = πpvx + πqvy 2 π vx where v = xα f x 0 λ x α f x < 0 and π = wp wp, wp = P γ P γ + 1 P γ 1/γ 3 D +1 D = e g D+σ D ε C +1 = e g C+σ C η +1 C ε 0 1 w N, 0 w 1 η 6 E 0 ρ C1 γ =0 1 γ C+1 γ 7 1 = ρe R +1 C,..d.over me 8 R +1 = D +1 + P +1 P = 1 + P +1/D +1 P /D D +1 D 9 r +1 = d +1 +cons. d +1 d +cons. 8
9 10 E π v1 wr f,+1 + wr E 0 ρ C1 γ 1 γ + b 0C γ ˆvX +1 =0 13 R +1 = P +1 + D +1 P 14 p d = E ρ d +1+j E 15 E 0 =0 j=0 j=0 ρ C1 γ 1 γ + b 0C γ ṽx +1, z 16 r r f = β.1 F 1 r f β,k F K r f ρ r +1+j + E lm ρ j p +j d +j +cons. j 17 r, r f, = α + β,1 F 1, r f, β,k F K, r f, + ε, 18 R f = 1 ρ eγg C+0.5γ 2 σ 2 C 19 1 = ρ 1 + f e g D γg C +0.5σD 2 +γ2 σc 2 2γσ Cσ D w f 20 R +1 = D +1 + P +1 P = 1 + P +1/D +1 P /D D +1 D = 1 + f e g D+σ D ε +1 f CAIA Level II: Advanced Core Topcs n Alernave Invesmens, Black, Chambers, Kazem Chaper P repored 16.2 P repored 16.3 P rue 16.4 P rue = α + β 0 P rue = αp rue = 1/α P repored = P repored 1 + β 1 P rue 1 + β 2 P rue α1 αp rue 1 + α1 α 2 P rue α/α P repored 1 + 1/α P repored P repored R,repored β 0 R,rue + β 1 R 1,rue + β 2 R 2,rue P repored 16.7 P repored = 1 ρp rue = 1 ρ P rue + ρp repored 1 + ρ P repored R,repored 1 ρr,rue + ρr 1,repored 16.9 R,rue = R,repored ρr 1,repored /1 ρ ˆρ = corrr,repored R 1,repored ρ,j = σ j /σ σ j R repored = α + β 1 R repored 1 + β 2 R repored β k R repored k + ε 9
10 Managng Invesmen Porfolo: A Dynamc Process, Magnn, Tule, Pno, McLeavey Chaper 8 Page 523 T RCI = CR + RR + SR Page 553 RR n, = R + R 1 + R R n /n Page 554 n DD = r, 0 2 n 1 Page 555 ARR rf Sharpe Rao = SD Page 556 ARR rf Sorno Rao = DD The Secular and Cyclc Deermnans of Capalzaon Raes: The Role of Propery Fundamenals, Macroeconc Facors, and Srucural Changes, Chervachdze, Cosello, Wheaon 1 LogC j, = a 0 + a 1 logc j, 1 + a 2 logc j, 4 + a 3 logrri j, + a 4 RT B + a 7 Q2 1.1 RRI j, s = RR j, /MRR j +a 8 Q3 + a 9 Q4 + a 10 D j 2 LogC j, = a 0 + a 1 logc j, 1 + a 2 logc j, 4 + a 3 logrri j, s + a 4 RT B 2.1 DEBT F LOW = T NBL /GDP +a 5 SP READ + a 6 DEBT F LOW + a 7 Q2 + a 8 Q3 + a 9 Q4 + a 10 D j 3 LogC j, = a 0 + a 1 logc j, 1 + a 2 logc j, 4 + a 3 logrri j, s + a 4 RT B +a 5 SP READ + a 6 DEBT F LOW + a 7 Q2 + a 8 Q3 + a 9 Q4 4 LogC j, = a 0 + a 1 yearq + a 2 logc j, 1 + a 3 logc j, 4 + a 4 logrri j, s + a 5 RT B +a 6 SP READ + a 7 DEBT F LOW + a 7 Q2 + a 8 Q3 + a 9 Q4 + a 10 D j Analyss of Fnancal Tme Seres, Tsay Chaper r = α + β 1 f β m f m + ɛ, = 1,..., T, = 1,..., k 9.2 r = α + βf + ɛ, = 1,..., T 9.3 R = α 1 T + Fβ + E 9.4 R = Gξ + E 9.5 r = α + β r m + ɛ, = 1,..., k = 1,..., T 9.11 Vary = w Σ r w, = 1,..., k 9.12 Covy, y j = w Σ r w j,, j = 1,..., k 10
11 9.13 k Varr = rσ r = k λ = k Vary 9.14 ˆΣ r ˆσ j,r = 1 T ˆρ r = Ŝ 1 ˆΣ r Ŝ 1 T =1r rr r, r = 1 T T r = r µ = βf + ɛ 9.17 Σ r = Covr = Er µr µ = Eβf + ɛ βf + ɛ = ββ + D 9.18 Covr, f = Er µf = βef f + Eɛ f = β 9.19 ˆβ ˆβj = ˆλ1 ê 1 ˆλ2 ê 2 ˆλm ê m 9.20 LRm = T k m ln ˆΣ r ln ˆβ ˆβ + ˆD Handbook of Fxed Income Secures, Fabozz Chaper Asse Allocaon s w P s w B s R B s 69 5 Secury Selecon s w P s R P s R B s α P k f P k αb k f B k = s α P k,s f P k,s s α B k,s f B k,s Chaper Asse Allocaon w P 70 2 Secor Managemen s s w P s w wb s T R B P w B s T R B w P s T R P s T R B s 70 3 Top-Level Exposure w P w B T R B 70 4 Asse Allocaon w P w P s w wb s ER B P w B s ER B 70 5 Secor Managemen s s w P s ER P s ER B s 70 6 Top-Level Exposure w P w B ER B 70 7 Ouperformance from average carry yavg P yavg B 70 8 Key rae conrbuons ω P j yj yavg P ω B j yj yavg B j 70 9 Ouperformance from avg. parallel shfs OAD P OAD B y avg Ouperformance from reshapng KRD P j KRDj B yj y avg j 11
12 70 11 Asse Allocaon OASD P w P s OASDs P wb s OASDs B OASD P OASD B s Secury Selecon s OAS s B OAS B w P s OASD P s OAS P s OAS B s Spread Duraon Msmach OASD P OASD B OAS B w P s OASDs P ws B OASDs B OAS B s Asse Allocaon s Secury Selecon s w P s OASD P s OAS P s OAS B s Inroducon o Cred Rsk Modelng, 2nd ed., Bluhm, Overbeck, Wagner Chaper 6 Page 237 M n = M n 1 Guaranees and Targe Volaly Funds, Morrson and Tadrowsk Page 4 w equy ˆσ equy = mn σarge 2 = λ ˆσ equy ˆσ equy, 100% S + 1 λ ln S Proxy Funcons for he Projecon of Varable Annuy Greeks, Clayon, Morrson, Turnbull, and Vysnasuskas Page 4 ˆV, V proxy S,, R, σ, 2 proxy S, R, σ = S V proxy S, R, σ ρ proxy S, R, σ = R V proxy S, R, σ V proxy S, R, σ = σ V proxy S, R, σ 12
13 Page 5 S sress1, S sress2, S sress3, S base, S base, S base, R sress1, R sress2, R sress3, R base, R base, R base, ˆ, proxy S,, R,, σ, 2 ˆρ, ρ proxy S,, R,, σ, 2 ˆV, V proxy S,, R,, σ, 2 ˆV base, Page 6 S, S w V proxy S,, R,, σ, 2 h S s w, h S σ sress1, σ sress2, σ sress3, σ base, σ base, σ base,, R, R, σ, σ ˆV base h R h σ, V proxy, S, S h S, R, R, σ, σ h R h σ ˆ, ˆρ, ˆV, S,, R,, σ, = 2 ˆV, sress1 ˆV, sress2 ˆV, sress3 2 ˆV base, V proxy, S,, R,, σ, base ˆV, base ˆV, base ˆV, Recen Advances n Cred Rsk Modelng, Capuano, Chan-Lau, Gasha, Mederos, Sanos, and Souo II.1 E = max0, V D ln V D + µ 1 2 σ2 T II.2 DD T = σ T II.3 II.4 II.5 II.6 II.7 x = a M + 1 a 2 Z Prob{x < x M} = q M = Φ x a M 1 a 2 p K+1 0, M = p K 0, M1 q K+1 M p K+1 l, M = p K l, M1 q K+1 M + p K l 1, Mq K+1 M, l = 1,..., K p K+1 K + 1, M = p K K, Mq K+1 M II.8 pl, = pn l, MφMdM III.1 τ = nf{ 0 V K} 13
14 Marke Models: A Gude o Fnancal Daa Analyss, Chaper 6, Aledander 6.1 P = XW 6.2 X = w 1 P 1 + w 2 P w k P k 6.3 σ K σ AT M = bk S 6.4 σ K σ AT M = w K1 P 1 + w K2 P 2 + w K3 P P, = γ, S + ε, 6.6 σ AT M = α + β S + ε 6.7 β K, = β + Σw K γ, 6.8 y = a + Pb + e 6.9 y = a + X b + e 6.10 y = c + Xd + e 6.11 rcac = rparbas rsocgen P P P P 4 Sochasc Modelng, Theory and Realy from an Acuaral Perspecve I.B-1 ds = µsd + σsdz I.B-2 ln S T Nln S 0 + r σ 2 /2T, σ T I.B-3 µ = ln S 0 + r σ 2 /2T, σ = σ T I.B-4 ĉ = 1 N c N I.B-5 c = S 0 Nd 1 Ke rt Nd 2 I.B-6 d 1 = lns 0/K + r + σ 2 /2T σ, d 2 = d 1 σ T T I.B-7 MC samplng error = 1 Sdevc N I.B-8 1 f = 2 fu 1 + fu 2 I.B-9 1 Sdev f N rdan I.B-10 I.B-11 f u g u + gu 1 Sdevfu gu N 14
15 I.B-12 h = 1 n N I.B-13 I.B-14 j=1 fv j k ˆf = x +1 x h k x +1 x Sdevhj lm of he sum should be k 1 N fz I.B-15 N gz N fz I.B-16 Sdev gz n I.B-17 S 0 = e r ps 0 u + 1 ps 0 d I.B-18 I.B-19 p = er d u d u = e σ and d = u 1 I.B-20 C 0 = e r pc u + 1 pc d I.B-21 S m = S 0 u n d m n, n = 0, 1,..., m here s an error n he book formula, he upper here s an error n he book formula, s n ha goes from 0 o m I.B-22 S m = S 0 1 ηu n d m n, n = 0, 1,..., m same error I.B-23 p = r 12 12σ 2 σ , p 0 = 2 3, p + = p + 2 6, I.B-24 I.B-25 u = e σ3, d = u 1 S log Nµ r, σ 2 r log S r S+1 S ρ Nµ ρ, σ 2 ρ I.B-26 p j = Prρ + 1 = j ρ =, = 1, 2,..., K, j = 1, 2,..., K here s an error n he book formula, y + 1 should be + 1 I.B-27 LΘ = fy 1 Θfy 2 Θ, y 1 fy 3 Θ, y 1, y 2 fy n Θ, y 1, y 2,..., y n 1 I.B-28 fρ, ρ 1, y Θ, y 1, y 2,..., y 1 for ρ = 1, 2 and ρ 1 = 1, 2 I.B-29 π, 1 pρ 1 = Θ, y 1, y 2,..., y 1 I.B-30 p j = pρ = j ρ 1 =, Θ y µ j I.B-31 g j, = fy ρ = j, Θ = φ = σ j 1 exp 1 σ j 2π 2 2 y µ j σ j 15
16 I.B-32 π, = 2 π k, 1 p k g, k=1 2 j=1 2 π, 1 p j g j, p 21 p 12 I.B-33 π 1,0 =, π 2,0 = p 12 + p 21 p 12 + p 21 I.B-34 fy 1 Θ = fρ0 = 1, y 1 Θ + fρ0 = 2, y 1 Θ y1 µ 1 y1 µ 2 = π 1,0 φ + π 2,0 φ II.A-1 S0, 1 = ln{1/1 + C0, 1} II.A-2 II.A-3 II.A-4 II.A-5 σ 1 S0, 2 = 1/2 ln{1 C0, 2 exp S0, 1/1 + C0, 2} σ 2 S0, 3 = 1/3 ln{1 C0, 3 exp S0, 1 C0, 3 exp 2S0, 2/1 + C0, 3} r = σr/ r γ φ F + T = F 1 + T + q F + T = F 1 + T + q Λ q,t +1 φ q, Eexp F 0 0 F 1 1 F 2 2 F N N = exp F 0 0 F 0 1 F 0 2 F 0 N Λ g,t +1 φ q, + Λ q,t +1 Λ q,t +1 /2 + T +1 Λ q, II.A-6 P V = Eexp F 0 0 F 1 1 F 2 2 F N NCF N II.A-7 II.A-8 F + T = F 1 + T + g Λ q,t +1 φ q, +δ arge 1/ arge F arge + T F 0 arge + T +1 δ arge F arge + T F arge + T + 1 F + T = F 1 + T + k T Λ q.t +1 φ q, + Λ q,t +1 Λ q,t +1 /2 + T +1 Λ q, II.A-9 Λ 1,j = Λ 1,1 exp aj 1, Λ >1,j = 0 II.A-10 F acor1 = F acor1 0 + ρ 12 F acor2 0 + ρ 13 F acor3 0 II.A-11 F acor2 = 1 ρ /2 F acor2 0 + ρ 13 F acor3 0 F acor3 = 1 ρ 2 13 ρ /2 F acor3 0 S = S 1 expf σ 1 φ e 1 σ 2 1/2 II.A-12 X + 1 = X exprf F RF D q II.A-13 X + = X exprf F RF D vol 2 /2 + sqr vol Z II.A-14 ds = µ S d + σ S dw II.A-15 ds = S exp{µ σ 2 /2d + σ dw } II.A-16 S = S 1 exp{µ σ 2 /2d + σ φ } 16
17 II.A-17 S = S 1 exp{f + d σ 2 /2d + σ φ } II.A-18 S = S 1 exp{f + d q σ 2 /2d + σ φ } II.A-19 II.A-20 ds = µ S d + σs, dw ds = µ S d + σs α dw II.A-21 ds = µ S d + V S dw, dv = κθ V d + v V dz, ds, V = ρd II.A-22 µ = F + d + rp σ S II.A-23 σ F = sqr 2 σ 1 S 1 1 II.A-24 mn n σ model w σ marke 2 σ model II.A-25 EValue of Equy = AValue of Asses Nd 1 II.A-26 II.A-27 II.A-28 F Face Value of Deb e rt Nd 2 d 1 = loga/f + r + σ2 A /2 T σ A T d 2 = d 1 σ A T II.A-29 Spread = II.A-30 σ E = σ A Nd 1 A E Rsk Neural Probably of Defaul = N d 2 Recovery Rae = A N d 1 N d 2 T hreshold = Φ 1 D q = h exp hτdτ 0 π 1 qτdτ τ=0 T =0 T 1 R A rqνd =0 q {u + ed + πt ut d lnh = αβ lnh d + γdz 17
Quantitative Finance and Investments Advanced Formula Sheet. Fall 2016/Spring 2017
Quanave Fnance and Invesmens Advanced Formula Shee Fall 2016/Sprng 2017 Mornng and afernoon exam bookles wll nclude a formula package dencal o he one aached o hs sudy noe. The exam commee beleves ha by
Quantitative Finance and Investments Advanced Formula Sheet. Fall 2013/Spring 2014
Quaniaive Finance and Invesmens Advanced Formula Shee Fall 013/Spring 014 ThisishesamesheeusedforFall013.Theonlychangeisonhiscoverpage. Morning and afernoon exam bookles will include a formula package
Quantitative Finance and Investments Advanced Formula Sheet. Fall 2014/Spring 2015
Quaniaive Finance and Invemen Advanced Formula Shee Fall 2014/Spring 2015 Morning and afernoon exam bookle will include a formula package idenical o he one aached o hi udy noe. The exam commiee believe
coupon effects Fisher Cohen, Kramer and Waugh Ordinary Least Squares OLS log
coupon effecs Fsher Cohen, Kramer and Waugh Ordnary Leas SquaresOLS 3 j τ = a0 a j m a4 log m a5c a6c a7 log C j= τ = a a a [ ] 0 m log m [ a, b] f Pn E f = max f x P x = f P n ( ) ( ) n ( ) a x b n ξ
Z = 1.2 X 1 + 1, 4 X 2 + 3, 3 X 3 + 0, 6 X 4 + 0, 999 X 5. X 1 X 2 X 2 X 3 X 4 X 4 X 5 X 4 X 4 Z = 0.717 X 1 + 0.847 X 2 + 3.107 X 3 + 0.420 X 4 + 0.998 X 5. X 5 X 4 Z = 6.56 X 1 + 3.26 X 2 + 6.72 X 3
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:
(B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
A 1 A 2 A 3 B 1 B 2 B 3
16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
The one-dimensional periodic Schrödinger equation
The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A
2012 4 Chinese Journal of Applied Probability and Statistics Vol.28 No.2 Apr. 2012 730000. :. : O211.9. 1..... Johnson Stulz [3] 1987. Merton 1974 Johnson Stulz 1987. Hull White 1995 Klein 1996 2008 Klein
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
(... )..!, ".. (! ) # - $ % % $ & % 2007
(! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.
8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure
ITU-R P (2009/10)
ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R
Teor imov r. ta matem. statist. Vip. 94, 2016, stor
eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process
m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx
m r = F m r = F ( r) m r = F ( v) x F = F (x) m dv dt = F (x) d dt = dx dv dt dx = v dv dx vdv = F (x)dx 2 mv2 x 2 mv2 0 = F (x )dx x 0 K = 2 mv2 W x0 x = x x 0 F (x)dx K K 0 = W x0 x x, x 2 x K 2 K =
F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2
F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =
.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o
G G - - -- - W - - - R S - q k RS ˆ W q q k M G W R S L [ RS - q k M S 4 R q k S [ RS [ M L ˆ L [M O S 4] L ˆ ˆ L ˆ [ M ˆ S 4 ] ˆ - O - ˆ q k ˆ RS q k q k M - j [ RS ] [ M - j - L ˆ ˆ ˆ O ˆ [ RS ] [ M
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.
9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing an AR(1) Error Model 9.4 Tesing for Auocorrelaion 9.5 An Inroducion o Forecasing: Auoregressive Models 9.6 Finie Disribued Lags 9.7
Solutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
Geodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
W τ R W j N H = 2 F obj b q N F aug F obj b q Ψ F aug Ψ ( ) ϱ t + + p = 0 = 0 Ω f = Γ Γ b ϱ = (, t) = (, t) Ω f Γ b ( ) ϱ t + + p = V max 4 3 2 1 0-1 -2-3 -4-4 -3-2 -1 0 1 2 3 4 x 4 x 1 V mn V max
Quantitative Finance and Investment Core Formula Sheet. Spring 2017
Quaniaive Finance and Invesmen Core Formula Shee Spring 7 Morning and afernoon exam bookles will include a formula package idenical o he one aached o his sudy noe. The exam commiee believe ha by providing
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
m 1, m 2 F 12, F 21 F12 = F 21
m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
(1) P(Ω) = 1. i=1 A i) = i=1 P(A i)
Χρηματοοικονομικά Μαθηματικά Το συνεχές μοντέλο συνεχούς χρόνου Σ. Ξανθόπουλος Παν. Αιγαίου Χειμερινό Εξάμηνο 2015-2016 Χειμερινό Εξάμηνο 2015-2016 1 / Σύνοψη 1 Προκαταρκτικά 2 Διαδικασία Wiener ή Κίνηση
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
#%" )*& ##+," $ -,!./" %#/%0! %,!
-!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3
Coupling strategies for compressible - low Mach number flows
Coupling strategies for compressible - low Mach number flows Yohan Penel, Stéphane Dellacherie, Bruno Després To cite this version: Yohan Penel, Stéphane Dellacherie, Bruno Després. Coupling strategies
Points de torsion des courbes elliptiques et équations diophantiennes
Points de torsion des courbes elliptiques et équations diophantiennes Nicolas Billerey To cite this version: Nicolas Billerey. Points de torsion des courbes elliptiques et équations diophantiennes. Mathématiques
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a
Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then
Quantitative Finance and Investments Core Formula Sheet. Spring 2016
Quaniaive Finance and Invesmens Core Formula Shee Spring 6 Morning and afernoon exam bookles will include a formula package idenical o he one aached o his sudy noe. The exam commiee believe ha by providing
γ n ϑ n n ψ T 8 Q 6 j, k, m, n, p, r, r t, x, y f m (x) (f(x)) m / a/b (f g)(x) = f(g(x)) n f f n I J α β I = α + βj N, Z, Q ϕ Εὐκλείδης ὁ Ἀλεξανδρεύς Στοιχεῖα ἄκρος καὶ μέσος λόγος ὕδωρ αἰθήρ ϕ φ Φ τ
u(x, y) =f(x, y) Ω=(0, 1) (0, 1)
u(x, y) =f(x, y) Ω=(0, 1) (0, 1) u(x, y) =g(x, y) Γ=δΩ ={0, 1} {0, 1} Ω Ω Ω h Ω h h ˆ Ω ˆ u v = fv Ω u = f in Ω v V H 1 (Ω) V V h V h ψ 1,ψ 2,...,ψ N, ˆ ˆ u v = Ω Ω fv v V ˆ ˆ u v = Ω ˆ ˆ u ψ i = Ω Ω Ω
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
f H f H ψ n( x) α = 0.01 n( x) α = 1 n( x) α = 3 n( x) α = 10 n( x) α = 30 ū i ( x) α = 1 ū i ( x) α = 3 ū i ( x) α = 10 ū i ( x) α = 30 δū ij ( x) α = 1 δū ij ( x) α = 3 δū ij ( x) α = 10 δū ij ( x)
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X
X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω
r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s
r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Noureddine Rhayma To cite this version: Noureddine Rhayma. Contribution à l évolution des méthodologies
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Exam Statistics 6 th September 2017 Solution
Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be
Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 2006.. 3, º 2(131).. 105Ä110 Š 537.311.5; 538.945 Œ ƒ ˆ ƒ Ÿ ˆŠ ˆ ƒ Ÿ ƒ ˆ œ ƒ Œ ƒ ˆ ˆ Š ˆ 4 ². ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö μ ² ³ μ É ³ Í ² Ö Ê³ μ μ ³ É μ μ μ²ö
a(z) = k 0 1 z k = k 0 2 k z k = k 0 z k = (1 + z) n. k
!" #$%% $&$'$ # %( $)%*&%' '+ &'&% ! " " # $ " " % " & ' # () *+ (, *,-.$ / " " " * $ 0 * " # " $ * $ 0 # % " & ', # ' * # " & #! " # %& *%& $ % & ' " ( z D log! ) * (% % (+, ) " " -. // 0 ', % 0 ', %
Sample BKC-10 Mn. Sample BKC-23 Mn. BKC-10 grt Path A Path B Path C. garnet resorption. garnet resorption. BKC-23 grt Path A Path B Path C
0.5 0.45 0.4 0.35 0.3 Sample BKC-10 Mn BKC-10 grt Path A Path B Path C 0.12 0.1 0.08 Mg 0.25 0.06 0.2 0.15 0.04 0.1 0.05 0.02 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 Core Rim 0.9 0.8 Fe 0 0 0.01 0.02
Answer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne
CNS.1 Compressible Navier-Stokes Time Averaged
CNS.1 Compressble Naver-Sokes Tme Averaged Insananeos flow conservaon prncples, compressble flow D M : L( ρ) = ρ + ( ρ ) = 0 x ρ D P : L( ρ ) = + ρ + pδ = 0 x D E : L( ρe) = ( ρe+ ρ / ) + ( ρh+ ρ / q)
Alterazioni del sistema cardiovascolare nel volo spaziale
POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής
ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a
d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i
d d S = ()SI d d I = ()SI ()I d d R = ()I d d S = ()SI μs + fi + hr d d I = + ()SI (μ + + f + ())I d d R = ()I (μ + h)r d d P(S,I,) = ()(S +1)(I 1)P(S +1, I 1, ) +()(I +1)P(S,I +1, ) (()SI + ()I)P(S,I,)
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
A Probabilistic Numerical Method for Fully Non-linear Parabolic Partial Differential Equations
A Probabilistic Numerical Metod for Fully Non-linear Parabolic Partial Differential Equations Aras Faim To cite tis version: Aras Faim. A Probabilistic Numerical Metod for Fully Non-linear Parabolic Partial
LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni
LEM WORKING PAPER SERIES Non-linear externalities in firm localization Giulio Bottazzi Ugo Gragnolati * Fabio Vanni Institute of Economics, Scuola Superiore Sant'Anna, Pisa, Italy * University of Paris
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
Lecture 7: Overdispersion in Poisson regression
Lecture 7: Overdispersion in Poisson regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction Modeling overdispersion through mixing Score test for
( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( )
3 3 Vol.3.3 0 3 JournalofHarbinEngineeringUniversity Mar.0 doi:0.3969/j.isn.006-7043.0.03.0 ARIMA GARCH,, 5000 :!""#$%&' *+&,$-.,/0 ' 3$,456$*+7&'89 $:;,/0 ?4@A$ ARI MA GARCHBCDE FG%&HIJKL$ B
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Errata (Includes critical corrections only for the 1 st & 2 nd reprint)
Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Pierre Coucheney, Patrick Maillé, runo Tuffin To cite this version: Pierre Coucheney, Patrick
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,
CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital
C RAM 3002 C RAROC Rsk-Adjusted Return on Captal C C RAM Rsk-Adjusted erformance Measure C RAM RAM Bootstrap RAM C RAROC RAM Bootstrap F830.9 A CAM 2 CAM 3 Value at Rsk RAROC Rsk-Adjusted Return on Captal
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Financial Economic Theory and Engineering Formula Sheet
Financial Economic heory and Engineering Formula Sheet 2011 Morning and afternoon exam booklets will include a formula package identical to the one attached to this study note. he exam committee felt that
Mantel & Haenzel (1959) Mantel-Haenszel
Mantel-Haenszel 2008 6 12 1 / 39 1 (, (, (,,, pp719 730 2 2 2 3 1 4 pp730 746 2 2, i j 3 / 39 Mantel & Haenzel (1959 Mantel N, Haenszel W Statistical aspects of the analysis of data from retrospective
!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8
ˆ ˆ Œ Ÿ Š Œ ƒˆ Šˆ ˆ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ
Ó³ Ÿ. 2015.. 12, º 2(193).. 281Ä298 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ ˆ ˆ Œ Ÿ Š Œ ƒˆ Šˆ ˆ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ.. Ê 1 Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ± Í Œ Ì ²ÖÉ É ±μ É μ É Í ( ƒ) μ μ²ö É μ μ ÉÓ É ²Ó- ÊÕ ² ±Í
Answers to practice exercises
Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)
Ax = b. 7x = 21. x = 21 7 = 3.
3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
ˆ ˆ œ - ˆ Š ˆ Š ˆ ˆ Œ ˆ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2016.. 47.. 2 ˆ ˆ œ - ˆ Š ˆ Š ˆ ˆ Œ ˆ Ÿ ˆ Œ.. ŠÊ±² 1, ƒ. ƒ. ³Ö 1,,.. Éμ ±μ 1,2 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 2 μ³ ± μ² É Ì Î ± Ê É É, μ³ ±, μ Ö ˆ 390 ˆ Š ˆ ˆ 392 ˆ ˆ Š ƒ 397 œ - ˆ Po ˆ Rn 408
FORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
!"#$ % &# &%#'()(! $ * +
,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))