1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες"

Transcript

1 Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών θα πρέπει να είναι ίσο με το άθροισμα των εξερχόμενων A f f f D 4 B f f5 f6 Οπότε για το παραπάνω δίκτυο ισχύει: A 500= f f f B f f f C f f f 00 D f f f 4 5 το οποίο είναι ένα σύστημα 4 γραμμικών εξισώσεων με έξι αγνώστους f, f, f, f4, f 5, f 6 Η λύση του θα οδηγήσει σε μία απειρία λύσεων όπου οι από αυτούς τους αγνώστους θα εξαρτώνται από την επιλογή των τριών άλλων: f 400 f f 4 6 f f f 4 5 f 00 f f 5 6 όπου τα,, f παίζουν το ρόλο των παραμέτρων f4 f5 6 Σε αρμονία με το φυσικό πρόβλημα, η επιλογή των παραμέτρων μπορεί να υπόκεινται σε περιορισμούς που πηγάζουν από τη φυσική του προβλήματος όπως ότι τα,,,,, f είναι θετικά Αυτό μας οδηγεί στους περιορισμούς : f f f f4 f5 6 f f f 4 6 f Η γεωμετρία των συστημάτων γραμμικών εξισώσεων Έστω το σύστημα: 00 C y y 5 Αλγεβρικά λύνοντας τη μία εξίσωση ως προς τον ένα άγνωστο και αντικαθιστώντας στην άλλη μπορούμε εύκολα να βρούμε τη λύση του ( y, ) (,)

2 Μπορούμε να δούμε γεωμετρικά το σύστημα όπου κάθε εξίσωση (γραμμή) αντιστοιχεί σε μία ευθεία του επιπέδου Οι συντεταγμένες του σημείου τομής των δύο γραμμών αποτελούν τη λύση y5 6 4 ( y, ) (,) - - y - -4 Σε ένα σύστημα y z 5 4z 6y 7y z 9 κάθε γραμμή (εξίσωση) αναπαριστάται στο χώρο ως ένα επίπεδο και η λύση είναι το σημείο τομής των τριών επιπέδων Συστήματα γραμμικών εξισώσεων με ιδιομορφίες Όταν ένα σύστημα έχει μία ή περισσότερες λύσεις ονομάζεται συμβιβαστό ενώ όταν δεν έχει λύση ονομάζεται ασυμβίβαστο Έστω το σύστημα:

3 u v w 6 uw u v 4w 6 Εάν προσθέσω κατά μέλη την πρώτη και τη δεύτερη εξίσωση και αφαιρέσω την τρίτη οδηγούμαι στη σχέση =0 Το σύστημα είναι ασυμβίβαστο και στο χώρο τα τρία επίπεδα δεν έχουν ένα κοινό σημείο Εάν αλλάξω λίγο το σύστημα u v w 6 uw u v 4w 7 και προσθέσω κατά μέλη την πρώτη και τη δεύτερη εξίσωση και αφαιρέσω την τρίτη οδηγούμαι στη σχέση 0=0 Το σύστημα είναι συμβιβαστό έχει άπειρες λύσεις και στο χώρο τα τρία επίπεδα τέμνονται σε μία ευθεία ή ταυτίζονται Μία ιδιαίτερη περίπτωση είναι το ομογενές σύστημα (στο δεξιό μέλος έχουμε μηδέν): u v w 0 uw0 u v 4w 0 Ένα τέτοιο σύστημα είναι πάντα συμβιβαστό μιας και η μηδενική λύση πάντα το ικανοποιεί Μπορεί όμως η λύση αυτή να μην είναι μοναδική αλλά να έχουμε άπειρες λύσεις, 4 Η μέθοδος απαλοιφής Gauss Έστω ότι έχουμε ένα σύστημα n εξισώσεων με m αγνώστους: a a a b m m a a a b m m a a a b n n nm m n Θεωρούμε τον επαυξημένο πίνακα του συστήματος: a a a a m b a a a am b a a a am b an an an anm b n Ένας (τέτοιος) πίνακας ονομάζεται κλιμακωτός όταν

4 Α) οι μηδενικές γραμμές αν υπάρχουν βρίσκονται μετά τις μη μηδενικές στο τέλος (κάτω μέρος) του πίνακα Β) Το οδηγό στοιχείο κάθε γραμμής (πρώτο μη μηδενικό στοιχείο της) βρίσκεται τουλάχιστον μία θέση δεξιότερα από τον οδηγό της προηγούμενης * * * * * 0 * * * * 0 * * * * * * Στη βιβλιογραφία ο κλιμακωτός πίνακας ονομάζεται και ως γ-κλιμακωτός και σε κάποιους ορισμούς ζητείται το οδηγό στοιχείο να είναι Ένας πίνακας ονομάζεται ανοιγμένος κλιμακωτός (ή σ-κλιμακωτός) όταν Α) είναι κλιμακωτός Β) κάθε οδηγός είναι ίσος με Γ) κάθε στήλη που περιέχει οδηγό έχει όλα τα άλλα στοιχεία της μηδενικά Για παράδειγμα, οι πίνακες A, A δεν είναι κλιμακωτοί 0 Ο πίνακας 0 είναι κλιμακωτός Αυτός δεν είναι ανηγμένος κλιμακωτός, γιατί το στοιχείο που βρίσκεται πάνω από το της δεύτερης γραμμής δεν είναι Ο 0 είναι ανηγμένος κλιμακωτός Από τους πίνακες , 0 0, ο πρώτος και τρίτος είναι ανηγμένοι κλιμακωτοί, ενώ ο δεύτερος είναι κλιμακωτός αλλά όχι ανηγμένος κλιμακωτός Σε έναν πίνακα μπορούμε να εφαρμόσουμε γραμμοπράξεις πινάκων (στοιχειώδεις μετασχηματισμούς γραμμών) Εναλλαγή δύο γραμμών (Γ i Γ j ) Πολλαπλασιασμό μίας γραμμής με ένα μη μηδενικό αριθμό κ (Γ i κ Γ i ) 4

5 Αντικατάσταση μίας γραμμής με το άθροισμα αυτής της γραμμής και ενός πολλαπλάσιου μίας άλλης (Γ i Γ i +k Γ j ) Δύο πίνακες ονομάζονται γραμμοϊσοδύναμοι όταν ο ένας προέρχεται από τον άλλο εφαρμόζοντας γραμμοπράξεις Τα συστήματα που αντιστοιχούν σε γραμμοισοδύναμους πίνακες είναι ισοδύναμα (έχουν τις ίδιες λύσεις) Κατά την επίλυση γραμμικού συστήματος με τη μέθοδο του Gauss εφαρμόζουμε στον επαυξημένο πίνακα του συστήματος γραμμοπράξεις πινάκων ώστε να τον μετατρέψουμε σε κάποιον κλιμακωτό πίνακα Ας δούμε το σύστημα: Το οποίο έχει επαυξημένο πίνακα Εφαρμόζουμε τις γραμμοπράξεις u v w 5 4u 6v u 7v w Ο τελευταίος πίνακας αντιστοιχεί με το ακόλουθο, ισοδύναμο προς το αρχικό, σύστημα: u v w 5 8v w w Η λύση αυτού του συστήματος είναι εύκολη, μιας και η τελευταία εξίσωση μας δίνει άμεσα τη τιμή της w Αντικαθιστώντας τη λύση αυτή στη δεύτερη εξίσωση μπορούμε να βρούμε τη τιμή της λύσης του δεύτερου αγνώστου v Τώρα, είναι απλό να αντικαταστήσουμε τις τιμές που έχουμε βρει στην πρώτη εξίσωση μπορούμε να βρούμε τελικά την τιμή της λύσης του τελευταίου αγνώστου u w 8v w 4 v u 5 v w 5 u Η αναδρομική αυτή διαδικασία ονομάζεται προς τα πίσω αντικατάσταση και μπορεί να εφαρμοστεί όταν ο επαυξημένος πίνακας είναι σε κλιμακωτή μορφή Για να εφαρμόσουμε τη μέθοδο του Gauss ξεκινάμε από την πρώτη γραμμή του επαυξημένου πίνακα Το οδηγό στοιχείο της γραμμής, δηλαδή πρώτο μη μηδενικό στοιχείο της, θα πρέπει να είναι στην πρώτη στήλη Εάν δεν συμβαίνει αυτό κάνουμε εναλλαγή γραμμών ώστε να εμφανίζεται μη μηδενικό στοιχείο στη θέση της πρώτης γραμμής και πρώτη στήλης Στη συνέχεια κάνοντας τις 5

6 επιτρεπτές γραμμοπράξεις μηδενίζουμε τα στοιχεία του επαυξημένου πίνακα που βρίσκονται στην πρώτη στήλη κάτω από το οδηγό στοιχείο της πρώτης γραμμής Συνεχίζουμε στη δεύτερη γραμμή όπου εντοπίζουμε το οδηγό στοιχείο της Εάν αυτό βρίσκεται στη δεύτερη στήλη (το πρώτο στοιχείο της το έχουμε ήδη μηδενίσει) εργαζόμαστε με γραμμοπράξεις ώστε να κάνουμε όλα τα στοιχεία που βρίσκονται στην ίδια στήλη με το οδηγό στοιχείο και κάτω από αυτό μηδενικά Και συνεχίζουμε στην επόμενη γραμμή Εάν όμως για τη δεύτερη γραμμή το πρώτο μη μηδενικό στοιχείο βρίσκεται σε άλλη στήλη (πχ τρίτη, τέταρτη) εξετάζουμε εάν στα υπόλοιπα στοιχεία της δεύτερης στήλης προς τα κάτω συμπεριλαμβάνεται κάποιο μη μηδενικό Στην περίπτωση αυτή με κατάλληλη εναλλαγή γραμμών το κάνουμε οδηγό στοιχείο της δεύτερης γραμμής Στο ακόλουθο παράδειγμα θα πρέπει να εναλλάξουμε τη δεύτερη με την τρίτη γραμμή Έτσι συνεχίζουμε με τη διαδικασία γραμμοπράξεων ώστε να μηδενίσουμε (εάν υπάρχουν) και τα άλλα μη μηδενικά στοιχεία της στήλης κάτω από αυτό το νέο οδηγό στοιχείο Υπάρχει περίπτωση με τις γραμμοπράξεις που κάναμε με το οδηγό στοιχείο της πρώτης γραμμής να έχουν μηδενιστεί το δεύτερο στοιχείο της δεύτερης στήλης και τα στοιχεία που βρίσκονται κάτω από αυτά (και ίσως και το τρίτο στοιχείο της δεύτερης στήλης και τα στοιχεία που βρίσκονται κάτω από αυτά κλπ) Σε μία τέτοια περίπτωση αναζητούμε στη δεύτερη γραμμή το πρώτο μη μηδενικό στοιχείο στη στήλη του οποίου κάτω από αυτό δεν υπάρχουν μόνο μηδενικά στοιχεία Θεωρούμε αυτό ως οδηγό στοιχείο της γραμμής και μηδενίζουμε με γραμμοπράξεις τα στοιχεία του πίνακα που βρίσκονται στην ίδια στήλη με αυτό και κάτω από αυτό Στο ακόλουθο παράδειγμα θα πρέπει να θεωρήσουμε ως οδηγό στοιχείο της δεύτερης γραμμής το πού βρίσκεται στη δεύτερη γραμμή αλλά στην τρίτη στήλη Τη διαδικασία που κάναμε με τη δεύτερη γραμμή την επαναλαμβάνουμε και για τις επόμενες Έτσι δημιουργούμε βήμα-βήμα τον ζητούμενο κλιμακωτό πίνακα Όπως έχουμε αναφέρει τα συστήματα που αντιστοιχούν σε γραμμοισοδύναμους πίνακες είναι ισοδύναμα (έχουν τις ίδιες λύσεις) και σε κάθε φάση της διαδικασίας με τις γραμμοπράξεις δημιουργούμε έναν γραμμοισοδύναμο με τον προηγούμενο πίνακα Οπότε, το σύστημα που αντιστοιχεί στον επαυξημένο πίνακα σε κάθε φάση της διαδικασίας Gauss έχει τις ίδιες λύσεις με το αρχικό μας σύστημα 5 Τεχνικές στη διαδικασία Gauss και συστήματα με ιδιομορφίες Στη διαδικασία της απαλοιφής Gauss διευκολύνει τις πράξεις μας εάν το οδηγό στοιχείο που θα χρησιμοποιήσουμε για να μηδενίσουμε τα υπόλοιπα στοιχεία της στήλης κάτω από αυτό είναι μονάδα Στο συγκεκριμένο παράδειγμα: 6

7 5 * * * * * 5 * 0 0 * 0 4 * * * 0 4 * 0 0 * Η πρώτη εναλλαγή των γραμμών μας οδήγησε στο να έχουμε μονάδα ως οδηγό στοιχείο Επίσης για να ξεπεράσουμε το πρόβλημα μηδενικού οδηγού στοιχείου χρησιμοποιούμε πάλι εναλλαγή γραμμών, όπως βλέπουμε στη δεύτερη εναλλαγή που κάναμε (Τα * μπορεί να είναι οποιοσδήποτε αριθμός) Στην περίπτωση που με την εναλλαγή γραμμών δεν είναι δυνατό να έχουμε οδηγό στοιχείο μονάδα τότε διαιρούμε με τον κατάλληλο αριθμό όλα τα στοιχεία της γραμμής με την οποία εργαζόμαστε ώστε να δημιουργηθεί μονάδα στη θέση του οδηγού στοιχείου Για παράδειγμα: 5 * 5 * 0 4 / * * Πολλές φορές καλούμαστε να λύσουμε συστήματα στα οποία εμφανίζονται μία ή περισσότερες παράμετροι Θα πρέπει να διερευνήσουμε για ποιες τιμές της ή των παραμέτρων το σύστημα έχει μία, άπειρες ή καμία λύση Εάν το οδηγό στοιχείο με το οποίο εργαζόμαστε εξαρτάται από την παράμετρο μπορούμε να παρακάμψουμε τη κατάσταση αυτή με την κατάλληλη εναλλαγή γραμμών, όπως φαίνεται παρακάτω: 5 * 5 * 5 * / 4 / 6 ( a4) 0 a 4 * * 0 4 * * 0 a4 * 0 a4 * Στην περίπτωση που επιλέξουμε να κάνουμε μονάδα το συγκεκριμένο οδηγό στοιχείο διαιρώντας με την έκφραση που περιέχει την παράμετρο θα πρέπει να θεωρήσουμε ότι το οδηγός στοιχείο δεν είναι μηδενικό και να συνεχίσουμε 5 5 * * /( a4) 6 0 a 4 * a 4 0 * a * * Στη συνέχεια θα πρέπει να εξετάσουμε το ισοδύναμο σύστημα για τις τιμές της παραμέτρου που μηδενίζει το οδηγός στοιχείο δηλαδή εδώ για a 4 Επίσης στην ακόλουθη περίπτωση: 5 * * 0 0 * * * 5 * 0 0 * * * μπορούμε να οδηγηθούμε σε συστήματα με άπειρες λύσεις πχ 7

8 4 4 4 / / αφού το ισοδύναμο σύστημα είναι το y z 4 z από όπου έχουμε ότι z και 4 y y Η κάθε επιλογή της τιμής του y μας δίνει μία νέα λύση του συστήματος, οπότε αφού έχουμε άπειρες επιλογές θα έχουμε άπειρο αριθμό λύσεων ή μπορούμε να έχουμε ασυμβίβαστα συστήματα πχ / αφού το ισοδύναμο σύστημα είναι το y z 4 z 0z από όπου έχουμε ότι 0z, το οποίο δεν μπορεί να ισχύσει για κανένα z Λυμένες Ασκήσεις στα Συστήματα: Να λυθεί το σύστημα y z 4 y z 5y4z 0BΛύση Ο επαυξημένος πίνακας είναι Αφού μηδενίσαμε τα στοιχεία της πρώτης στήλης που ευρίσκονται κάτω από τη διαγώνιο, συνεχίζουμε με τα στοιχεία της δεύτερης στήλης

9 Παρατηρούμε ότι ο τελευταίος πίνακας είναι σε κλιμακωτή μορφή, πράγμα που σημαίνει ότι το αντίστοιχο σύστημα y z 4 y4z 7 z επιλύεται εύκολα Πράγματι, από την τρίτη εξίσωση βρίσκουμε z, οπότε αντικαθιστώντας στην δεύτερη βρίσκουμε y, και από την πρώτη Τελικά, το σύστημα έχει τη μοναδική λύση (, y, z) (,,) Ας δούμε ένα παράδειγμα όπου το σύστημα είναι ασυμβίβαστο Να λυθεί το y z 7 y z 5 y 4z BΛύση Ο επαυξημένος πίνακας είναι Με στοιχειώδεις μετασχηματισμούς γραμμών Το αντίστοιχο σύστημα είναι y z 7yz 0 0z που είναι ασυμβίβαστο λόγω της εξίσωσης 0z Τέλος ας δούμε ένα παράδειγμα όπου υπάρχουν άπειρες λύσεις Να λυθεί το σύστημα 9

10 y z 6 y 4z 4 y z 4 BΛύση Ο επαυξημένος πίνακας είναι Με στοιχειώδεις μετασχηματισμούς γραμμών εύκολα βρίσκουμε ότι ο πίνακας μετατρέπεται σε κλιμακωτή μορφή Το αντίστοιχο σύστημα είναι y z 6 5y0z 0 0z 0 Από την δεύτερη εξίσωση βρίσκουμε y z, οπότε η πρώτη δίνει z Τελικά έχουμε τις άπειρες λύσεις (, y, z) ( z, z, z), όπου το z διατρέχει τους πραγματικούς αριθμούς (το z είναι παράμετρος ή ελεύθερη μεταβλητή ) Για παράδειγμα, αν z =, η αντίστοιχη λύση είναι (,4,) 4 Ομογενές σύστημα Δίνεται το σύστημα BΛύση Με στοιχειώδεις μετασχηματισμούς γραμμών εύκολα βρίσκουμε ότι ο επαυξημένος πίνακας του συστήματος μετατρέπεται σε κλιμακωτή μορφή από την τελευταία γραμμή έχουμε Οπότε οι δύο πρώτες εξισώσεις είναι οι 4 0, 4 0 από όπου προκύπτουν 4, 4 από όπου προκύπτει η μονοπαραμετρική απειρία λύσεων) , 4 0

11 5 Διερεύνηση συστήματος Δίνεται το σύστημα Να βρεθούν οι τιμές του λ για τις οποίες το παραπάνω σύστημα έχει: (i) μοναδική λύση, (ii) άπειρες λύσεις, (iii) καμία λύση και να βρεθούν οι λύσεις όποτε υπάρχουν Λύση Θεωρούμε τον επαυξημένο πίνακα του συστήματος στον οποίο εφαρμόζουμε στοιχειώδεις μετασχηματισμούς: ( ) ( )( ) Επομένως, το σύστημα έχει : Μοναδική λύση όταν και την,, ( ) ( ) η οποία προκύπτει με εφαρμογή της προς τα πίσω αντικατάστασης Άπειρες λύσεις όταν (Τρίτη γραμμή 0=0) Αντικαθιστώντας έχουμε από τη δεύτερη εξίσωση 4 Οπότε από την πρώτη εξίσωση αντικαθιστώντας παίρνουμε 5 Δηλαδή η λύση είναι η μονοπαραμετρική οικογένεια 5 4, Καμία λύση όταν λ=- (Τρίτη γραμμή 0=5) 6 Ομογενές σύστημα διερεύνηση Δίνεται το σύστημα

12 Να διερευνηθεί και να λυθεί το σύστημα Λύση Ο επαυξημένος πίνακας 0 a του συστήματος μετά στοιχειώδεις μετασχηματισμούς γραμμών παίρνει τη μορφή a a 0 Το αντίστοιχο σύστημα είναι το 0 ( a ) 0 ( a) 0 Για a το σύστημα έχει φανερά μοναδική λύση τη μηδενική Για a το σύστημα παίρνει τη μορφή: 0 0 Από όπου έχουμε και 0 Δηλαδή η απειρία λύσεων είναι η [ ] =[ ] 7 Θεωρείστε το παρακάτω σύστημα: 6 y 5y 6y 6z 5z z 6 Βρείτε τιμές των α και β ώστε το σύστημα αυτό: (ι) Να μην έχει καμία λύση και (ιι) να έχει άπειρες λύσεις ιιι) έχει λύση και σε κάθε περίπτωση να προσδιοριστούν οι λύσεις (εφόσον υπάρχουν) BΛύση Θεωρούμε τον επαυξημένο πίνακα του συστήματος στον οποίο εφαρμόζουμε στοιχειώδεις μετασχηματισμούς:

13 i) Για α = - και 8 το σύστημα δεν θα έχει καμία λύση ii) Για α = - και για β = -8 το σύστημα θα έχει άπειρες λύσεις Για την απειρία λύσεων από τη δεύτερη γραμμή του πίνακα έχουμε y0 z και στη συνέχεια από την πρώτη y z 0 z z 5z 8 iii) Για a το σύστημα έχει λύση από την τρίτη γραμμή έχουμε z από τη δεύτερη γραμμή του πίνακα έχουμε y0 z0 και στη συνέχεια από την πρώτη y z 8 Για ποιες τιμές του k το επόμενο σύστημα ) έχει ακριβώς μια λύση, ) δεν έχει λύσεις, ) έχει άπειρες λύσεις; y z 4y kz 4 4 ( k 5) y ( k ) z 6 BΛύση Στο σύστημα μας εφαρμόζουμε απαλοιφή Gauss 4 k 4 0 k 4 4 k 5 k 6 0 k k 7 ( k ) 0 k 0 0 k k 4 k k k 4 k 0 0 ( k 4)( k ) k k k

14 Επομένως το σύστημα έχει ακριβώς μια λύση όταν k 4 και k την z k 4, y k 4 και Το σύστημα έχει άπειρες λύσεις όταν k την z z, y 4z και 5z, Τέλος, το σύστημα δεν έχει λύσεις όταν k 4 9 Για ποιες τιμές του k το επόμενο σύστημα ) έχει ακριβώς μια λύση, ) δεν έχει λύσεις, ) έχει άπειρες λύσεις; ( ) y 6 y 5 Σε κάθε περίπτωση που υπάρχουν λύσεις προσδιορίστε τις BΛύση Στο σύστημα μας εφαρμόζουμε απαλοιφή Gauss ( )( ) ( ) Εάν 0,, έχουμε μοναδική λύση 5 y, ( k ) y ( k ) k k k Εάν το σύστημα είναι αδύνατο και δεν έχει λύσεις Εάν 0 ή, y T y, y έχουμε απειρία λύσεων την, y T y, y T για 0 Δίνεται το σύστημα T για 0 και την a a a a b 4 4 b Να βρεθούν τα a και b για τα οποία το παραπάνω σύστημα έχει: (i) μοναδική λύση, (ii) άπειρες λύσεις και (iii) καμία λύση Λύση a 0 b a 0 b a 0 b a a a 4 b 0 a 4 b 0 a b 0 a b 0 0 b b Από τον τελευταίο πίνακα επιγραμματικά συμπεραίνουμε τα εξής 4

15 (i) Για a 0 a b το σύστημα έχει άπειρες λύσεις b b Το σύστημα δεν έχει καμία λύση (ii) Για a 0 a b το σύστημα έχει άπειρες λύσεις b b Το σύστημα έχει μοναδική Οπότε πιο αναλυτικά (i) Το σύστημα έχει μοναδική λύση όταν b και a 0 την b b,, a a που προκύπτει από την προς τα πίσω αντικατάσταση (ii) Το σύστημα έχει άπειρες λύσεις όταν b και a 0 ο επαυξημένος πίνακας γίνεται Από όπου φανερά έχουμε οι άλλοι άγνωστοι μπορούν να πάρουν οποιαδήποτε τιμή Άρα το σύστημα έχει ως λύση την διπαραμετρική οικογένεια,, T,, T ) (iii) όταν b και a 0 ο επαυξημένος πίνακας γίνεται a 0 0 a Από όπου προκύπτει η απειρία λύσεων που ικανοποιεί την a (iv) Το σύστημα δεν έχει καμία λύση όταν b και a 0 διότι η τελευταία εξίσωση δίνει = ενώ η πρώτη, που είναι διάφορο του Mε τη χρήση επαυξημένου πίνακα και γραμμοπράξεων να βρεθεί, για τις διάφορες τιμές της παραμέτρου a, πότε το σύστημα έχει μία, άπειρες ή καμία λύση; ( a ) y z a( a ) Όταν υπάρχουν λύσεις να βρεθούν a y z a a ( ) ( ) y a z a a ( ) ( ) Λύση Θεωρούμε τον επαυξημένο πίνακα του συστήματος και εφαρμόζουμε γραμμοπράξεις: 5

16 a a ( a ) a 0 ( )( ) 0 0 a ( a ) a( a )( a a ) a a( a ) a a ( a ) a a ( a ) a a ( a ) ( a) a a ( a ) a( a ) a ( a) a a a a a a a a ( a )( a) 0 a a( a ) a( a )( a a ) a a ( a ) 0 a a a ( a )( a) 0 0 a( a ) a( a )( a a a) Εάν α=0 ο πίνακας γίνεται από όπου έχουμε μία διπαραμετρική απειρία λύσεων y z y z Δηλαδή y y y z 0 z z 0 Εάν α=- στον πίνακα η τελευταία γραμμή δίνει 0z 4 οπότε το σύστημα δεν έχει λύση Εάν a 0, Έχουμε μία λύση: a a ( a ) a a ( a ) 0 a a a ( a )( a) 0 a( a )( a) ( a )( a a a) 0 0 a a a a ( a) a που δίνει λύση a 4 a a, a a, a y z a a a a a a Ένας ιδιοκτήτης εστιατορίου σε μία αίθουσα έχει τραπέζια τεσσάρων ατόμων, y τραπέζια έξι ατόμων και z τραπέζια οκτώ ατόμων και συνολικό αριθμό τραπεζιών 0 Όταν όλες οι θέσεις είναι κατειλημμένες η αίθουσα χωρά 08 πελάτες Απομονώνοντας ένα τμήμα της αίθουσας και χρησιμοποιώντας μόνο τα μισά τραπέζια τεσσάρων ατόμων, τα μισά έξι ατόμων και το ένα τέταρτο τραπεζιών οκτώ ατόμων το εστιατόριο μπορεί να φιλοξενήσει 46 πελάτες όταν όλες οι θέσεις στα τραπέζια είναι κατειλημμένες Καθορίστε τα,y και z Λύση Τα παραπάνω στοιχεία μας οδηγούν στο ακόλουθο σύστημα: 6

17 y z 0 4 6y 8z 08 y z Κάνοντας τις κατάλληλες απλοποιήσεις οδηγούμαστε στο σύστημα: Ο επαυξημένος πίνακας είναι y z 0 y 4z 54 y z Με στοιχειώδεις μετασχηματισμούς γραμμών εύκολα βρίσκουμε ότι ο πίνακας μετατρέπεται σε κλιμακωτή μορφή Το αντίστοιχο σύστημα είναι y z 0 yz 4 z 8 το οποίο επιλύεται εύκολα Πράγματι, από την τρίτη εξίσωση βρίσκουμε z 4, οπότε αντικαθιστώντας στην δεύτερη βρίσκουμε y 6, και από την πρώτη 0 Τελικά, το σύστημα έχει τη μοναδική λύση (, y, z) (0, 4,6) Ένα προτεινόμενο δίκτυο καναλιών ποτίσματος περιγράφεται από το ακόλουθο διάγραμμα Σε αυτό το διάγραμμα βλέπουμε και τις ροές στους κόμβους A,B,C και D κατά τις περιόδους υψηλότερης ζήτησης (peak demand) Υπολογίστε τις πιθανές ροές Εάν το κανάλι BC είναι κλειστό, βρείτε το εύρος ροής που πρέπει να διατηρηθεί στο κανάλι AD έτσι ώστε κανένα κανάλι να μην έχει ροή μεγαλύτερη του 0 7

18 A B 0 f f 55 5 C f f 4 f 5 Λύση Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών θα πρέπει να είναι ίσο με το άθροισμα των εξερχόμενων Οπότε για το παραπάνω δίκτυο ισχύει: A f f =55 4 B f f f 0 C f f 5 5 D f f f το οποίο είναι ένα σύστημα 4 γραμμικών εξισώσεων με έξι αγνώστους f, f, f, f4, f 5 Ο επαυξημένος πίνακας του συστήματος είναι: Το σύστημα που αντιστοιχεί στον τελευταίο πίνακα είναι το εξής: f f =55 f f f 5 f 0 f D 5 Από όπου έχουμε : 8

19 4 f 5 f f 5 5 f f 0 f f f f 5 Και καταλήγουμε στην την απειρία λύσεων: f =55-f f 55-f4 f 0 f f 5 4 f 5 f 5 f f 4 4 f 5 f 5 Εάν το κανάλι BC είναι κλειστό έχουμε ότι f 0 οπότε υποχρεωτικά f5 5 Το εύρος ροής στο κανάλι AD είναι f 4 Εάν επιθυμούμε κανάλι να μην έχει ροή μεγαλύτερη του 0 τότε f 0, f 0, f 0, f4 0, f5 0 Οπότε από την και από την f 0 55-f 0 5 f 4 4 f f 0 5 f 4 4 Συνοψίζοντας έχουμε ότι θα πρέπει 5 f4 0 4 Ένας ασθενής πρέπει να λαμβάνει καθημερινά 5 μονάδες βιταμίνης Α, μονάδες βιταμίνης Β και μονάδες βιταμίνης C Στην αγορά υπάρχουν τρεις διαφορετικές εταιρείες που παράγουν χάπια με συνδυασμούς βιταμίνης A,B και C Ο ακόλουθος πίνακας μας παρέχει τις μονάδες ανά βιταμίνη που περιέχει το χάπι κάθε εταιρείας Βιταμίνη Εταιρεία Α Β C Ι 4 ΙΙ ΙΙΙ 0 Βρείτε όλους τους συνδυασμούς από επιλογές χαπιών οι οποίες να παρέχουν ακριβώς την αναγκαία ποσότητα βιταμινών (Δεν επιτρέπεται να λαμβάνονται μέρος χαπιών) Στη συνέχεια καθορίστε τον αριθμό χαπιών από κάθε εταιρεία που πρέπει να λαμβάνει ο ασθενής ώστε να ελαχιστοποιείται το ημερήσιο κόστος θεραπείας εάν το χάπι της εταιρείας Ι κοστίζει λεπτά του ευρώ, το χάπι της εταιρείας ΙΙ λεπτά και το χάπι της εταιρείας ΙΙΙ 5 λεπτά του ευρώ Λύση Έστω ότι ο ασθενής λαμβάνει χάπια της εταιρείας Ι, y της εταιρείας ΙΙ και z της εταιρείας ΙΙΙ Από τα στοιχεία του πίνακα οδηγούμαστε στο σύστημα: 9

20 y 0z 5 y z 4 y z Ο επαυξημένος πίνακας είναι Με στοιχειώδεις μετασχηματισμούς γραμμών εύκολα βρίσκουμε ότι ο πίνακας μετατρέπεται σε κλιμακωτή μορφή Το αντίστοιχο σύστημα είναι y 5 y z το οποίο έχει την απειρία λύσεων: (, y, z) (5 y, y, y) Επειδή όμως μιλάμε για χάπια τα θα πρέπει να είναι μη αρνητικά Οπότε, λαμβάνοντας υπόψη τη φυσική του προβλήματος και την παραπάνω λύση συμπεραίνουμε ότι 0 y 5 Το ημερήσιο κόστος θεραπείας, με βάση τα κόστη κάθε χαπιού, είναι C y 5z Αντικαθιστώντας την παραπάνω λύση έχουμε ότι C (5 y) y 5( y) 0 4y Φανερά αυτή η ποσότητα ελαχιστοποιείται όταν y 0 Οπότε η ιδανική, από πλευράς κόστους, επιλογή χαπιών είναι η ακόλουθη: (, y, z) (5,0,) 5 Μια βιομηχανία κατασκευής φορητών ηλεκτρονικών υπολογιστών χρησιμοποιεί τέσσερα ρομποτικά μηχανικά συστήματα A,B,C,D για την συναρμολόγηση πέντε τύπων laptop T,T,T,T4, T5 Ο αριθμός των ωρών που χρησιμοποιείται κάθε σύστημα για την συναρμολόγηση ενός laptop κάθε τύπου δίνεται από τον πίνακα: T T T T4 T5 Α B 0 C 0 D 0 0 Nα βρεθεί πόσα laptop από κάθε τύπο μπορούν να συναρμολογηθούν (γραμμή παραγωγής) μέσα σε ένα οκτάωρο λειτουργίας της ημερήσιας βάρδιας, δεδομένου ότι η βιομηχανία κατάφερε όλα τα ρομποτικά μηχανήματα να χρησιμοποιούνται συνεχώς και τις 8 ώρες μίας βάρδιας Σημείωση θα πρέπει να λάβετε υπόψη ότι μπορεί να βρείτε περισσότερες της μίας λύσεις και ότι οι άγνωστοι αντιπροσωπεύουν φυσικές ποσότητες 0

21 Λύση Μέσα σε ένα 8-ωρο συναρμολογούνται laptop τύπου T laptop τύπου T laptop τύπου T 4 laptop τύπου T4 5 laptop τύπου T5 Κάθε ρομποτικό μηχάνημα εργάζεται και τις 8 ώρες οπότε οδηγούμαστε στο σύστημα: Σχηματίζουμε τον επαυξημένο πίνακα (Α Β) του συστήματος και τον μετασχηματίζουμε στην κλιμακωτή του μορφή: A B / ( ) 4 8 ( ) Κάνοντας προς τα πίσω αντικατάσταση έχουμε: ( ) ( ) (4 ) ( ) ( ) Επειδή όμως τα,,, 4, 5 παριστάνουν φυσικά μεγέθη, 0, 0, 0, 0, 0, άρα

22 Συνοψίζοντας έχουμε 5 δηλαδή έχουμε δυνατότητες γραμμών παραγωγής μία για 5 και μία για 5 Για την 5 έχουμε τη λύση Για την 5 έχουμε τη λύση ΠΑΡΑΤΗΡΗΣΗ: Το παρόν υλικό δεν αποτελεί αυτόνομο διδακτικό υλικό, βασίζεται στο σύγγραμμα που διανέμεται και στην προτεινόμενη βιβλιογραφία του μαθήματος Το περιεχόμενο του αρχείου απλά αποτελεί περίγραμμα των παραδόσεων του μαθήματος Αποτελεί υλικό της διδασκαλίας του μαθήματος από το διδάσκοντα για δική του χρήση και παρακαλώ να μη χρησιμοποιηθεί και να μην αναπαραχθεί και διανεμηθεί για άλλο σκοπό

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες,

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, παριστάνεται με την εξής ορθογώνια διάταξη: α11 α12 α1n α21 α22 α2n A = αm1 αm2 αmn Ορισμός 2: Δύο πίνακες Α και Β είναι ίσοι, και γράφουμε

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Μέθοδοι επίλυσης γραμμικού συστήματος χ Γραφική επίλυση Σχεδιάζουμε τις ευθείες που αντιπροσωπεύουν οι εξισώσεις του συστήματος. Αν: - οι δύο ευθείες τέμνονται, τότε το σύστημα έχει

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

ΑΝΙΣΩΣΕΙΣ. 3.1 ΑΝΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Οι ανισώσεις: αx + β > 0 και αx + β < 0

ΑΝΙΣΩΣΕΙΣ. 3.1 ΑΝΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Οι ανισώσεις: αx + β > 0 και αx + β < 0 3 ΝΙΣΩΣΕΙΣ 31 ΝΙΣΩΣΕΙΣ 1 ου ΒΘΜΟΥ Οι ανισώσεις: α + β > 0 και α + β < 0 Γνωρίσαμε στο Γυμνάσιο τη διαδικασία επίλυσης μιας ανίσωσης της μορφής α β 0 ή της μορφής α β 0, με α και β συγκεκριμένους αριθμούς

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 5 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j Κεφάλαιο Πίνακες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο Είδος Α 56 Είδος

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Φρ. Κουτελιέρης. Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων ΜΑΘΗΜΑΤΙΚΑ Ι

Φρ. Κουτελιέρης. Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων ΜΑΘΗΜΑΤΙΚΑ Ι Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων ΜΑΘΗΜΑΤΙΚΑ Ι Μαθηµατικά Ι Ακαδ. Έτος 2008-9 1/24 Κ2: Γραµµικά συστήµατα 1. Ορισµοί 2. Σύστηµα σε µορφή πίνακα 3. Επίλυση Crammer 4. Επίλυση Gauss

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

2.10. Τιμή και ποσότητα ισορροπίας

2.10. Τιμή και ποσότητα ισορροπίας .. Τιμή και ποσότητα ισορροπίας ίδαμε ότι η βασική επιδίωξη των επιχειρήσεων είναι η επίτευξη του μέγιστου κέρδους με την πώληση όσο το δυνατόν μεγαλύτερων ποσοτήτων ενός αγαθού στη μεγαλύτερη δυνατή τιμή

Διαβάστε περισσότερα

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση 4 Μονοτονία - Ακρότατα - Αντίστροφη Συνάρτηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Μονοτονία συνάρτησης Μια συνάρτηση f λέγεται: Γνησίως αύξουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Οκτωβρίου 006 Ηµεροµηνία παράδοσης της Εργασίας: 0 Νοεµβρίου 006.

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

Η Θεωρία που πρέπει να θυμάσαι!!!... b a

Η Θεωρία που πρέπει να θυμάσαι!!!... b a Κεφ. εξισώσεις ανισώσεις εξάσκησηεπανάληψη Τhe Ds that make a champion: Devotion, Desire, Discipline Η Θεωρία που πρέπει να θυμάσαι!!!... Μορφές Εξισώσεων Λύση ή ρίζα εξίσωσης Εξίσωση ου βαθμού ax + b

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ . ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΩΡΙΑ. Γραµµική εξίσωση µε δύο αγνώστους, y Λέγεται κάθε εξίσωση της µορφής α + βy = γ, µε α 0 ή β 0. Γραφική παράσταση γραµµικής εξίσωσης Κάθε γραµµική εξίσωση α + βy = γ παριστάνει

Διαβάστε περισσότερα

Εξισώσεις 2 ου βαθμού

Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Η εξίσωση της μορφής αχ 2 + βχ + γ = 0, α 0 λύνεται σύμφωνα με τον παρακάτω πίνακα. Δ = β 2 4αγ Η εξίσωση αχ 2 + βχ + γ = 0, α 0 αν Δ>0 αν Δ=0 αν Δ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 6 KΕΦΑΛΑΙΟ 3 ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ Η θεωρία μεγίστων και ελαχίστων μιας πραγματικής συνάρτησης με μια μεταβλητή είναι γνωστή Στο κεφάλαιο αυτό θα δούμε τη θεωρία μεγίστων και ελαχίστων

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Συνέχεια συνάρτησης Σελ 17. Η απόδειξη ύπαρξης ρίζας εξίσωσης (τουλάχιστον μία) σε

Συνέχεια συνάρτησης Σελ 17. Η απόδειξη ύπαρξης ρίζας εξίσωσης (τουλάχιστον μία) σε Συνέχεια συνάρτησης Σελ 17 ΜΕΘΟΔΟΛΟΓΙΑ 4.0.1 Η απόδειξη ύπαρξης ρίζας εξίσωσης (τουλάχιστον μία) σε κάποιο διάστημα τιμών της μεταβλητής της, οδηγεί στην εφαρμογή του θεωρήματος Βlzan ως εξής: i) Μεταφέρουμε

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ ΝΙΚΟΣ ΤΑΣΟΣ Αλγ ε β ρ α Β Λυ κ ε ί ο υ Γενικής Παιδειασ Α Τό μ ο ς 3η Εκ δ ο σ η Πρόλογος Το βιβλίο αυτό έχει σκοπό και στόχο αφενός μεν να βοηθήσει τους μαθητές της Β Λυκείου να κατανοήσουν καλύτερα την

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

Η έννοια της γραμμικής εξίσωσης

Η έννοια της γραμμικής εξίσωσης Η έννοια της γραμμικής εξίσωσης Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ Η εξίσωση αx+βy = γ Λύση της εξίσωσης α x + β y = γ ονομάζεται

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÅÐÉËÏÃÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_ΜλΘΤ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή Απριλίου 0 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία Σχολικό Βιβλίο (έκδοση 0) σελίδα

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 =

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 = ΕΞΙΩΕΙ-ΑΝΙΩΕΙ ου ΒΑΘΜΟΥ - 38 - ΚΕΦΑΑΙΟ 4 ΚΕΦΑΑΙΟ 4 ο Εξισώσεις - Ανισώσεις β βαθµού 5.1. Μορφή και διερεύνηση της εξίσωσης β βαθµού Άθροισµα και γινόµενο των ριζών της Κάθε εξίσωση β βαθµού πριν τη λύσουµε,

Διαβάστε περισσότερα

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ .8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ - ΟΡΙΣΜΟΣ Όταν θέλουμε να εξετάσουμε ως προς τη συνέχεια μια συνάρτηση πολλαπλού τύπου, εργαζόμαστε ως εξής

Διαβάστε περισσότερα

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού

9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού 1 2 Τα θεωρήματα του Green, Stokes και Gauss 211 9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού Ήδη στην παράγραφο 5.7 ασχοληθήκαμε με την ύπαρξη συνάρτησης

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις

Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-2: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις H ανάλυση ενός κυκλώματος με αντιστάσεις στη

Διαβάστε περισσότερα

13 Μονοτονία Ακρότατα συνάρτησης

13 Μονοτονία Ακρότατα συνάρτησης 3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν

Διαβάστε περισσότερα

math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr III Όριο Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ Πεπερασμένο Όριο στο Α Ορισμός Όριο στο : Όταν οι τιμές μιας συνάρτησης f προσεγγίζουν όσο θέλουμε έναν πραγματικό αριθμό,

Διαβάστε περισσότερα

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε.

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. 3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. Στην εισαγωγή δείξαμε ότι η διαφορική εξίσωση του γραμμικού, χρονικά αναλλοίωτου συστήματος μιας εισόδου μιας εξόδου με διαφορική εξίσωση

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις Σελίδα 1 από 6 Κεφάλαιο 5 Οι χώροι R και C Περιεχόµενα 5.1 Ο Χώρος R Πράξεις Βάσεις Επεξεργασµένα Παραδείγµατα Ασκήσεις 5. Το Σύνηθες Εσωτερικό Γινόµενο στο Ορισµοί Ιδιότητες Επεξεργασµένα Παραδείγµατα

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί Ενδεικτικός Προγραμματισμός ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί 12 περίοδοι Δείκτες επιτυχίας: Ορίζουν την έννοια της νιοστής ρίζας ενός αριθμού α και αποδεικνύουν τις ιδιότητες ριζών, όταν ν N, ν 0, 1, α R

Διαβάστε περισσότερα

Σηµειώσεις Γραµµικής Άλγεβρας

Σηµειώσεις Γραµµικής Άλγεβρας Σηµειώσεις Γραµµικής Άλγεβρας Κεφάλαιο Συστήµατα Γραµµικών Εξισώσεων και Πίνακες Εισαγωγή στα Συστήµατα Γραµµικών Εξισώσεων Η µελέτη των συστηµάτων γραµµικών εξισώσεων και των λύσεών τους είναι ένα από

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων.

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων. Χώρος Διανύσματα Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων. Καρτεσιανές συντεταγμένες και διανύσματα στο χώρο. Στο σύστημα καρτεσιανών (ή ορθογώνιων) συντεταγμένων κάθε

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

Πίνακες >>A = [ 1,6; 7, 11]; Ή τον πίνακα >> B = [2,0,1; 1,7,4; 3,0,1]; Πράξεις πινάκων

Πίνακες >>A = [ 1,6; 7, 11]; Ή τον πίνακα >> B = [2,0,1; 1,7,4; 3,0,1]; Πράξεις πινάκων Πίνακες Ένας πίνακας είναι μια δισδιάστατη λίστα από αριθμούς. Για να δημιουργήσουμε ένα πίνακα στο Matlab εισάγουμε κάθε γραμμή σαν μια ακολουθία αριθμών που ξεχωρίζουν με κόμμα (,) ή κενό (space) και

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 1 ο ΣΥΣΤΗΜΑΤΑ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ Όταν έχουμε δύο γραμμικές εξισώσεις αx+βy=γ και α x+β y=γ και ζητάμε τις κοινές λύσεις τους, τότε λέμε ότι έχουμε να λύσουμε ένα γραμμικό

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη

Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα ISBN 978-960-456-314-2 Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη Tο παρόν έργο πνευματικής ιδιοκτησίας προστατεύεται

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο

Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» www.ma8eno.gr Ανισώσεις γινόμενο και ανισώσεις πηλίκο Πρόσημο γινομένου της μορφής P()

Διαβάστε περισσότερα

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση ης εργασίας ΕΟ3 03-04 Υποδειγματική λύση (όπως θα παρατηρήσετε η εργασία περιέχει και κάποια επιπλέον σχόλια, για την καλύτερη κατανόηση της μεθοδολογίας, τα οποία φυσικά μπορούν να παραλειφθούν) Άσκηση.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Δύο λόγια από τη συγγραφέα

Δύο λόγια από τη συγγραφέα Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

ΔΙΑΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ. Οι εφαρμογές της διαστατικής ανάλυσης είναι:

ΔΙΑΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ. Οι εφαρμογές της διαστατικής ανάλυσης είναι: ΔΙΑΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ Χρήσεις της διαστατικής ανάλυσης Η διαστατική ανάλυση είναι μία τεχνική που κάνει χρήση της μελέτης των διαστάσεων για τη λύση των προβλημάτων της Ρευστομηχανικής. Οι εφαρμογές της διαστατικής

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: 5 Φεβρουαρίου 008 Ημερομηνία παράδοσης της Εργασίας: 4 Μαρτίου 008

Διαβάστε περισσότερα

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Ηλεκτρικό ρεύμα Το ρεύμα είναι αποτέλεσμα της κίνησης

Διαβάστε περισσότερα