1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες"

Transcript

1 Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών θα πρέπει να είναι ίσο με το άθροισμα των εξερχόμενων A f f f D 4 B f f5 f6 Οπότε για το παραπάνω δίκτυο ισχύει: A 500= f f f B f f f C f f f 00 D f f f 4 5 το οποίο είναι ένα σύστημα 4 γραμμικών εξισώσεων με έξι αγνώστους f, f, f, f4, f 5, f 6 Η λύση του θα οδηγήσει σε μία απειρία λύσεων όπου οι από αυτούς τους αγνώστους θα εξαρτώνται από την επιλογή των τριών άλλων: f 400 f f 4 6 f f f 4 5 f 00 f f 5 6 όπου τα,, f παίζουν το ρόλο των παραμέτρων f4 f5 6 Σε αρμονία με το φυσικό πρόβλημα, η επιλογή των παραμέτρων μπορεί να υπόκεινται σε περιορισμούς που πηγάζουν από τη φυσική του προβλήματος όπως ότι τα,,,,, f είναι θετικά Αυτό μας οδηγεί στους περιορισμούς : f f f f4 f5 6 f f f 4 6 f Η γεωμετρία των συστημάτων γραμμικών εξισώσεων Έστω το σύστημα: 00 C y y 5 Αλγεβρικά λύνοντας τη μία εξίσωση ως προς τον ένα άγνωστο και αντικαθιστώντας στην άλλη μπορούμε εύκολα να βρούμε τη λύση του ( y, ) (,)

2 Μπορούμε να δούμε γεωμετρικά το σύστημα όπου κάθε εξίσωση (γραμμή) αντιστοιχεί σε μία ευθεία του επιπέδου Οι συντεταγμένες του σημείου τομής των δύο γραμμών αποτελούν τη λύση y5 6 4 ( y, ) (,) - - y - -4 Σε ένα σύστημα y z 5 4z 6y 7y z 9 κάθε γραμμή (εξίσωση) αναπαριστάται στο χώρο ως ένα επίπεδο και η λύση είναι το σημείο τομής των τριών επιπέδων Συστήματα γραμμικών εξισώσεων με ιδιομορφίες Όταν ένα σύστημα έχει μία ή περισσότερες λύσεις ονομάζεται συμβιβαστό ενώ όταν δεν έχει λύση ονομάζεται ασυμβίβαστο Έστω το σύστημα:

3 u v w 6 uw u v 4w 6 Εάν προσθέσω κατά μέλη την πρώτη και τη δεύτερη εξίσωση και αφαιρέσω την τρίτη οδηγούμαι στη σχέση =0 Το σύστημα είναι ασυμβίβαστο και στο χώρο τα τρία επίπεδα δεν έχουν ένα κοινό σημείο Εάν αλλάξω λίγο το σύστημα u v w 6 uw u v 4w 7 και προσθέσω κατά μέλη την πρώτη και τη δεύτερη εξίσωση και αφαιρέσω την τρίτη οδηγούμαι στη σχέση 0=0 Το σύστημα είναι συμβιβαστό έχει άπειρες λύσεις και στο χώρο τα τρία επίπεδα τέμνονται σε μία ευθεία ή ταυτίζονται Μία ιδιαίτερη περίπτωση είναι το ομογενές σύστημα (στο δεξιό μέλος έχουμε μηδέν): u v w 0 uw0 u v 4w 0 Ένα τέτοιο σύστημα είναι πάντα συμβιβαστό μιας και η μηδενική λύση πάντα το ικανοποιεί Μπορεί όμως η λύση αυτή να μην είναι μοναδική αλλά να έχουμε άπειρες λύσεις, 4 Η μέθοδος απαλοιφής Gauss Έστω ότι έχουμε ένα σύστημα n εξισώσεων με m αγνώστους: a a a b m m a a a b m m a a a b n n nm m n Θεωρούμε τον επαυξημένο πίνακα του συστήματος: a a a a m b a a a am b a a a am b an an an anm b n Ένας (τέτοιος) πίνακας ονομάζεται κλιμακωτός όταν

4 Α) οι μηδενικές γραμμές αν υπάρχουν βρίσκονται μετά τις μη μηδενικές στο τέλος (κάτω μέρος) του πίνακα Β) Το οδηγό στοιχείο κάθε γραμμής (πρώτο μη μηδενικό στοιχείο της) βρίσκεται τουλάχιστον μία θέση δεξιότερα από τον οδηγό της προηγούμενης * * * * * 0 * * * * 0 * * * * * * Στη βιβλιογραφία ο κλιμακωτός πίνακας ονομάζεται και ως γ-κλιμακωτός και σε κάποιους ορισμούς ζητείται το οδηγό στοιχείο να είναι Ένας πίνακας ονομάζεται ανοιγμένος κλιμακωτός (ή σ-κλιμακωτός) όταν Α) είναι κλιμακωτός Β) κάθε οδηγός είναι ίσος με Γ) κάθε στήλη που περιέχει οδηγό έχει όλα τα άλλα στοιχεία της μηδενικά Για παράδειγμα, οι πίνακες A, A δεν είναι κλιμακωτοί 0 Ο πίνακας 0 είναι κλιμακωτός Αυτός δεν είναι ανηγμένος κλιμακωτός, γιατί το στοιχείο που βρίσκεται πάνω από το της δεύτερης γραμμής δεν είναι Ο 0 είναι ανηγμένος κλιμακωτός Από τους πίνακες , 0 0, ο πρώτος και τρίτος είναι ανηγμένοι κλιμακωτοί, ενώ ο δεύτερος είναι κλιμακωτός αλλά όχι ανηγμένος κλιμακωτός Σε έναν πίνακα μπορούμε να εφαρμόσουμε γραμμοπράξεις πινάκων (στοιχειώδεις μετασχηματισμούς γραμμών) Εναλλαγή δύο γραμμών (Γ i Γ j ) Πολλαπλασιασμό μίας γραμμής με ένα μη μηδενικό αριθμό κ (Γ i κ Γ i ) 4

5 Αντικατάσταση μίας γραμμής με το άθροισμα αυτής της γραμμής και ενός πολλαπλάσιου μίας άλλης (Γ i Γ i +k Γ j ) Δύο πίνακες ονομάζονται γραμμοϊσοδύναμοι όταν ο ένας προέρχεται από τον άλλο εφαρμόζοντας γραμμοπράξεις Τα συστήματα που αντιστοιχούν σε γραμμοισοδύναμους πίνακες είναι ισοδύναμα (έχουν τις ίδιες λύσεις) Κατά την επίλυση γραμμικού συστήματος με τη μέθοδο του Gauss εφαρμόζουμε στον επαυξημένο πίνακα του συστήματος γραμμοπράξεις πινάκων ώστε να τον μετατρέψουμε σε κάποιον κλιμακωτό πίνακα Ας δούμε το σύστημα: Το οποίο έχει επαυξημένο πίνακα Εφαρμόζουμε τις γραμμοπράξεις u v w 5 4u 6v u 7v w Ο τελευταίος πίνακας αντιστοιχεί με το ακόλουθο, ισοδύναμο προς το αρχικό, σύστημα: u v w 5 8v w w Η λύση αυτού του συστήματος είναι εύκολη, μιας και η τελευταία εξίσωση μας δίνει άμεσα τη τιμή της w Αντικαθιστώντας τη λύση αυτή στη δεύτερη εξίσωση μπορούμε να βρούμε τη τιμή της λύσης του δεύτερου αγνώστου v Τώρα, είναι απλό να αντικαταστήσουμε τις τιμές που έχουμε βρει στην πρώτη εξίσωση μπορούμε να βρούμε τελικά την τιμή της λύσης του τελευταίου αγνώστου u w 8v w 4 v u 5 v w 5 u Η αναδρομική αυτή διαδικασία ονομάζεται προς τα πίσω αντικατάσταση και μπορεί να εφαρμοστεί όταν ο επαυξημένος πίνακας είναι σε κλιμακωτή μορφή Για να εφαρμόσουμε τη μέθοδο του Gauss ξεκινάμε από την πρώτη γραμμή του επαυξημένου πίνακα Το οδηγό στοιχείο της γραμμής, δηλαδή πρώτο μη μηδενικό στοιχείο της, θα πρέπει να είναι στην πρώτη στήλη Εάν δεν συμβαίνει αυτό κάνουμε εναλλαγή γραμμών ώστε να εμφανίζεται μη μηδενικό στοιχείο στη θέση της πρώτης γραμμής και πρώτη στήλης Στη συνέχεια κάνοντας τις 5

6 επιτρεπτές γραμμοπράξεις μηδενίζουμε τα στοιχεία του επαυξημένου πίνακα που βρίσκονται στην πρώτη στήλη κάτω από το οδηγό στοιχείο της πρώτης γραμμής Συνεχίζουμε στη δεύτερη γραμμή όπου εντοπίζουμε το οδηγό στοιχείο της Εάν αυτό βρίσκεται στη δεύτερη στήλη (το πρώτο στοιχείο της το έχουμε ήδη μηδενίσει) εργαζόμαστε με γραμμοπράξεις ώστε να κάνουμε όλα τα στοιχεία που βρίσκονται στην ίδια στήλη με το οδηγό στοιχείο και κάτω από αυτό μηδενικά Και συνεχίζουμε στην επόμενη γραμμή Εάν όμως για τη δεύτερη γραμμή το πρώτο μη μηδενικό στοιχείο βρίσκεται σε άλλη στήλη (πχ τρίτη, τέταρτη) εξετάζουμε εάν στα υπόλοιπα στοιχεία της δεύτερης στήλης προς τα κάτω συμπεριλαμβάνεται κάποιο μη μηδενικό Στην περίπτωση αυτή με κατάλληλη εναλλαγή γραμμών το κάνουμε οδηγό στοιχείο της δεύτερης γραμμής Στο ακόλουθο παράδειγμα θα πρέπει να εναλλάξουμε τη δεύτερη με την τρίτη γραμμή Έτσι συνεχίζουμε με τη διαδικασία γραμμοπράξεων ώστε να μηδενίσουμε (εάν υπάρχουν) και τα άλλα μη μηδενικά στοιχεία της στήλης κάτω από αυτό το νέο οδηγό στοιχείο Υπάρχει περίπτωση με τις γραμμοπράξεις που κάναμε με το οδηγό στοιχείο της πρώτης γραμμής να έχουν μηδενιστεί το δεύτερο στοιχείο της δεύτερης στήλης και τα στοιχεία που βρίσκονται κάτω από αυτά (και ίσως και το τρίτο στοιχείο της δεύτερης στήλης και τα στοιχεία που βρίσκονται κάτω από αυτά κλπ) Σε μία τέτοια περίπτωση αναζητούμε στη δεύτερη γραμμή το πρώτο μη μηδενικό στοιχείο στη στήλη του οποίου κάτω από αυτό δεν υπάρχουν μόνο μηδενικά στοιχεία Θεωρούμε αυτό ως οδηγό στοιχείο της γραμμής και μηδενίζουμε με γραμμοπράξεις τα στοιχεία του πίνακα που βρίσκονται στην ίδια στήλη με αυτό και κάτω από αυτό Στο ακόλουθο παράδειγμα θα πρέπει να θεωρήσουμε ως οδηγό στοιχείο της δεύτερης γραμμής το πού βρίσκεται στη δεύτερη γραμμή αλλά στην τρίτη στήλη Τη διαδικασία που κάναμε με τη δεύτερη γραμμή την επαναλαμβάνουμε και για τις επόμενες Έτσι δημιουργούμε βήμα-βήμα τον ζητούμενο κλιμακωτό πίνακα Όπως έχουμε αναφέρει τα συστήματα που αντιστοιχούν σε γραμμοισοδύναμους πίνακες είναι ισοδύναμα (έχουν τις ίδιες λύσεις) και σε κάθε φάση της διαδικασίας με τις γραμμοπράξεις δημιουργούμε έναν γραμμοισοδύναμο με τον προηγούμενο πίνακα Οπότε, το σύστημα που αντιστοιχεί στον επαυξημένο πίνακα σε κάθε φάση της διαδικασίας Gauss έχει τις ίδιες λύσεις με το αρχικό μας σύστημα 5 Τεχνικές στη διαδικασία Gauss και συστήματα με ιδιομορφίες Στη διαδικασία της απαλοιφής Gauss διευκολύνει τις πράξεις μας εάν το οδηγό στοιχείο που θα χρησιμοποιήσουμε για να μηδενίσουμε τα υπόλοιπα στοιχεία της στήλης κάτω από αυτό είναι μονάδα Στο συγκεκριμένο παράδειγμα: 6

7 5 * * * * * 5 * 0 0 * 0 4 * * * 0 4 * 0 0 * Η πρώτη εναλλαγή των γραμμών μας οδήγησε στο να έχουμε μονάδα ως οδηγό στοιχείο Επίσης για να ξεπεράσουμε το πρόβλημα μηδενικού οδηγού στοιχείου χρησιμοποιούμε πάλι εναλλαγή γραμμών, όπως βλέπουμε στη δεύτερη εναλλαγή που κάναμε (Τα * μπορεί να είναι οποιοσδήποτε αριθμός) Στην περίπτωση που με την εναλλαγή γραμμών δεν είναι δυνατό να έχουμε οδηγό στοιχείο μονάδα τότε διαιρούμε με τον κατάλληλο αριθμό όλα τα στοιχεία της γραμμής με την οποία εργαζόμαστε ώστε να δημιουργηθεί μονάδα στη θέση του οδηγού στοιχείου Για παράδειγμα: 5 * 5 * 0 4 / * * Πολλές φορές καλούμαστε να λύσουμε συστήματα στα οποία εμφανίζονται μία ή περισσότερες παράμετροι Θα πρέπει να διερευνήσουμε για ποιες τιμές της ή των παραμέτρων το σύστημα έχει μία, άπειρες ή καμία λύση Εάν το οδηγό στοιχείο με το οποίο εργαζόμαστε εξαρτάται από την παράμετρο μπορούμε να παρακάμψουμε τη κατάσταση αυτή με την κατάλληλη εναλλαγή γραμμών, όπως φαίνεται παρακάτω: 5 * 5 * 5 * / 4 / 6 ( a4) 0 a 4 * * 0 4 * * 0 a4 * 0 a4 * Στην περίπτωση που επιλέξουμε να κάνουμε μονάδα το συγκεκριμένο οδηγό στοιχείο διαιρώντας με την έκφραση που περιέχει την παράμετρο θα πρέπει να θεωρήσουμε ότι το οδηγός στοιχείο δεν είναι μηδενικό και να συνεχίσουμε 5 5 * * /( a4) 6 0 a 4 * a 4 0 * a * * Στη συνέχεια θα πρέπει να εξετάσουμε το ισοδύναμο σύστημα για τις τιμές της παραμέτρου που μηδενίζει το οδηγός στοιχείο δηλαδή εδώ για a 4 Επίσης στην ακόλουθη περίπτωση: 5 * * 0 0 * * * 5 * 0 0 * * * μπορούμε να οδηγηθούμε σε συστήματα με άπειρες λύσεις πχ 7

8 4 4 4 / / αφού το ισοδύναμο σύστημα είναι το y z 4 z από όπου έχουμε ότι z και 4 y y Η κάθε επιλογή της τιμής του y μας δίνει μία νέα λύση του συστήματος, οπότε αφού έχουμε άπειρες επιλογές θα έχουμε άπειρο αριθμό λύσεων ή μπορούμε να έχουμε ασυμβίβαστα συστήματα πχ / αφού το ισοδύναμο σύστημα είναι το y z 4 z 0z από όπου έχουμε ότι 0z, το οποίο δεν μπορεί να ισχύσει για κανένα z Λυμένες Ασκήσεις στα Συστήματα: Να λυθεί το σύστημα y z 4 y z 5y4z 0BΛύση Ο επαυξημένος πίνακας είναι Αφού μηδενίσαμε τα στοιχεία της πρώτης στήλης που ευρίσκονται κάτω από τη διαγώνιο, συνεχίζουμε με τα στοιχεία της δεύτερης στήλης

9 Παρατηρούμε ότι ο τελευταίος πίνακας είναι σε κλιμακωτή μορφή, πράγμα που σημαίνει ότι το αντίστοιχο σύστημα y z 4 y4z 7 z επιλύεται εύκολα Πράγματι, από την τρίτη εξίσωση βρίσκουμε z, οπότε αντικαθιστώντας στην δεύτερη βρίσκουμε y, και από την πρώτη Τελικά, το σύστημα έχει τη μοναδική λύση (, y, z) (,,) Ας δούμε ένα παράδειγμα όπου το σύστημα είναι ασυμβίβαστο Να λυθεί το y z 7 y z 5 y 4z BΛύση Ο επαυξημένος πίνακας είναι Με στοιχειώδεις μετασχηματισμούς γραμμών Το αντίστοιχο σύστημα είναι y z 7yz 0 0z που είναι ασυμβίβαστο λόγω της εξίσωσης 0z Τέλος ας δούμε ένα παράδειγμα όπου υπάρχουν άπειρες λύσεις Να λυθεί το σύστημα 9

10 y z 6 y 4z 4 y z 4 BΛύση Ο επαυξημένος πίνακας είναι Με στοιχειώδεις μετασχηματισμούς γραμμών εύκολα βρίσκουμε ότι ο πίνακας μετατρέπεται σε κλιμακωτή μορφή Το αντίστοιχο σύστημα είναι y z 6 5y0z 0 0z 0 Από την δεύτερη εξίσωση βρίσκουμε y z, οπότε η πρώτη δίνει z Τελικά έχουμε τις άπειρες λύσεις (, y, z) ( z, z, z), όπου το z διατρέχει τους πραγματικούς αριθμούς (το z είναι παράμετρος ή ελεύθερη μεταβλητή ) Για παράδειγμα, αν z =, η αντίστοιχη λύση είναι (,4,) 4 Ομογενές σύστημα Δίνεται το σύστημα BΛύση Με στοιχειώδεις μετασχηματισμούς γραμμών εύκολα βρίσκουμε ότι ο επαυξημένος πίνακας του συστήματος μετατρέπεται σε κλιμακωτή μορφή από την τελευταία γραμμή έχουμε Οπότε οι δύο πρώτες εξισώσεις είναι οι 4 0, 4 0 από όπου προκύπτουν 4, 4 από όπου προκύπτει η μονοπαραμετρική απειρία λύσεων) , 4 0

11 5 Διερεύνηση συστήματος Δίνεται το σύστημα Να βρεθούν οι τιμές του λ για τις οποίες το παραπάνω σύστημα έχει: (i) μοναδική λύση, (ii) άπειρες λύσεις, (iii) καμία λύση και να βρεθούν οι λύσεις όποτε υπάρχουν Λύση Θεωρούμε τον επαυξημένο πίνακα του συστήματος στον οποίο εφαρμόζουμε στοιχειώδεις μετασχηματισμούς: ( ) ( )( ) Επομένως, το σύστημα έχει : Μοναδική λύση όταν και την,, ( ) ( ) η οποία προκύπτει με εφαρμογή της προς τα πίσω αντικατάστασης Άπειρες λύσεις όταν (Τρίτη γραμμή 0=0) Αντικαθιστώντας έχουμε από τη δεύτερη εξίσωση 4 Οπότε από την πρώτη εξίσωση αντικαθιστώντας παίρνουμε 5 Δηλαδή η λύση είναι η μονοπαραμετρική οικογένεια 5 4, Καμία λύση όταν λ=- (Τρίτη γραμμή 0=5) 6 Ομογενές σύστημα διερεύνηση Δίνεται το σύστημα

12 Να διερευνηθεί και να λυθεί το σύστημα Λύση Ο επαυξημένος πίνακας 0 a του συστήματος μετά στοιχειώδεις μετασχηματισμούς γραμμών παίρνει τη μορφή a a 0 Το αντίστοιχο σύστημα είναι το 0 ( a ) 0 ( a) 0 Για a το σύστημα έχει φανερά μοναδική λύση τη μηδενική Για a το σύστημα παίρνει τη μορφή: 0 0 Από όπου έχουμε και 0 Δηλαδή η απειρία λύσεων είναι η [ ] =[ ] 7 Θεωρείστε το παρακάτω σύστημα: 6 y 5y 6y 6z 5z z 6 Βρείτε τιμές των α και β ώστε το σύστημα αυτό: (ι) Να μην έχει καμία λύση και (ιι) να έχει άπειρες λύσεις ιιι) έχει λύση και σε κάθε περίπτωση να προσδιοριστούν οι λύσεις (εφόσον υπάρχουν) BΛύση Θεωρούμε τον επαυξημένο πίνακα του συστήματος στον οποίο εφαρμόζουμε στοιχειώδεις μετασχηματισμούς:

13 i) Για α = - και 8 το σύστημα δεν θα έχει καμία λύση ii) Για α = - και για β = -8 το σύστημα θα έχει άπειρες λύσεις Για την απειρία λύσεων από τη δεύτερη γραμμή του πίνακα έχουμε y0 z και στη συνέχεια από την πρώτη y z 0 z z 5z 8 iii) Για a το σύστημα έχει λύση από την τρίτη γραμμή έχουμε z από τη δεύτερη γραμμή του πίνακα έχουμε y0 z0 και στη συνέχεια από την πρώτη y z 8 Για ποιες τιμές του k το επόμενο σύστημα ) έχει ακριβώς μια λύση, ) δεν έχει λύσεις, ) έχει άπειρες λύσεις; y z 4y kz 4 4 ( k 5) y ( k ) z 6 BΛύση Στο σύστημα μας εφαρμόζουμε απαλοιφή Gauss 4 k 4 0 k 4 4 k 5 k 6 0 k k 7 ( k ) 0 k 0 0 k k 4 k k k 4 k 0 0 ( k 4)( k ) k k k

14 Επομένως το σύστημα έχει ακριβώς μια λύση όταν k 4 και k την z k 4, y k 4 και Το σύστημα έχει άπειρες λύσεις όταν k την z z, y 4z και 5z, Τέλος, το σύστημα δεν έχει λύσεις όταν k 4 9 Για ποιες τιμές του k το επόμενο σύστημα ) έχει ακριβώς μια λύση, ) δεν έχει λύσεις, ) έχει άπειρες λύσεις; ( ) y 6 y 5 Σε κάθε περίπτωση που υπάρχουν λύσεις προσδιορίστε τις BΛύση Στο σύστημα μας εφαρμόζουμε απαλοιφή Gauss ( )( ) ( ) Εάν 0,, έχουμε μοναδική λύση 5 y, ( k ) y ( k ) k k k Εάν το σύστημα είναι αδύνατο και δεν έχει λύσεις Εάν 0 ή, y T y, y έχουμε απειρία λύσεων την, y T y, y T για 0 Δίνεται το σύστημα T για 0 και την a a a a b 4 4 b Να βρεθούν τα a και b για τα οποία το παραπάνω σύστημα έχει: (i) μοναδική λύση, (ii) άπειρες λύσεις και (iii) καμία λύση Λύση a 0 b a 0 b a 0 b a a a 4 b 0 a 4 b 0 a b 0 a b 0 0 b b Από τον τελευταίο πίνακα επιγραμματικά συμπεραίνουμε τα εξής 4

15 (i) Για a 0 a b το σύστημα έχει άπειρες λύσεις b b Το σύστημα δεν έχει καμία λύση (ii) Για a 0 a b το σύστημα έχει άπειρες λύσεις b b Το σύστημα έχει μοναδική Οπότε πιο αναλυτικά (i) Το σύστημα έχει μοναδική λύση όταν b και a 0 την b b,, a a που προκύπτει από την προς τα πίσω αντικατάσταση (ii) Το σύστημα έχει άπειρες λύσεις όταν b και a 0 ο επαυξημένος πίνακας γίνεται Από όπου φανερά έχουμε οι άλλοι άγνωστοι μπορούν να πάρουν οποιαδήποτε τιμή Άρα το σύστημα έχει ως λύση την διπαραμετρική οικογένεια,, T,, T ) (iii) όταν b και a 0 ο επαυξημένος πίνακας γίνεται a 0 0 a Από όπου προκύπτει η απειρία λύσεων που ικανοποιεί την a (iv) Το σύστημα δεν έχει καμία λύση όταν b και a 0 διότι η τελευταία εξίσωση δίνει = ενώ η πρώτη, που είναι διάφορο του Mε τη χρήση επαυξημένου πίνακα και γραμμοπράξεων να βρεθεί, για τις διάφορες τιμές της παραμέτρου a, πότε το σύστημα έχει μία, άπειρες ή καμία λύση; ( a ) y z a( a ) Όταν υπάρχουν λύσεις να βρεθούν a y z a a ( ) ( ) y a z a a ( ) ( ) Λύση Θεωρούμε τον επαυξημένο πίνακα του συστήματος και εφαρμόζουμε γραμμοπράξεις: 5

16 a a ( a ) a 0 ( )( ) 0 0 a ( a ) a( a )( a a ) a a( a ) a a ( a ) a a ( a ) a a ( a ) ( a) a a ( a ) a( a ) a ( a) a a a a a a a a ( a )( a) 0 a a( a ) a( a )( a a ) a a ( a ) 0 a a a ( a )( a) 0 0 a( a ) a( a )( a a a) Εάν α=0 ο πίνακας γίνεται από όπου έχουμε μία διπαραμετρική απειρία λύσεων y z y z Δηλαδή y y y z 0 z z 0 Εάν α=- στον πίνακα η τελευταία γραμμή δίνει 0z 4 οπότε το σύστημα δεν έχει λύση Εάν a 0, Έχουμε μία λύση: a a ( a ) a a ( a ) 0 a a a ( a )( a) 0 a( a )( a) ( a )( a a a) 0 0 a a a a ( a) a που δίνει λύση a 4 a a, a a, a y z a a a a a a Ένας ιδιοκτήτης εστιατορίου σε μία αίθουσα έχει τραπέζια τεσσάρων ατόμων, y τραπέζια έξι ατόμων και z τραπέζια οκτώ ατόμων και συνολικό αριθμό τραπεζιών 0 Όταν όλες οι θέσεις είναι κατειλημμένες η αίθουσα χωρά 08 πελάτες Απομονώνοντας ένα τμήμα της αίθουσας και χρησιμοποιώντας μόνο τα μισά τραπέζια τεσσάρων ατόμων, τα μισά έξι ατόμων και το ένα τέταρτο τραπεζιών οκτώ ατόμων το εστιατόριο μπορεί να φιλοξενήσει 46 πελάτες όταν όλες οι θέσεις στα τραπέζια είναι κατειλημμένες Καθορίστε τα,y και z Λύση Τα παραπάνω στοιχεία μας οδηγούν στο ακόλουθο σύστημα: 6

17 y z 0 4 6y 8z 08 y z Κάνοντας τις κατάλληλες απλοποιήσεις οδηγούμαστε στο σύστημα: Ο επαυξημένος πίνακας είναι y z 0 y 4z 54 y z Με στοιχειώδεις μετασχηματισμούς γραμμών εύκολα βρίσκουμε ότι ο πίνακας μετατρέπεται σε κλιμακωτή μορφή Το αντίστοιχο σύστημα είναι y z 0 yz 4 z 8 το οποίο επιλύεται εύκολα Πράγματι, από την τρίτη εξίσωση βρίσκουμε z 4, οπότε αντικαθιστώντας στην δεύτερη βρίσκουμε y 6, και από την πρώτη 0 Τελικά, το σύστημα έχει τη μοναδική λύση (, y, z) (0, 4,6) Ένα προτεινόμενο δίκτυο καναλιών ποτίσματος περιγράφεται από το ακόλουθο διάγραμμα Σε αυτό το διάγραμμα βλέπουμε και τις ροές στους κόμβους A,B,C και D κατά τις περιόδους υψηλότερης ζήτησης (peak demand) Υπολογίστε τις πιθανές ροές Εάν το κανάλι BC είναι κλειστό, βρείτε το εύρος ροής που πρέπει να διατηρηθεί στο κανάλι AD έτσι ώστε κανένα κανάλι να μην έχει ροή μεγαλύτερη του 0 7

18 A B 0 f f 55 5 C f f 4 f 5 Λύση Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών θα πρέπει να είναι ίσο με το άθροισμα των εξερχόμενων Οπότε για το παραπάνω δίκτυο ισχύει: A f f =55 4 B f f f 0 C f f 5 5 D f f f το οποίο είναι ένα σύστημα 4 γραμμικών εξισώσεων με έξι αγνώστους f, f, f, f4, f 5 Ο επαυξημένος πίνακας του συστήματος είναι: Το σύστημα που αντιστοιχεί στον τελευταίο πίνακα είναι το εξής: f f =55 f f f 5 f 0 f D 5 Από όπου έχουμε : 8

19 4 f 5 f f 5 5 f f 0 f f f f 5 Και καταλήγουμε στην την απειρία λύσεων: f =55-f f 55-f4 f 0 f f 5 4 f 5 f 5 f f 4 4 f 5 f 5 Εάν το κανάλι BC είναι κλειστό έχουμε ότι f 0 οπότε υποχρεωτικά f5 5 Το εύρος ροής στο κανάλι AD είναι f 4 Εάν επιθυμούμε κανάλι να μην έχει ροή μεγαλύτερη του 0 τότε f 0, f 0, f 0, f4 0, f5 0 Οπότε από την και από την f 0 55-f 0 5 f 4 4 f f 0 5 f 4 4 Συνοψίζοντας έχουμε ότι θα πρέπει 5 f4 0 4 Ένας ασθενής πρέπει να λαμβάνει καθημερινά 5 μονάδες βιταμίνης Α, μονάδες βιταμίνης Β και μονάδες βιταμίνης C Στην αγορά υπάρχουν τρεις διαφορετικές εταιρείες που παράγουν χάπια με συνδυασμούς βιταμίνης A,B και C Ο ακόλουθος πίνακας μας παρέχει τις μονάδες ανά βιταμίνη που περιέχει το χάπι κάθε εταιρείας Βιταμίνη Εταιρεία Α Β C Ι 4 ΙΙ ΙΙΙ 0 Βρείτε όλους τους συνδυασμούς από επιλογές χαπιών οι οποίες να παρέχουν ακριβώς την αναγκαία ποσότητα βιταμινών (Δεν επιτρέπεται να λαμβάνονται μέρος χαπιών) Στη συνέχεια καθορίστε τον αριθμό χαπιών από κάθε εταιρεία που πρέπει να λαμβάνει ο ασθενής ώστε να ελαχιστοποιείται το ημερήσιο κόστος θεραπείας εάν το χάπι της εταιρείας Ι κοστίζει λεπτά του ευρώ, το χάπι της εταιρείας ΙΙ λεπτά και το χάπι της εταιρείας ΙΙΙ 5 λεπτά του ευρώ Λύση Έστω ότι ο ασθενής λαμβάνει χάπια της εταιρείας Ι, y της εταιρείας ΙΙ και z της εταιρείας ΙΙΙ Από τα στοιχεία του πίνακα οδηγούμαστε στο σύστημα: 9

20 y 0z 5 y z 4 y z Ο επαυξημένος πίνακας είναι Με στοιχειώδεις μετασχηματισμούς γραμμών εύκολα βρίσκουμε ότι ο πίνακας μετατρέπεται σε κλιμακωτή μορφή Το αντίστοιχο σύστημα είναι y 5 y z το οποίο έχει την απειρία λύσεων: (, y, z) (5 y, y, y) Επειδή όμως μιλάμε για χάπια τα θα πρέπει να είναι μη αρνητικά Οπότε, λαμβάνοντας υπόψη τη φυσική του προβλήματος και την παραπάνω λύση συμπεραίνουμε ότι 0 y 5 Το ημερήσιο κόστος θεραπείας, με βάση τα κόστη κάθε χαπιού, είναι C y 5z Αντικαθιστώντας την παραπάνω λύση έχουμε ότι C (5 y) y 5( y) 0 4y Φανερά αυτή η ποσότητα ελαχιστοποιείται όταν y 0 Οπότε η ιδανική, από πλευράς κόστους, επιλογή χαπιών είναι η ακόλουθη: (, y, z) (5,0,) 5 Μια βιομηχανία κατασκευής φορητών ηλεκτρονικών υπολογιστών χρησιμοποιεί τέσσερα ρομποτικά μηχανικά συστήματα A,B,C,D για την συναρμολόγηση πέντε τύπων laptop T,T,T,T4, T5 Ο αριθμός των ωρών που χρησιμοποιείται κάθε σύστημα για την συναρμολόγηση ενός laptop κάθε τύπου δίνεται από τον πίνακα: T T T T4 T5 Α B 0 C 0 D 0 0 Nα βρεθεί πόσα laptop από κάθε τύπο μπορούν να συναρμολογηθούν (γραμμή παραγωγής) μέσα σε ένα οκτάωρο λειτουργίας της ημερήσιας βάρδιας, δεδομένου ότι η βιομηχανία κατάφερε όλα τα ρομποτικά μηχανήματα να χρησιμοποιούνται συνεχώς και τις 8 ώρες μίας βάρδιας Σημείωση θα πρέπει να λάβετε υπόψη ότι μπορεί να βρείτε περισσότερες της μίας λύσεις και ότι οι άγνωστοι αντιπροσωπεύουν φυσικές ποσότητες 0

21 Λύση Μέσα σε ένα 8-ωρο συναρμολογούνται laptop τύπου T laptop τύπου T laptop τύπου T 4 laptop τύπου T4 5 laptop τύπου T5 Κάθε ρομποτικό μηχάνημα εργάζεται και τις 8 ώρες οπότε οδηγούμαστε στο σύστημα: Σχηματίζουμε τον επαυξημένο πίνακα (Α Β) του συστήματος και τον μετασχηματίζουμε στην κλιμακωτή του μορφή: A B / ( ) 4 8 ( ) Κάνοντας προς τα πίσω αντικατάσταση έχουμε: ( ) ( ) (4 ) ( ) ( ) Επειδή όμως τα,,, 4, 5 παριστάνουν φυσικά μεγέθη, 0, 0, 0, 0, 0, άρα

22 Συνοψίζοντας έχουμε 5 δηλαδή έχουμε δυνατότητες γραμμών παραγωγής μία για 5 και μία για 5 Για την 5 έχουμε τη λύση Για την 5 έχουμε τη λύση ΠΑΡΑΤΗΡΗΣΗ: Το παρόν υλικό δεν αποτελεί αυτόνομο διδακτικό υλικό, βασίζεται στο σύγγραμμα που διανέμεται και στην προτεινόμενη βιβλιογραφία του μαθήματος Το περιεχόμενο του αρχείου απλά αποτελεί περίγραμμα των παραδόσεων του μαθήματος Αποτελεί υλικό της διδασκαλίας του μαθήματος από το διδάσκοντα για δική του χρήση και παρακαλώ να μη χρησιμοποιηθεί και να μην αναπαραχθεί και διανεμηθεί για άλλο σκοπό

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικά Συστήματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικό Σύστημα a11x1 + a12x2 + + a1 nxn = b1 a x + a x + +

Διαβάστε περισσότερα

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss Jordan

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss Jordan Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss Jodan Παράδειγμα x y Να επιλυθεί το ακόλουθο σύστημα: x y 6 Σε μορφή πινάκων το σύστημα γράφεται ως: x y 6 με απαλοιφή Gauss. Ο επαυξημένος πίνακας του συστήματος

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 0 Οκτωβρίου 008 Ημερομηνία παράδοσης της Εργασίας: Νοεμβρίου 008 Πριν

Διαβάστε περισσότερα

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με, y V και του πολλαπλασιασμού

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες,

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, παριστάνεται με την εξής ορθογώνια διάταξη: α11 α12 α1n α21 α22 α2n A = αm1 αm2 αmn Ορισμός 2: Δύο πίνακες Α και Β είναι ίσοι, και γράφουμε

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Μέθοδοι επίλυσης γραμμικού συστήματος χ Γραφική επίλυση Σχεδιάζουμε τις ευθείες που αντιπροσωπεύουν οι εξισώσεις του συστήματος. Αν: - οι δύο ευθείες τέμνονται, τότε το σύστημα έχει

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

εξίσωση πρώτου βαθμού

εξίσωση πρώτου βαθμού κεφάλαιο 2 Α1 εξίσωση πρώτου βαθμού επίλυση της εξίσωσης πρώτου βαθμού Εξίσωση, είναι κάθε ισότητα που περιέχει κάποιον άγνωστο, την τιμή του οποίου καλούμαστε να προσδιορίσουμε. Ο βαθμός μιας εξίσωσης

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

5. Λύση γραμμικών συστημάτων με τη μέθοδο GAUSS-JORDAN

5. Λύση γραμμικών συστημάτων με τη μέθοδο GAUSS-JORDAN 5. Λύση γραμμικών συστημάτων με τη μέθοδο GAUSS-JORDAN 5.1. Ορισμός: Γραμμική Εξίσωση με n αγνώστους, x 1, x 2,.. x n λέγεται μια εξίσωση της μορφής: α 1 x 1 + α 2 x 2 + + α n x n = β 1, όπου τόσο οι συντελεστές

Διαβάστε περισσότερα

Γραφική επίλυση γραμμικού συστήματος με δύο αγνώστους.

Γραφική επίλυση γραμμικού συστήματος με δύο αγνώστους. ΜΕΡΟΣ Α 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ 71 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ Αν έχουμε δύο γραμμικές εξισώσεις με δύο αγνώστους,, π.χ. α + β

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων εξέτασης προόδου στο μάθημα «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων εξέτασης προόδου στο μάθημα «Γραμμική Άλγεβρα» (ΗΥ119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Λύσεις των Θεμάτων εξέτασης προόδου στο μάθημα «Γραμμική Άλγεβρα» (ΗΥ9) Θέμα. (μονάδες.0) Οι ορίζουσες των πινάκων ABC,, βρεθούν οι ορίζουσες των πινάκων:

Διαβάστε περισσότερα

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 00 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ9) Ηράκλειο, 7 Ιανουαρίου 00 Θέμα. (μονάδες.5) α) [μονάδες:.0]. Υπολογίστε

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1 ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Η εξίσωση α + βy = γ 1. Υπάρχουν προβλήματα που η επίλυση τους οδηγεί σε μια γραμμική εξίσωση με δύο αγνώστους, y και η οποία είναι της μορφής

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΑΝΙΣΩΣΕΙΣ. 3.1 ΑΝΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Οι ανισώσεις: αx + β > 0 και αx + β < 0

ΑΝΙΣΩΣΕΙΣ. 3.1 ΑΝΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Οι ανισώσεις: αx + β > 0 και αx + β < 0 3 ΝΙΣΩΣΕΙΣ 31 ΝΙΣΩΣΕΙΣ 1 ου ΒΘΜΟΥ Οι ανισώσεις: α + β > 0 και α + β < 0 Γνωρίσαμε στο Γυμνάσιο τη διαδικασία επίλυσης μιας ανίσωσης της μορφής α β 0 ή της μορφής α β 0, με α και β συγκεκριμένους αριθμούς

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 00 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ9) Ηράκλειο, Αυγούστου 00 Θέμα. (μονάδες.5) α) [μονάδες: 0.5] Υπολογίστε

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 5 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ .0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Έστω διανύσματα που ανήκουν στο χώρο δ i = ( a i, ai,, ai) i =,,, και έστω γραμμικός συνδυασμός των i : xδ + x δ + + x δ = b που ισούται με το διάνυσμα b,

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 7: Επίλυση με τη μέθοδο Simplex (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: ΟΡΙΖΟΥΣΕΣ

ΚΕΦΑΛΑΙΟ 2: ΟΡΙΖΟΥΣΕΣ ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ :. ΕΙΣΑΓΩΓΗ Σε κάθε τετραγωνικό πίνακα ) τάξης n θα αντιστοιχίσουμε έναν πραγματικό ( ij αριθμό, τον οποίο θα ονομάσουμε ορίζουσα του πίνακα. Η ορίζουσα θα συμβολίζεται det ή Α ή n n

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά (1)

Επιχειρησιακά Μαθηματικά (1) Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά (1) ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 01 Τηλ:10.93.4.450 ΚΕΦΑΛΑΙΟ 1 Ο Συνάρτηση μιας πραγματικής μεταβλητής Ορισμός : Συνάρτηση f μιας πραγματικής

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΗ ΕΠΙΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΑΛΓΕΒΡΙΚΗ ΕΠΙΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΑΛΓΕΒΡΙΚΗ ΕΠΙΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Επίλυση συστήματος εξισώσεων Υποθέστε ότι: Το άθροισμα δύο αριθμών είναι 20. Ποιοι είναι οι αριθμοί;

Διαβάστε περισσότερα

Ε ΝΟΤΗΤΑ 6 ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ

Ε ΝΟΤΗΤΑ 6 ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ε ΝΟΤΗΤΑ 6 ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Μαθηματικές Προτάσεις Πλοηγηθείτε: http://www.youtube.com/watch?v MtmJ3BArAgA Διαβάστε: Λ. Κάρολ, Η Αλίκη στη Χώρα των Θαυμάτων, Εκδόσεις Πατάκη Δείτε: Alice in

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ορίζουσες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Ορίζουσα H Ορίζουσα είναι ένας αριθμός και ορίζεται μόνον για τετραγωνικούς

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j Κεφάλαιο Πίνακες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο Είδος Α 56 Είδος

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11 2. Σύνολα..............................................................

Διαβάστε περισσότερα

Β Λυκείου - Ασκήσεις Συστήματα. x = 38 3y x = 38 3y x = x = = 11

Β Λυκείου - Ασκήσεις Συστήματα. x = 38 3y x = 38 3y x = x = = 11 Να λυθεί το σύστημα: Β Λυκείου - Ασκήσεις Συστήματα x+ 3y= 38 3x y = 2 Θα λύσουμε το σύστημα με τη μέθοδο της αντικατάστασης: x+ 3y= 38 x = 38 3y x = 38 3y x = 38 3y 3x y = 2 338 ( 3y) y= 2 3 38 9y y =

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

2.10. Τιμή και ποσότητα ισορροπίας

2.10. Τιμή και ποσότητα ισορροπίας .. Τιμή και ποσότητα ισορροπίας ίδαμε ότι η βασική επιδίωξη των επιχειρήσεων είναι η επίτευξη του μέγιστου κέρδους με την πώληση όσο το δυνατόν μεγαλύτερων ποσοτήτων ενός αγαθού στη μεγαλύτερη δυνατή τιμή

Διαβάστε περισσότερα

Ανισώσεις Α Βαθμού -Εφαρμογές στις Ανισώσεις

Ανισώσεις Α Βαθμού -Εφαρμογές στις Ανισώσεις 1 Ανισώσεις Α Βαθμού -Εφαρμογές στις Ανισώσεις Ανίσωση με έναν άγνωστο ονομάζουμε κάθε ανισότητα που περιέχει μια μεταβλητή και η οποία αληθεύει για ορισμένες τιμές της μεταβλητής. Πχ: Οι x + > 7, 2(y

Διαβάστε περισσότερα

Θα ξέρεις τι λέγεται γραμμική εξίσωση με δύο αγνώστους. Λέγεται κάθε εξίσωση της μορφής αχ +βψ =γ. Θα ξέρεις τι είναι το σύστημα εξισώσεων

Θα ξέρεις τι λέγεται γραμμική εξίσωση με δύο αγνώστους. Λέγεται κάθε εξίσωση της μορφής αχ +βψ =γ. Θα ξέρεις τι είναι το σύστημα εξισώσεων 1. Θα ξέρεις τι λέγεται γραμμική εξίσωση με δύο αγνώστους. Λέγεται κάθε εξίσωση της μορφής αχ +βψ =γ. Θα ξέρεις τι είναι το σύστημα εξισώσεων Είναι ομάδα από δύο ή περισσότερες εξισώσεις των οποίων ζητάμε

Διαβάστε περισσότερα

Φρ. Κουτελιέρης. Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων ΜΑΘΗΜΑΤΙΚΑ Ι

Φρ. Κουτελιέρης. Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων ΜΑΘΗΜΑΤΙΚΑ Ι Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων ΜΑΘΗΜΑΤΙΚΑ Ι Μαθηµατικά Ι Ακαδ. Έτος 2008-9 1/24 Κ2: Γραµµικά συστήµατα 1. Ορισµοί 2. Σύστηµα σε µορφή πίνακα 3. Επίλυση Crammer 4. Επίλυση Gauss

Διαβάστε περισσότερα

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1,

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1, I ΠΙΝΑΚΕΣ 11 Σώμα 111 Ορισμός: Ενα σύνολο k εφοδιασμένο με δύο πράξεις + και ονομάζεται σώμα αν ικανοποιούνται οι παρακάτω ιδιότητες: (Α (α (Προσεταιριστική ιδιότητα της πρόσθεσης (a + b + c = a + (b +

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ Κάθε εξίσωση της µορφής α + β = γ όπου α + β 0 ( α, β όχι συγχρόνως 0) παριστάνει ευθεία. (Η εξίσωση λέγεται : ΓΡΑΜΜΙΚΗ) ΕΙ ΙΚΑ γ Αν α = 0 και β 0έχουµε =. ηλαδή µορφή = c.

Διαβάστε περισσότερα

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα ΦΥΕ 4 Διανύσματα Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα τμήματα Δύο διανύσματα θα θεωρούμε ότι είναι ίσα, εάν έχουν το ίδιο μήκος

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΜΑΘΗΜΑ 1-2-ΠΙΝΑΚΕΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΠΑΝΗΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΜΑΘΗΜΑ 1-2-ΠΙΝΑΚΕΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΠΑΝΗΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΜΑΘΗΜΑ 1-2-ΠΙΝΑΚΕΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2010-2011 ΠΑΝΗΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΙΝΑΚΑΣ Ένας πίνακας Α με στοιχεία από το σύνολο F (συνήθως θεωρούμε τα σύνολα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Οκτωβρίου 006 Ηµεροµηνία παράδοσης της Εργασίας: 0 Νοεµβρίου 006.

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ..3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να βρείτε το μέτρο των μιγαδικών

Διαβάστε περισσότερα

Μαθηματικά ΜΕΡΟΣ 5 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΜΕ ΠΙΝΑΚΕΣ

Μαθηματικά ΜΕΡΟΣ 5 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΜΕ ΠΙΝΑΚΕΣ Μαθηματικά ΜΕΡΟΣ 5 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΜΕ ΠΙΝΑΚΕΣ Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΣΥΣΤΗΜΑ 2Χ2 ΜΕ ΠΙΝΑΚΕΣ Έστω το σύστημα εξισώσεων 2Χ2 (2 εξισώσεις

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

5. (Λειτουργικά) Δομικά Διαγράμματα

5. (Λειτουργικά) Δομικά Διαγράμματα 5. (Λειτουργικά) Δομικά Διαγράμματα Γενικά, ένα λειτουργικό δομικό διάγραμμα έχει συγκεκριμένη δομή που περιλαμβάνει: Τις δομικές μονάδες (λειτουργικά τμήματα ή βαθμίδες) που συμβολίζουν συγκεκριμένες

Διαβάστε περισσότερα

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές 0 Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για να λύσουμε μια πολυωνυμική εξίσωση P(x) 0 (ή μια πολυωνυμική ανίσωση P(x)

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΤΕΛΙΚΗΣ ΕΞΕΤΑΣΗΣ 9 Ιουνίου (διάρκεια ώρες και λ) Διαβάστε προσεκτικά και απαντήστε

Διαβάστε περισσότερα

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση 4 Μονοτονία - Ακρότατα - Αντίστροφη Συνάρτηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Μονοτονία συνάρτησης Μια συνάρτηση f λέγεται: Γνησίως αύξουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Η Θεωρία που πρέπει να θυμάσαι!!!... b a

Η Θεωρία που πρέπει να θυμάσαι!!!... b a Κεφ. εξισώσεις ανισώσεις εξάσκησηεπανάληψη Τhe Ds that make a champion: Devotion, Desire, Discipline Η Θεωρία που πρέπει να θυμάσαι!!!... Μορφές Εξισώσεων Λύση ή ρίζα εξίσωσης Εξίσωση ου βαθμού ax + b

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΙΓΜΑΤΙΚΗ Ι ΑΣΚΑΛΙΑ «ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟ Ο ΤΩΝ ΟΡΙΖΟΥΣΩΝ ΚΑΙ ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ» 1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΟΡΙΣΜΟΣ 1 : Γραµµική εξίσωση λέγεται κάθε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 ΣΥΣΤΗΜΑΤΑ....................................................

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

Εξισώσεις 2 ου βαθμού

Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Η εξίσωση της μορφής αχ 2 + βχ + γ = 0, α 0 λύνεται σύμφωνα με τον παρακάτω πίνακα. Δ = β 2 4αγ Η εξίσωση αχ 2 + βχ + γ = 0, α 0 αν Δ>0 αν Δ=0 αν Δ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων)

Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων) Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων) Στην πράξη, για πολύ σημαντικές εφαρμογές, γίνονται μετρήσεις τιμών μιας ποσότητας σε μια κλινική, για μια σφυγμομέτρηση,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με

, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με 5. ΑΚΟΛΟΥΘΙΕΣ Γενικά ακολουθία πραγματικών αριθμών είναι μια αντιστοίχιση των φυσικών αριθμών,,,...,ν,... στους πραγματικούς αριθμούς. Ο αριθμός στον οποίο αντιστοιχεί ο καλείται πρώτος όρος της ακολουθίας

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-9) ΜΕΡΟΣ 7: ΙΔΙΟΤΙΜΕΣ & ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ ΔΙΑΓΩΝΙΟΠΟΙΗΣΗ ΠΙΝΑΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟΣ- ΑΛΓΕΒΡΑ ΕΡΩΤΗΣΗ 1 Ποιοι αριθμοί ονομάζονται πρώτοι και ποιοι σύνθετοι; Να δώσετε παραδείγματα. ΑΠΑΝΤΗΣΗ 1 Όταν ένας αριθμός διαιρείται

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Ορίζουσες Επιμέλεια: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Ορίζουσες Επιμέλεια: Ι. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Ορίζουσες Επιμέλεια: Ι. Λυχναρόπουλος. Υπολογίστε τις ακόλουθες ορίζουσες a) 4 b) c) a b + a) 4 4 Παρατήρηση: Προσέξτε ότι ο συμβολισμός της ορίζουσας

Διαβάστε περισσότερα

Σχέδιο Μαθήματος - "Ευθεία Απόδειξη"

Σχέδιο Μαθήματος - Ευθεία Απόδειξη Σχέδιο Μαθήματος - "Ευθεία Απόδειξη" ΤΑΞΗ: Α Λυκείου Μάθημα: Άλγεβρα Τίτλος Ενότητας: Μέθοδοι Απόδειξης - Ευθεία απόδειξη Ώρες Διδασκαλίας: 1. Σκοποί Να κατανοήσουν οι μαθητές την διαδικασία της ευθείας

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ευστάθεια Συστημάτων Ελέγχου Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών «Γραμμική Άλγεβρα» (ΗΥ119) Χειμερινό Εξάμηνο 009-010 Διδάσκων: Ι. Τσαγράκης 6 Ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ Άσκηση 1: Δείξτε ότι η απεικόνιση τον ker f. Είναι η

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή

Διαβάστε περισσότερα

Σημειώσεις για το μάθημα: «Βασικές Αρχές Θεωρίας Συστημάτων» (Μέρος Α )

Σημειώσεις για το μάθημα: «Βασικές Αρχές Θεωρίας Συστημάτων» (Μέρος Α ) Χρήστος Ι Σχοινάς Αν Καθηγητής ΔΠΘ Σημειώσεις για το μάθημα «Βασικές Αρχές Θεωρίας Συστημάτων» (Μέρος Α ) ΞΑΝΘΗ, 008 - - - - ΚΕΦΑΛΑΙΟ ΔΙΑΝΥΣΜATA Ορισμοί και ιδιότητες Συχνά, σε διάφορα προβλήματα στα Μαθηματικά,

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού

9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού 1 2 Τα θεωρήματα του Green, Stokes και Gauss 211 9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού Ήδη στην παράγραφο 5.7 ασχοληθήκαμε με την ύπαρξη συνάρτησης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)

Διαβάστε περισσότερα

Η έννοια της γραμμικής εξίσωσης

Η έννοια της γραμμικής εξίσωσης Η έννοια της γραμμικής εξίσωσης Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ Η εξίσωση αx+βy = γ Λύση της εξίσωσης α x + β y = γ ονομάζεται

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Επομένως η εξίσωση αυτή παριστάνει ευθεία που έχει συντελεστή διεύθυνσης λ = -

Επομένως η εξίσωση αυτή παριστάνει ευθεία που έχει συντελεστή διεύθυνσης λ = - ΚΕΦΑΛΑΙΟ 1 Ο (ΣΥΣΤΗΜΑΤΑ) Παράγραφος 1.1 (ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ) Πότε μια εξίσωση λέγεται γραμμική; Η εξίσωση α + βy = γ Κάθε εξίσωση της μοεφής α + βy = γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση, παριστάνει

Διαβάστε περισσότερα

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ

Διαβάστε περισσότερα

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ Ιουλίου 0 Θέμα α) (Μον.6) Να βρεθεί η τιμή του πραγματικού

Διαβάστε περισσότερα

Συνέχεια συνάρτησης Σελ 17. Η απόδειξη ύπαρξης ρίζας εξίσωσης (τουλάχιστον μία) σε

Συνέχεια συνάρτησης Σελ 17. Η απόδειξη ύπαρξης ρίζας εξίσωσης (τουλάχιστον μία) σε Συνέχεια συνάρτησης Σελ 17 ΜΕΘΟΔΟΛΟΓΙΑ 4.0.1 Η απόδειξη ύπαρξης ρίζας εξίσωσης (τουλάχιστον μία) σε κάποιο διάστημα τιμών της μεταβλητής της, οδηγεί στην εφαρμογή του θεωρήματος Βlzan ως εξής: i) Μεταφέρουμε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα