Μη πεπερασµένα όρια και όριο στο άπειρο

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μη πεπερασµένα όρια και όριο στο άπειρο"

Transcript

1 Μη πεπερασµένα όρια και όριο στο άπειρο Λυγάτσικας Ζήνων Πρότυπο Πειρµαµατικό Γενικό Λύκειο Βαρβακείου Σχολής 9 εκεµβρίου 203 Μη Πεπερασµένο Οριο Συναρτησεων στο x 0. Το Μη-πεπερασµένο Το Απειρο Ορισµός. Το άπειρο είναι ένα µεταβλητό µέγεθος του οποίου η απόλυτη τιµή αυξάνει συνεχώς. Η ακόµα, µια συνάρτηση y N λέµε ότι είναι ένα άπειρο αν η απόλυτος τιµή y N0 είναι, µετά από ένα κάποιο δείκτη N 0, πιο µεγάλη ή πιο µικρή από κάθε ϑετικό ή αρνητικό αριθµό M που έχει ορισθεί εκ των προτέρων. Παράδειγµα Η συνάρτηση x είναι ένα άπειρο όταν το x πάει προς το 0, γιατί η απόλυτη τιµή της x αυξάνει συνεχώς..2 Μη-πεπερασµένο όριο συναρτήσεων Ορισµός.2 Εστω µια συνάρτηση fx ορισµένη σ ενα σύνολο της µορφής a, x 0 x 0, b. Ορίζουµε : fx = ± ανν M > 0 d > 0 τέτοιο ώστε x a, x 0 x 0, b µε 0 < x x 0 < d να ισχύει : M < fx ή fx < M.2. Ιδιότητες. fx = x x 0 fx = + x x 0 fx = fx = x x + 0 fx = + fx = x x + 0

2 2. Αν x x0 fx = ±, τότε fx > 0 fx < 0 κοντά στο x Αν x x0 fx = ± τότε, x x0 fx =. 4. Αν fx = 0 και fx > 0 < 0 κοντά στο x 0, τότε x x0 x x0 fx = ±. 5. Αν x x0 fx = + τότε x x0 k fx = Πράξεις µεταξύ απείρου και αριθµού στο R Ολες οι πράξεις ορίζονται µεταξύ απείρου και απείρου : π.χ = +, a++ = +, ±a + = ±, = + κ.λ.π.,εκτός των παρακάτω : + +, + +,, ± ± 0 ±, ΠΡΑΞΕΙΣ ΠΑΝΩ ΣΕ ΟΡΙΑ ΣΥΝΑΡΤΗΣΕΩΝ. Οριο ενός αθροίσµατος f l l + l + x a g x a l + x a f + g l + l + ; 2. Οριο ένος γινοµένου f l l x a g x a l + + x a f g l l + + ; 2

3 3. Οριο ενός πηλίκου f l l x a g x a l 0 + l x a f g l l 0 + ; ; 4. Οριο µιας ϱίζας f l 0 + x a f l + x a 3

4 .4 Πρακτική άσκηση Να συµπληρωθούν οι πίνακες : fx α R α R + + gx fx + gx fx gx α > 0 α < 0 α > 0 α < 0 fx gx f g f/g 4

5 .5 Ασκήσεις.5. A/0, οι χαρακτηριστικές συναρτήσεις. Να ϐρείτε το όριο της x 0 x. Σχήµα : Η συνάρτηση x. 2. Να ϐρείτε το όριο της x 0 x 2. Σχήµα 2: Η συνάρτηση x A/0 µε σταθερό πρόσηµο ο παρανοµαστής Να ϐρείτε τα όρια : 5

6 3. x 3 3x + 2 x x 2x 3 4x A/0 µε µεταβλητό πρόσηµο ο παρανοµαστής Να ϐρείτε τα όρια : 5. x 2 x 2 x + x 2 6. x 3 x 4 x x 4 x x 2x 4 x + 8 3x Να ϐρεθεί το όριο x 2 x 2 4 3x + 5 3x + 5 είξτε ότι : = και = + x 2 x + 2 x 2 x 2 + x + 2 x 2 Άρα, δεν υπάρχει όριο για x A/0 τριγωνοµετρικές 9. x 0 x + συνx 2x 3 0. x 0 xηµx x 0 2x 3 xηµx = x 0 [ ] 2x 3. xηµx Αλλά xηµx = 0 και x 0 x 0 xηµx = + 2x 3 Εποµένως = 3+ =. x 0 xηµx 2x. x 0 ηµx x. ηµx x = 0 και ηµx < x τότε : x 0 x 0 6 2x ηµx x = = +.

7 x 5 αx + 2α 2. Να ϐρεθεί για τις διάφορες τιµές του α το όριο της συνάρτησης. x x x 5 αx + 2α αν α < είξτε ότι : = + αν α > x x δεν υπάρχει αν α =.5.5 A/0 παραµετρικές 3. ίνονται οι συναρτήσεις fx = λ x2 + x 2 x 2 και gx = x2 + 2x + µ x Να ϐρείτε τις τιµές των πραγµατικών παραµέτρων λ και µ για τις οποίες υπάρχουν τα όρια στο R: fx και gx x x 0 4. ίδεται η συνάρτηση fx = αx2 3β + x + 25 x 5 2, α 0. Να ϐρείτε τις τιµές των παραµέτρων α, β έτσι ώστε το όριο της συνάρτησης για x 5 να είναι πραγµατικός αριθµός. x x 5 52 fx = αx 2 3β + x Αν fx = λ R, τότε 3β = 5α + 4. Τότε x 5 x 5 αx 2 3β + x + 25 x 5 2 = αx α + x + 25 x 5 2 = x 5αx 5 x 5 2 = αx 5 x 5 x 5fx = αx 5 5α 5 = 0 α =. Οµως, 3β = 5α + 4 α= = 9 β = 3. x 5 x 5 5. Αν x 2 x 2 αx + β x 2 = 3, να υπολογιστούν τα α, β R..5.6 A/0 µε ϐοηθητική συνάρτηση 6. Να ϐρείτε το x fx, όταν : x 4 x fx = +, x fx x + 2 =, [ ] fx3x 2 2 = + x fx Εστω 2 συνάρτηση f για την οποία ισχύουν : fx 3, κοντά στο x 0 = 3 και x 3 fx 3 = +. Αποδείξτε ότι fx = 3. x 3 Η άσκηση έχει προταθεί απο τους συναδέλφους Αργυράκη και Κουτσανδρέα. 2 Η άσκηση έχει προταθεί απο τους συναδέλφους Αργυράκη και Κουτσανδρέα. 7

8 2 Οριο στο άπειρο Ορισµός 2. Εστω f µια συνάρτηση.. Λέµε ότι η fx έχει όριο το + όταν το x τείνει στο + αντίστοιχα ανν : για κάθε διάστηµα I = λ, +, λ R, όλα τα fx είναι στο διάστηµα I για οποιοδήποτε x πολύ µεγάλο αντίστοιχα x πολύ µικρό. 2. Λέµε ότι η fx έχει όριο το όταν το x τείνει στο + αντιστοιχα ανν : για κάθε διάστηµα I =, λ, λ R, όλα τα fx είναι στο διάστηµα I για οποιοδήποτε x αρκετά µεγάλο αντίστοιχα x πολύ µικρό. Και στις δύο περιπτώσεις γράφουµε αντίστοιχα : fx = ± x ± 3. Εστω a ένας πραγµατικός αριθµός. Λέµε ότι η συνάρτηση f έχει όριο το a όταν το x τείνει στο + αντίστοιχα στο, αν και µόνο αν : σε κάθε ανοικτό διάστηµα I, µε οποιοδήποτε επιθυµητό πλάτος, που περιέχει το a, οι τιµές fx είναι όλες µέσα στο I για x πολυ µεγάλο αντίστοιχα x πολύ µικρό. Λέµε επίσης, στην περίπτωση αυτή, ότι η y = a είναι ασύπτωτη στην καµπύλη της συνάρτησης fx. Γράφουµε δε : Παρατήρηση : fx = a x ± Θεώρηµα 2. Sandwich Εστω fx, gx, hx µε fx hx gx για ολα τα x 0, +, ή x, 0, και υποτεθειστω οτι fx = gx = A R. Τοτε το hx υπαρχει και x ± x ± x ± ειναι ισο µε το A, αντίστοιχα. 2. Πράξεις Ισχύουν οι γνωστές ιδιότητες των ορίων στο x 0 µε την προυπόθεση ότι οι συναρτήσεις είναι καλά ορισµένες σε κατάλληλα σύνολα και δεν καταλήγουµε σε απροσδιόριστη µορφή. 8

9 2.2 Πρακτική άσκηση Βρείτε τα όρια των ορισµών. x ± fx των παρακάτω συναρτήσεων σύµφωνα µε µια πρώτη διαισθητική προσέγγιση Σχήµα 3: Οι συναρτήσεις fx = x και fx = x 2. Σχήµα 4: Οι συναρτήσεις fx = x 4 και fx = x Ορια στο άπειρο χαρακτηριστικών συναρτήσεων. xν = + και 2. xν = x ν = 0. { + αν ν = 2ρ αν ν = 2ρ + 3. Για κάθε πολυωνυµική συνάρτηση ισχύει : και x = ν 0. px = a n x n + + a 0, a n 0 px = a nx n x ± x ± 9

10 Σχήµα 5: Οι συναρτήσεις fx = 2 + ηµx x 4. Για κάθε ϱητή συνάρτηση της µορφής : και fx = ηµx. µε a n, b m 0, ισχύει : fx = a nx n + + a 0 b m x m + + b 0 fx = x ± x ± a n x n b m x m 5. Αν α >, α αx = 0 ϐ αx = + γ log α x = x 0 δ α x = + 6. Αν 0 < α <, α αx = + ϐ αx = 0 γ log α x = + x 0 δ α x = 2.4 Ασκήσεις 2.4. Πολυώνυµο και ϱητές συναρτήσεις x 2 5x + 6,. Να ϐρεθούν τα όρια : 2. Να ϐρεθούν τα όρια : x x 2... x 0 x x 3 + x 00 x 2 x + λx x 5 x + 2 8, x 2 x + 3 5, 0

11 2.4.2 Απόλυτη τιµή Να ϐρεθούν τα όρια : x ± x, x + 2 x και x 2 x 3 x Κλαδωτή συνάρτηση Να ϐρεθούν τα όρια : fx = { x 2 x 3x x >, gx = { x 4 x x 2 2 x = Εκθετικές συναρτήσεις. Να ϐρεθούν τα όρια : 3x, ex, 3 x + 5 x + 7 x 2. Να αποδείξετε 3 ότι 2 x + 3 x + 5 = x +. 2 x+ 3 5 x x 3. Να υπολογίσετε το όριο : 3 x + 4 x [ 2 x 4 x 5 x ] x = Εστω η συνάρτηση 2 e x 4 x + 7 x, x ± 4 x 7 x, e x 2 + x+2. fx = + e 2x e 2x e 2x 200e x µε x R. Να ϐρείτε το fx. fx = + e 2x e x e 2x e x e 2x e x = + e 2x + e + x 2 + e 2x + e + + x e 2x + e x Άρα, fx = Λογαριθµικές συναρτήσεις. Υπάρχει το όριο ln x; Πως ϑα διακιολογούσατε µια τέτοια απάντηση ; 3 Η άσκηση είναι των Αργυράκη, Κουτσανδρέα.

12 2. Να ϐρεθούν τα όρια : ln x 2, 2 ln x ln x Να αποδείξετε 4 ότι : lne x+ + lne x = 6 [ ] ln5x 2 3 lnx + = Τριγωνοµετρικά όρια. Να αποδείξετε ότι δεν υπάρχουν τα παρακάτω όρια : α ηµx ϐ ηµ x 0 x γ συνx δ συν x 0 x Θα δείξουµε το πρώτο και το δεύτερο. Για τα υπόλοιπα ϑα ακολουθήσετε την ίδια διαδικασία. Εστω ότι το όριο ηµx υπάρχει και είναι ίσο µε λ. Τότε : Επειδή : ηµx + π = ηµx, έχω : y=x+π ηµx + π = ηµy = λ y + Επίσης : λ = ηµx + π = ηµx = λ λ = 0 Επειδη : ηµ x + π = συνx, έχουµε : 2 Ετσι : 4 Οι ασκήσεις είναι των Αργυράκη, Κουτσανδρέα. x ηµ + π π y=x+ = 2 2 ηµy = λ = 0 y + συνx = x ηµ + π = 0 = 0 2 = ηµ 2 x + συν 2 x = 0 2

13 Αδύνατο, άρα το όριο ηµx δεν υπάρχει. Θα µπορούσατε να περιγράψετε µε λόγια ξεκινώντας απο την µορφή του διαγράµµατος του ηµ γιατί τι όριο αυτό δεν υπάρχει ; Αφού, ηµy δεν υπάρχει τότε δεν ϑα υπάρχει και το y + y= ηµy = x ηµ y + x 0 x Αλλαγή µεταβλητής. Να ϐρεθούν τα όρια : α ϐ γ y + xηµ x x ηµ + x, x 0 x ex2 2. Να υπολογίσετε το όριο 3. 2x x + 4 2x x x + 2 x3 + x 2 + x + x x +. Επειδή το x 2 είναι ο µεγιστοβάθµιος όρος του αριθµητή, 3 2x 4 2x x x x x x 2 3 = x x x x + 4 x 2x x x 2 + 4x = x2 + x + + x = 5x x + x x = = x2 + x + + x 5x + 2ηµx 3

14 = 6 + x + x ηµx x = = Παραµετρικά όρια Να ϐρεθούν τα όρια :. x2 x µx µ x 3 + 2x µx 2 5x Αν fx = x2 + αx+β, να ϐρείτε τις τιµές των α, β R, για τις οποίες ισχύει : x fx = α x 4 + αx 3 2 α 2x α 2 όταν το α R. x + fx = α x α = α 2 α 2. Αν α α 2 > 0 α < α > 2 τότε : Αν α α 2 < 0 < α < 2 τότε : Αν α = 2, τότε : Αν α =, τότε : fx = + fx = 5. Αν a R να ϐρείτε τα όρια : α ϐ 4x 2 5x ax x 2 + x + + x 2 x + ax 6. Να προσδιορίσετε τα a και b ώστε : fx = fx = + ax 2 + x x 2 + bx =. fx = Γενικές ασκήσεις. Αν 5 κ > λ > µ > ποιο είναι το όριο κx λ x µ x. Υπόδειξη : ϑα πρέπει να ϐρείτε Εστω 6 fx = ln e x ln + e x. 5 Η άσκηση είναι µια πρόταση του Ν. Μαυρογιάννη. 6 Η άσκηση είναι προτάθηκε απο τον. Βουτσά και απαιτεί γνώσεις της συνέχειας συνάρτησης. 4

15 α Να ϐρείτε το πεδίο ορισµού της f. ϐ Να ϐρείτε το πρόσηµο των τιµών της f. γ Να µελετηθεί ως προς την µονοτονία η f. δ Να ϐρείτε την αντίστροφη της f. ε Βρείτε το m < 0 ώστε fm = m. ϝ Αν gx = fx x, x < 0, να ϐρείτε τη µονοτονία της gx. Ϲ Να λύσετε την ανίσωση f x f < x +. η Αν hx = ln x, να αποδείξετε ότι υπάρχει c R τέτοιο ώστε fc = hc. ϑ Να ϐρείτε το όριο : A = B = e fx e f x. f x 3 + x f 3x 2 και το όριο x ίνονται 7 οι συναρτήσεις gx = 3x x + 95 λ 4x 5 3x + 5, x, λ R και hx =, x R. 4 4 α Να αποδείξετε ότι η σύνθεση f = g h ορίζεται για κάθε τιµή του x R και έχει τύπο fx = g hx = x 2 + 5x + 0 λx. ϐ Για τις διάφορες τιµές του λ R να υπολογίσετε το γ Για εκείνη την τιµή του λ που το δ Για την ίδια τιµή του λ R να υπολογίσετε το 4. Εστω συνάρτηση f : R + R, έτσι ώστε 5. ίνονται οι συναρτήσεις : fx = α Να ϐρείτε το πεδίο ορισµού της f. ϐ Να ϐρείτε το πεδίο ορισµού της g. γ Να ϐρείτε τα δ Να ϐρείτε τα ε Να ϐρείτε τα fx. fx είναι πραγµατικός αριθµός να υπολογίσετε το y 2 ηµ 3 x fx + x. + 2x 2 fx + x 2 x, x R +. Να ϐρείτε fx. x + συνx + 2, gx = e x 0 ηµ 3x8 + 5x x 8 + 7x 6 + fx, fx. gx, gx. f gx, f gx. 6. Να ϐρεθούν όλα τα a έτσι ώστε για όλα τα x < 0 να ισχύει η ανισότητα : ax 2 2x > 3a Υπόδειξη : Θέτοντας x x, η συνθήκη είναι ισοδύναµη µε την 7 Την άσκσηση έχει προτείνει ο. Κατσίποδας. ax 2 + 2x > 3a, x > 0 fx + 2x x 4 + x 4. 5

16 Το πρόβληµα στην άσκηση αυτή είναι ο αποκλεισµός περιπτώσεων. Αν 0 a, τότε 3a 0, έτσι το δεξιό µέλος της, είναι µη αρνητικό ενώ το αριστερό ϑετικό, 3 τότε η ανισότητα ικανοποιείται. Αν a > 3, τότε 3a > 0, τότε ϑα υπάρχουν µια κάποιες τιµές του x για την οποία η δεν ισχύει. Αν > a > 3 3a, παίρνω x =, τότε ax 2 x < 0 για a, , + 37 και 6 συνεπώς αφού a > 3 ax 2 + 2x < 3x < 3a Αν a, τότε ϑέτω x = 3 a και ax 2 + 2x = a < < 3a Τελικά, αν a < 0 τότε 3a < 0. Επίσης για x το ax 2 + 2x και < 3a, αδύνατο. Εποµένως, η µόνη περίπτωση είναι για 0 a 3. x 7. Να υπολογισθεί το όριο : x ηµ + x, x 0 Υπόδειξη : x x ηµ + x x x ηµ + x = x + x x + x ηµ x + + x = x x + + x x + + x Αλλά, και ηµ x + + x x + + x ηµu = u 0 u = µε u = x + + x 6

17 x = x x + + x x + x + = + x + = 2 Εποµένως το άρχικό µας όριο είναι ίσο µε 2. 7

Συνέχεια Συνάρτησης. Λυγάτσικας Ζήνων. Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο. 1 εκεµβρίου f(x) = f(x 0 )

Συνέχεια Συνάρτησης. Λυγάτσικας Ζήνων. Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο. 1 εκεµβρίου f(x) = f(x 0 ) Συνέχεια Συνάρτησης Λυγάτσικας Ζήνων Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο 1 εκεµβρίου 013 1 Ορισµός Ορισµός 1.1 Μια πραγµατική συνάρτηση f : A R λέµε ότι είναι συνεχής στο x 0 A αν και µόνο αν : x x 0 fx

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Β ΛΥΚ. ΕΞΙΣΩΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Β ΛΥΚ. ΕΞΙΣΩΣΕΙΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Β ΛΥΚ. ΕΞΙΣΩΣΕΙΣ Λυγάτσικας Ζήνων Πειραµατικό Γενικό Λύκειο Βαρβακείου Σχολής 6 Ιανουαρίου 013 1 Ασκήσεις 1.1 Ασκήσεις Επανάληψης 1. είξτε ότι : ηµ x + 3συν y 5.. Να αποδείξτε ότι

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΕΥΤΕΡΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΟΡΙΟ ΚΑΙ ΣΥΝΕΧΕΙΑ)

ΜΑΘΗΜΑ ΕΥΤΕΡΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΟΡΙΟ ΚΑΙ ΣΥΝΕΧΕΙΑ) ΜΑΘΗΜΑ ΕΥΤΕΡΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΟΡΙΟ ΚΑΙ ΣΥΝΕΧΕΙΑ) A. Εύρεση Πεδίου Τιµών Συναρτήσεων ίνεται η συνάρτηση h, h ( ) = 4+, [ 1,4] Να βρεθεί το πεδίο τιµών της συνάρτησης. Η λογική για

Διαβάστε περισσότερα

Σχόλια στα όρια. Γενικά

Σχόλια στα όρια. Γενικά Σχόλια στα όρια. Γενικά Η αναζήτηση του ορίου έχει νόημα όταν η συνάρτηση ορίζεται κοντά στο x, δηλαδή σε διάστημα (α,x ) (x,β) ή φυσικά σε (α,β) με x (α,β) και όχι κατ ανάγκη στο ίδιο το x. Για παράδειγμα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ Τελευταία ενηµέρωση: Νοέµβριος 016) Ανέστης Τσοµίδης Κατερίνη Περιεχόµενα 1 Συστήµατα 1.1 Μη γραµµικά συστήµατα........................ Ιδιότητες συναρτήσεων 3.1 Μονοτονία,

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμένο Όριο στο R - Κεφ..7: Όρια Συνάρτησης

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Έννοια του πολυωνύμου. Ας υποθέσουμε ότι έχουμε μια μεταβλητή x που μπορεί να πάρει κάθε πραγματική τιμή. Μονώνυμο του x, είναι κάθε παράσταση της μορφής : x όπου α είναι

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 2

Σημειώσεις Μαθηματικών 2 Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 4 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 4 Παράγωγος Συνάρτησης 4.1 Έννοια Παραγώγου Ορισμός f(x) f(x 0 ) Μια συνάρτηση f ονομάζεται παραγωγίσιμη στο x 0 Df αν υπάρχει

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 2

Σημειώσεις Μαθηματικών 2 Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 3 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 3 Συνέχεια Συναρτήσεων 3.1 Όρισμός Συνεχούς Συνάρτησης Ορισμός Μια συνάρτηση f ονομάζεται συνεχής στο x 0 Df αν υπάρχει το πραγματικός

Διαβάστε περισσότερα

Ορια Συναρτησεων - Ορισµοι

Ορια Συναρτησεων - Ορισµοι Ορια Συναρτησεων - Ορισµοι Λυγάτσικας Ζήνων Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο 3 Σεπτεµβρίου 205 Εισαγωγή Στην παράγραφο αυτή ϑα δούµε πως προκύπτει η ιδέα του ορίου στην προσπά- ϑεια να ορίσουµε την

Διαβάστε περισσότερα

1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008

1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 008 α). Να αποδείξετε ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου Ρ(x) με το πρωτοβάθμιο πολυώνυμο x ρ ισούται με την αριθμητική τιμή του Ρ(x) για x =

Διαβάστε περισσότερα

1 of 79 ΘΕΜΑ 2. Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R

1 of 79 ΘΕΜΑ 2. Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R 1 of 79 Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R α) Να αποδείξετε ότι η f γράφεται στη μορφή f(x) = (x- 2) 2 + 1. (Μονάδες 12) β) Στο σύστημα συντεταγμένων που ακολουθεί, να παραστήσετε γραφικά τη συνάρτηση

Διαβάστε περισσότερα

T Ш. κεφαλαιο1. οριο - συνεχεια συναρτησης. τ κεφαλαιο 1. κεφαλαιο 1. γ λυκειου. κεφαλαιο 1. κεφαλαιο 1. κεφαλαιο 1

T Ш. κεφαλαιο1. οριο - συνεχεια συναρτησης. τ κεφαλαιο 1. κεφαλαιο 1. γ λυκειου. κεφαλαιο 1. κεφαλαιο 1. κεφαλαιο 1 γ λυκειου ` κεφαλαιο1 οριο - συνεχεια συναρτησης επιμελεια : τακης τσακαλακος T Ш τ 1 017 ... πραγματικοι αριθμοι... συναρτησεις... μονοτονες συναρτησεις - αντιστροφη συναρτηση... οριο συναρτησης στο χ

Διαβάστε περισσότερα

Qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty. uiopasdfghjklzxcvbnmqwertyui

Qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty. uiopasdfghjklzxcvbnmqwertyui Qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ uiopasdfghjklzxcvbnmqwertyui ΟΡΙΟ- ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr III Όριο Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ Πεπερασμένο Όριο στο Α Ορισμός Όριο στο : Όταν οι τιμές μιας συνάρτησης f προσεγγίζουν όσο θέλουμε έναν πραγματικό αριθμό,

Διαβάστε περισσότερα

οριο - συνεχεια συναρτησης

οριο - συνεχεια συναρτησης γ λυκειου ` κεφαλαιο1 οριο - συνεχεια συναρτησης επιμελεια : τακης τσακαλακος 1 017 ... πραγματικοι αριθμοι... συναρτησεις... μονοτονες συναρτησεις - αντιστροφη συναρτηση... οριο συναρτησης στο χ 0...

Διαβάστε περισσότερα

ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ - ΟΡΙΣΜΟΣ

ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ - ΟΡΙΣΜΟΣ ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ - ΟΡΙΣΜΟΣ 3.1. Να αποδείξετε ότι η συνάρτηση: f x = { x e 1/ x,αν x 0 x ημx,αν x 0} είναι παραγωγίσιμη στο 0. 3.2. Δίνεται η συνάρτηση f x = { x 2 αx 1,αν x 1 2x 2, αν x 1 } η οποία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5ο: ΕΚΘΕΤΙΚΗ-ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 5ο: ΕΚΘΕΤΙΚΗ-ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 5ο: ΕΚΘΕΤΙΚΗ-ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com Αδεια χρήσης η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα

Διαβάστε περισσότερα

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΛΛΟ ΕΠΑΝΑΛΗΨΗΣ 1

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΛΛΟ ΕΠΑΝΑΛΗΨΗΣ 1 ΘΕΜΑ Α ΦΥΛΛΟ 1 Α1. Να αποδείξετε ότι το υπόλοιπο υ της διαίρεσης ενός πολυωνύμου P(x) με το x - ρ είναι ίσο με την τιμή του πολυωνύμου για x = ρ. Είναι δηλαδή υ = P(ρ). Α. Να χαρακτηρίσετε τις προτάσεις

Διαβάστε περισσότερα

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου 4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή).. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της μορφής:

Διαβάστε περισσότερα

lnx ln x ln l x 1. = (0,1) (1,7].

lnx ln x ln l x 1. = (0,1) (1,7]. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 6ο κεφάλαιο: Συναρτήσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα

Διαβάστε περισσότερα

4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ

4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ 4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΘΕΩΡΙΑ. Πολυωνυµική εξίσωση Λέγεται κάθε εξίσωση της µορφής Ρ(x) = 0, όπου Ρ(x) πολυώνυµο.. Ρίζα πολυωνυµικής εξίσωσης Λέγεται κάθε ρίζα του αντίστοιχου πολυωνύµου.

Διαβάστε περισσότερα

ΟΝΟΜ/ΜΟ :... ΟΜΑ Α Α. 1. Χαρακτηρίστε µε ΣΩΣΤΟ (Σ) ή ΛΑΘΟΣ (Λ) τις παρακάτω προτάσεις : Σχῆµα 1: Ασκηση 1δ.

ΟΝΟΜ/ΜΟ :... ΟΜΑ Α Α. 1. Χαρακτηρίστε µε ΣΩΣΤΟ (Σ) ή ΛΑΘΟΣ (Λ) τις παρακάτω προτάσεις : Σχῆµα 1: Ασκηση 1δ. ΙΑΓΩΝΙΣΜΑ 1 oυ 4 νoυ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ΟΜΑ Α Α 1. Χαρακτηρίστε µε ΣΩΣΤΟ (Σ) ή ΛΑΘΟΣ (Λ) τις παρακάτω προτάσεις : (α ) Η περίοδος της συνάρτησης f(x) = 3συν x 5 είναι 5π... (ϐ ) Η συνάρτηση f(x)

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος Κεφάλαιο 2ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ 2. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ............................................

Διαβάστε περισσότερα

Περιεχόμενα μεθόδευση του μαθήματος

Περιεχόμενα μεθόδευση του μαθήματος Περιεχόμενα μεθόδευση του μαθήματος. Πως ορίζεται η έννοια. Το όριο. To f() f() ; f() εφόσον υπάρχει είναι μονοσήμαντα ορισμένο; εξαρτιέται από τα άκρα α, β των ( α, ) και (, β ) ;. Πως ορίζονται τα πλευρικά

Διαβάστε περισσότερα

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου 4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή). 2. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος Κεφάλαιο ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 23/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 23/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 3/6/014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι Περιληπτικές Σημειώσεις-Ασκήσεις Β ΜΕΡΟΣ ΦΩΤΟΥΛΑ ΑΡΓΥΡΟΠΟΥΛΟΥ KAΘ. ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑΤΟΣ ΔΕΟ Msc. Θεωρητικά Μαθηματικά ΚΑΛΑΜΑΤΑ 2016 0 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Β' Γενικού Λυκείου. Γενικής Παιδείας. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Β' Γενικού Λυκείου. Γενικής Παιδείας. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ ΘΕΜΑ A ΑΛΓΕΒΡΑ Β' Γενικού Λυκείου Γενικής Παιδείας Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Α1. Στο επόμενο σχήμα βλέπετε τον τριγωνομετρικό κύκλο, τους άξονες ημιτόνων, συνημιτόνων, εφαπτομένων,

Διαβάστε περισσότερα

Μάθηµα 5. Κεφάλαιο: ιαφορικός Λογισµός. Θεµατικές ενότητες: 1. Συνέχεια συνάρτησης

Μάθηµα 5. Κεφάλαιο: ιαφορικός Λογισµός. Θεµατικές ενότητες: 1. Συνέχεια συνάρτησης Μάθηµα 5 Κεφάλαιο: ιαφορικός Λογισµός Θεµατικές ενότητες: Συνέχεια συνάρτησης Πότε λέµε ότι µια συνάρτηση είναι συνεχής σε ένα σηµείο («σηµείο» σηµαίνει «τιµή του χ») του πεδίου ορισµού της; Ορισµός: Μια

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΤ/ΝΣΗΣ. Π.Π. ΓΕΛ Βαρβακείου Σχολής. 27 Ἀπριλίου Τµήµατα Τεχνολογικής : Ζ4. ιάρκεια : 3 ώρες

ΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΤ/ΝΣΗΣ. Π.Π. ΓΕΛ Βαρβακείου Σχολής. 27 Ἀπριλίου Τµήµατα Τεχνολογικής : Ζ4. ιάρκεια : 3 ώρες Π.Π. ΓΕΛ Βαρβακείου Σχολής ΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΤ/ΝΣΗΣ 7 Ἀπριλίου 5 Τµήµατα Τεχνολογικής : Ζ4 ιάρκεια : 3 ώρες Λυγάτσικας Ζήνων - 7 Ἀπριλίου 5 . α ) Εστω µια συνάρτηση f, η οποία είναι συνεχής

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει

Διαβάστε περισσότερα

K. Μυλωνάκης Αλγεβρα B Λυκείου

K. Μυλωνάκης Αλγεβρα B Λυκείου ΠΟΛΥΩΝΥΜΑ Ονομάζουμε μονώνυμο του x κάθε πραγματικό αριθμό ή κάθε παράσταση της μορφής αx ν, όπου α είναι πραγμ. αριθμός και ν ένας θετικός ακέραιος. Π.χ. οι παραστάσεις 2χ 4, -3χ 2, 7 είναι μονώνυμα του

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑΤΑ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑΤΑ ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑΤΑ [Ενότητες Ορισμός της Συνέχειας Πράξεις με Συνεχείς

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ. ΕΠΙΜΕΛΕΙΑ: X. KOMNHNAKΙΔΗΣ ΜΑΘΗΜΑΤΙΚΟΣ M.Sc. ΘΕΜΑ Α

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ. ΕΠΙΜΕΛΕΙΑ: X. KOMNHNAKΙΔΗΣ ΜΑΘΗΜΑΤΙΚΟΣ M.Sc. ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΙΜΕΛΕΙΑ: X. KOMNHNAKΙΔΗΣ ΜΑΘΗΜΑΤΙΚΟΣ M.Sc. ΘΕΜΑ Α Α1. Α2. α) Ψευδής β) Θεωρούμε την συνάρτηση f(x) = x, x. Η συνάρτηση γράφεται ως

Διαβάστε περισσότερα

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 2.1 Συνάρτηση Η έννοια της συνάρτησης είναι ϐασική σ όλους τους κλάδους των µαθη- µατικών, αλλά και πολλών άλλων επιστηµών. Ο λόγος είναι, ότι µορφοποιεί τη σχέση

Διαβάστε περισσότερα

2 η δεκάδα θεµάτων επανάληψης

2 η δεκάδα θεµάτων επανάληψης 1 2 η δεκάδα θεµάτων επανάληψης 11. Α. Αν α > 0 µε α 1 τότε για οποιουσδήποτε πραγµατικούς αριθµούς θ 1, θ 2 > 0 να αποδείξετε ότι log α (θ 1 θ 2 ) = log α θ 1 + log α θ 2 Β. Έστω το σύστηµα Σ : α1x +

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ Μονοτονία Συνάρτησης Έστω οι συναρτήσεις f, g, h, των οποίων οι γραφικές παραστάσεις φαίνονται στα επόμενα σχήματα («Σχήμα», «Σχήμα», «Σχήμα

Διαβάστε περισσότερα

Περίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ. Με N θα συμβολίζουμε το σύνολο των φυσικών αριθμών, δηλ. N = {1, 2, 3, 4, }.

Περίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ. Με N θα συμβολίζουμε το σύνολο των φυσικών αριθμών, δηλ. N = {1, 2, 3, 4, }. Περίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ Με N θα συμβολίζουμε το σύνολο των φυσικών αριθμών, δηλ. N = {1, 2, 3, 4, }. Με Z θα συμβολίζουμε το σύνολο των ακεραίων αριθμών, δηλ. Z = N {0, 1, 2, 3, 4, }. Με Q θα

Διαβάστε περισσότερα

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

( ) x 3 + ( λ 3 1) x 2 + λ 1

( ) x 3 + ( λ 3 1) x 2 + λ 1 Επαναληπτικό Διαγώνισµα Άλγεβρα Β Λυκείου Θέµα Α Α1. Έστω η πολυωνυµική εξίσωσης α ν χ ν + α ν 1 χ ν 1 +... + α 1 χ + α 0 = 0, µε ακέραιους συντελεστές. Να αποδείξετε ότι αν ο ακέραιος ρ 0 είναι ρίζα της

Διαβάστε περισσότερα

Διάλεξη 5: Συνέχεια συναρτήσεων και όρια στο άπειρο

Διάλεξη 5: Συνέχεια συναρτήσεων και όρια στο άπειρο Διάλεξη 5: Συνέχεια συναρτήσεων και όρια στο άπειρο Ακριβής ορισμός του πλευρικού ορίου Έστω ότι το πεδίο ορισμού της f x περιέχει ένα διάστημα d, c στα αριστερά του c. Η f x έχει αριστερό όριο L στο c

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Να αναγνωρίζει πότε μια αλγεβρική παράσταση της πραγματικής μεταβλητής x, είναι πολυώνυμο και να διακρίνει τα στοιχεία του: όροι, συντελεστές, σταθερός

Διαβάστε περισσότερα

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,...

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,... 3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν-1 +...+α

Διαβάστε περισσότερα

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R . ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε συνάρτηση µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου συνόλου Β. Σηµείωση: Στο εξής θα είναι Α R και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Η έννοια του ορίου στο x ο Υπάρχουν συναρτήσεις οι τιμές των οποίων πλησιάζουν ένα πραγματικό αριθμό L, όταν η ανεξάρτητη μεταβλητή

Διαβάστε περισσότερα

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x. 3 Ορια συναρτήσεων 3. Εισαγωγικές έννοιες. Ας ϑεωρήσουµε την συνάρτηση f () = όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 0: Η γραφική παράσταση της συνάρτησης f () = /. ϕυσικό να αναζητήσουµε την

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. 2. ίνεται το Ρ(x) αν το ρ είναι ρίζα Ρ(2x) 2x τότε το ρ είναι ρίζα του Ρ( Ρ(2x)) 2x.

ΑΣΚΗΣΕΙΣ. 2. ίνεται το Ρ(x) αν το ρ είναι ρίζα Ρ(2x) 2x τότε το ρ είναι ρίζα του Ρ( Ρ(2x)) 2x. ΑΣΚΗΣΕΙΣ. ίνονται τα πολυώνυµα Ρ (x), Ρ (x), Ρ (x) αν τα πολυώνυµα Ρ (x) και Ρ (x) δεν έχουν κοινή ρίζα και ισχύει : ( Ρ (x)) + (Ρ (x)) = (Ρ (x)) για κάθε x R να δείξετε ότι το Ρ (x) δεν έχει πραγµατική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ H Έννοια της Συνάρτησης H έννοια του συνόλου Ορισμός: Σύνολο είναι κάθε συλλογή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΚΑΙ ΔΙΟΙΚΗΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΚΑΙ ΔΙΟΙΚΗΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ & ΟΡΓΑΝΙΣΜΩΝ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΚΑΙ ΔΙΟΙΚΗΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Περιληπτικές Σημειώσεις-Ασκήσεις Β ΜΕΡΟΣ ΦΩΤΟΥΛΑ ΑΡΓΥΡΟΠΟΥΛΟΥ KAΘ. ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑΤΟΣ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 11 ΟΚΤΩΒΡΙΟΥ 2016 ΜΗ ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Οικονομικές Συναρτήσεις με μεταβλητούς ρυθμούς

Διαβάστε περισσότερα

ΘΕΜΑ Α ΘΕΜΑ B. Β.1. Γνωρίζουμε ότι τα σημεία Α(π,4) και Β(-2π,6) ανήκουν στην ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΘΕΜΑ Α ΘΕΜΑ B. Β.1. Γνωρίζουμε ότι τα σημεία Α(π,4) και Β(-2π,6) ανήκουν στην ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α.1. Η απόδειξη βρίσκεται στη σελίδα 175 του σχολικού βιβλίου. Α.. Η διατύπωση του ορισμού βρίσκεται στη σελίδα 163 του σχολικού βιβλίου «εκθετική συνάρτηση». Α.3. i) Λάθος ii) Λάθος iii) Σωστό

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ενδεικτικές λύσεις)

ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ενδεικτικές λύσεις) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ 04--07 (ενδεικτικές λύσεις) ΘΕΜΑ A Α. Θεωρία / Σχολικό Βιβλίο / Σελίδα 99 Α. Θεωρία / Σχολικό Βιβλίο / Σελίδα 3 Α3. α) Ο ισχυρισμός είναι Ψ (ψευδής). β)

Διαβάστε περισσότερα

7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι

7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήματος (α). x 1. Δίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

ΑΚΑΗΜΙΑ ΚΥΒΟΣ ΘΕΣΣΑΛΟΝΙΚΗ ΜΑΘΗΜΑΤΙΚΑ 100% www.kivosacademy.gr

ΑΚΑΗΜΙΑ ΚΥΒΟΣ ΘΕΣΣΑΛΟΝΙΚΗ ΜΑΘΗΜΑΤΙΚΑ 100% www.kivosacademy.gr 11 ΟΗΓΙΕΣ 1. Το ebook περιέχει εργασίες δραστηριότητες για µαθητές που θα πάνε στη Γ Λυκείου και θα επιλέξουν µαθηµατικά κατεύθυνσης ή γενικής παιδείας.. Για την επίλυση θα χρειαστούν όλα τα βιβλία µαθηµατικών

Διαβάστε περισσότερα

Κυρτές Συναρτήσεις και Ανισώσεις Λυγάτσικας Ζήνων Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο e-mail: zenon7@otenetgr Ιούλιος-Αύγουστος 2004 Περίληψη Το σχολικό ϐιβλίο της Γ Λυκείου ορίζει σαν κυρτή (αντ κοίλη)

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΟ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΟ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο Διαφορικός Λογισμός ΟΡΙΣΜΟΣ Συνάρτηση ονομάζεται μια διαδικασία κατά την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Συχνά συμβολίζουμε

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α

ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση θεωρίας 1 ΘΕΜΑ Α Τι ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 3ο κεφάλαιο: Εξισώσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα 1

Διαβάστε περισσότερα

KEΦΑΛΑΙΟ 1ο : Διαφορικός Λογισμός

KEΦΑΛΑΙΟ 1ο : Διαφορικός Λογισμός KEΦΑΛΑΙΟ 1ο : Διαφορικός Λογισμός 1.1 Συναρτήσεις. Ορισμός : Εστω ΑR. Ονομάζουμε (πραγματική) συνάρτηση με πεδίο ορισμού το Α, μια διαδικασία f Παραδείγματα i) με την οποία στοιχείο xα yβr. ii) Ανεξάρτητη

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου, θα πρέπει να μπορείτε: Να κάνετε πράξεις με συναρτήσεις.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου, θα πρέπει να μπορείτε: Να κάνετε πράξεις με συναρτήσεις. ΚΕΦΑΛΑΙΟ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Σκοπός: Σκοπός του κεφαλαίου είναι αρχικά η υπενθύμιση βασικών εννοιών που αφορούν τον ορισμό, τις πράξεις και τη γραφική παράσταση της συνάρτησης αφ ενός και η μελέτη της

Διαβάστε περισσότερα

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 35) θ Bolzano θ Ενδιάμεσων τιμών θ Μεγίστου Ελαχίστου και Εφαρμογές Στο άρθρο αυτό επιχειρείται μια προσέγγιση των βασικών αυτών θεωρημάτων με εφαρμογές έ- τσι ώστε να

Διαβάστε περισσότερα

Ακουλουθίες ρ. Κωνσταντίνα Παναγιωτίδου

Ακουλουθίες ρ. Κωνσταντίνα Παναγιωτίδου Ακουλουθίες ρ. Κωνσταντίνα Παναγιωτίδου Σχολή Ναυτικών οκίµων Ακ. Ετος 2018-2019 Εισαγωγικά Βασικοί Ορισµοί Μονοτονία Ακολουθίας Φραγµένη Ακολουθία Υπακολουθίες Σύγκλιση - Απόκλιση Ακολουθιών N = {1, 2,

Διαβάστε περισσότερα

Σχόλια στις Παραγώγους. Μια συνάρτηση θα λέγεται παραγωγίσιμη σε ένα σημείο x 0 του. f(x h) f(x )

Σχόλια στις Παραγώγους. Μια συνάρτηση θα λέγεται παραγωγίσιμη σε ένα σημείο x 0 του. f(x h) f(x ) Σχόλια στις Παραγώγους. Μια συνάρτηση θα λέγεται παραγωγίσιμη σε ένα σημείο x 0 του Π.Ο της μόνον και μόνον όταν υπάρχει το lim x x0 f(x) f(x 0 ) x x 0 πραγματικός αριθμός. και είναι Η παραγωγισιμότητα

Διαβάστε περισσότερα

3. lim [f(x) g(x)] = lim f(x) lim g(x) x xo x xo x xo x xo x xo v f(x) lim f(x) x xo lim = x xo g(x) lim g(x) x xo v lim [f(x)] = lim f(x) 6. li

3. lim [f(x) g(x)] = lim f(x) lim g(x) x xo x xo x xo x xo x xo v f(x) lim f(x) x xo lim = x xo g(x) lim g(x) x xo v lim [f(x)] = lim f(x) 6. li Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να γνωρίζει: Τον ορισµό της συνάρτησης και τον τρόπο εύρεσης του πεδίου ορισµού της. Τις πράξεις µεταξύ συναρτήσεων, τις γραφικές παραστάσεις

Διαβάστε περισσότερα

Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Πραγματική Συνάρτηση ρισμός Έστω Α ένα υποσύνολο του R. νομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 9: Όριο Συνάρτησης στο Διηνεκές. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 9: Όριο Συνάρτησης στο Διηνεκές. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 9: Όριο Συνάρτησης στο Διηνεκές Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ - ΘΕΩΡΗΜΑ ROLLE

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ - ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ - ΘΕΩΡΗΜΑ ROLLE Θεώρημα Rolle Αν μια συνάρτηση f είναι συνεχής στο κλειστό διάστημα [α, β], παραγωγίσιμη στο ανοικτό διάστημα (α, β) και ισχύει ότι f(α) f(β), τότε υπάρχει ένα τουλάχιστον

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε κλειστό διάστημα

Συνέχεια συνάρτησης σε κλειστό διάστημα 8 Συνέχεια συνάρτησης σε κλειστό διάστημα Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 1 Μια συνάρτηση f θα λέμε ότι είναι: i Συνεχής σε ένα ανοιχτό διάστημα (α,β) όταν είναι συνεχής σε κάθε σημείο του διαστήματος (α,β)

Διαβάστε περισσότερα

β) Αν επιπλέον το υπόλοιπο της διαίρεσης είναι υ(x) = - 3x + 5, τότε να βρείτε το Δ(x). (Απ. α) 5 ος β) Δ(x) = x 5 5x 4 + 6x 3 + 4x 2 11x + 5)

β) Αν επιπλέον το υπόλοιπο της διαίρεσης είναι υ(x) = - 3x + 5, τότε να βρείτε το Δ(x). (Απ. α) 5 ος β) Δ(x) = x 5 5x 4 + 6x 3 + 4x 2 11x + 5) ΠΑΝΤΕΛΗΣ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ B Λυκείου Γενικής Παιδείας Κ Ε Φ Α Λ Α Ι Ο 4ο - Φ Υ Λ Λ Ο Νο 2 Δ Ι Α Ι Ρ Ε Σ Η ΠΟΛΥΩΝΥΜΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΑΝΙΣΩΣΕΙΣ ΑΣΚΗΣΕΙΣ 1. Ένα πολυώνυμο Δ(x),

Διαβάστε περισσότερα

ΚΕΦ. 1. ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Εισαγωγή.

ΚΕΦ. 1. ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Εισαγωγή. 1 ΚΕΦ. 1. ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1.1. Εισαγωγή. Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα πραγματικών αριθμών. Σε

Διαβάστε περισσότερα

2.2 ιαίρεση Πολυωνύμων

2.2 ιαίρεση Πολυωνύμων ιαίρεση Πολυωνύμων 1 Να γίνουν οι διαιρέσεις: α) (x 5 - x + x - 9) : (x - 1) β) (x 4-7x + x - 15) : (x + 5) γ) (x - 4αx + α ) : (x - α) δ) [7x - (9α + 7α ) x + 9α ] : (x - α) Με τη βοήθεια του σχήματος

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 0 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΕΞΕΤΑΣΕΩΝ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία µμου δεν στοχεύει απλά στο κυνήγι

Διαβάστε περισσότερα

Η ΑΠΟΛΥΤΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ. Έκδοση 01 Φεβρουάριος Ντάνος Γιώργος

Η ΑΠΟΛΥΤΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ. Έκδοση 01 Φεβρουάριος Ντάνος Γιώργος Έκδοση 01 Φεβρουάριος 2018 Η ΑΠΟΛΥΤΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ Ντάνος Γιώργος ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Η ΑΠΟΛΥΤΗ ΕΠΑΝΑΛΗΨΗ Copyright ΦΕΒΡΟΥΑΡΙΟΣ 2017 1 Περιεχόμενα Μέρος Α Α1. Συναρτήσεις.σελίδα

Διαβάστε περισσότερα

Ασκήσεις Άλγεβρας Α Λυκείου 2 oυ και 3 oυ Κεφαλαίου 1

Ασκήσεις Άλγεβρας Α Λυκείου 2 oυ και 3 oυ Κεφαλαίου 1 Ασκήσεις Άλγεβρας Α Λυκείου oυ και 3 oυ Κεφαλαίου έµης Απόστολος, Ζάχος Ιωάννης, Κατσαργύρης Βασίλειος, Κόσυβας Γεώργιος, Λυγάτσικας Ζήνων Πειραµατικό Γενικό Λύκειο Βαρβακείου Σχολής Οκτώβριος 004 4 εκεµβρίου

Διαβάστε περισσότερα

1.1 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.2 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

1.1 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.2 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Να γίνουν οι γραφικές παραστάσεις των συναρτήσεων : π α) f() = + ηµ β) g() = + συν( ) 6 π π γ) f() = ηµ( ) δ) g() = συν( ) Να γίνει η µελέτη και η γραφική παράσταση

Διαβάστε περισσότερα

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ thanasisenos@yahoo.gr Thanasis Xenos )Αν µια συνάρτηση f είναι, τότε είναι γνησίως µονότονη; Η πρόταση δεν αληθεύει, διότι για παράδειγµα η συνάρτηση, f ( ) = είναι - και δεν είναι γνησίως µονότονη., >

Διαβάστε περισσότερα

ΔΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ. ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ xo ΑΣΚΗΣΕΙΣ Α. ΑΠΛΟΠΟΙΗΣΗ ΤΟΥ ΟΡΟΥ ( x. 2 lim χ + χ 5χ. χ 5χ+ lim. χ χ. lim.

ΔΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ. ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ xo ΑΣΚΗΣΕΙΣ Α. ΑΠΛΟΠΟΙΗΣΗ ΤΟΥ ΟΡΟΥ ( x. 2 lim χ + χ 5χ. χ 5χ+ lim. χ χ. lim. ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ o ΑΣΚΗΣΕΙΣ R Α. ΑΠΛΟΠΟΙΗΣΗ ΤΟΥ ΟΡΟΥ ( ) ( Α ) Να υπολογίσετε τα όρια α) + 5 4 + 9 + 5 + 8 4 γ) 4 4 α, α > α α ε) + 8 + ζ) 5 + 4 6 η) + θ) + + 7 ι) + 5 4 ια) + 6 + ι + 4 ιγ) + + + 5+

Διαβάστε περισσότερα

Ασκήσεις Άλγεβρας Α Λυκείου 2 oυ και 3 oυ Κεφαλαίου 1

Ασκήσεις Άλγεβρας Α Λυκείου 2 oυ και 3 oυ Κεφαλαίου 1 Ασκήσεις Άλγεβρας Α Λυκείου oυ και 3 oυ Κεφαλαίου έµης Απόστολος, Ζάχος Ιωάννης, Κατσαργύρης Βασίλειος, Κόσυβας Γεώργιος, Λυγάτσικας Ζήνων Πειραµατικό Γενικό Λύκειο Βαρβακείου Σχολής Οκτώβριος 004 Νοεµβρίου

Διαβάστε περισσότερα

Βασικές ασκήσεις Βασική θεωρία. του πεδίου ορισμού της; β) Έστω η συνάρτηση: ένα σημείο του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x

Βασικές ασκήσεις Βασική θεωρία. του πεδίου ορισμού της; β) Έστω η συνάρτηση: ένα σημείο του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x 8 Συνέχεια συνάρτησης Ορισμός της συνέχειας 8. α) Πότε μια συνάρτηση f :A λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού της; β) Έστω η συνάρτηση:, αν < f() =, αν i) Να αποδείξετε ότι f() = 7 και να

Διαβάστε περισσότερα

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές 0 Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για να λύσουμε μια πολυωνυμική εξίσωση P(x) 0 (ή μια πολυωνυμική ανίσωση P(x)

Διαβάστε περισσότερα

Φ3: ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ

Φ3: ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ Φ: ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α ΘΕΩΡΙΑ ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΩΣΤΟΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΘΕΜΑ Β ΑΣΚΗΣΕΙΣ ΘΕΜΑ Γ ΑΣΚΗΣΕΙΣ ΘΕΜΑ Δ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση

Διαβάστε περισσότερα

Ανισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /

Ανισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 / Ανισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 1 0 / 0 1 6 εκδόσεις τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ xο

ΜΑΘΗΜΑ ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ xο ΜΑΘΗΜΑ 9.6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ ο R Θεωρία Σχόλια - Ασκήσεις ΘΕΩΡΙΑ. Ορισµός f ( ) ο σηµαίνει ότι οι τιµές f ( ) της συνάρτησης f γίνονται µεγαλύτερες από κάθε θετικό αριθµό Μ, καθώς.. Ορισµός f ( )

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΑΛΓΕΒΡΑ ΘΕΜΑ A Α1. Να αποδείξετε ότι: αβ α β (Μονάδες 15) A. Χαρακτηρίστε ως Σωστό (Σ) ή Λάθος (Λ) τις ακόλουθες προτάσεις: 1. Η εξίσωση

Διαβάστε περισσότερα

O1 ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥ ΟΡΙΟΥ lim f x

O1 ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥ ΟΡΙΟΥ lim f x O ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥ ΟΡΙΟΥ lim f ) Εντοπίζω τα σημεία που συναντώνται οι δύο καμπύλες ) Η τεταγμένη y αυτού του σημείου είναι το όριο της f και η τετμημένη η θέση y lim f Πλευρικά όρια lim f λ lim

Διαβάστε περισσότερα

( ) = 2. f x α(x x )(x x ) f x α(x ρ) x1,2. 1, x

( ) = 2. f x α(x x )(x x ) f x α(x ρ) x1,2. 1, x ΜΟΡΦΕΣ ΤΡΙΩΝΥΜΟΥ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ Τριώνυµο λέγεται ένα πολυώνυµο της µορφής : f x = αx + βx+ γ, όπου α, β, γ R µε α. ( ) ιακρίνουσα και ρίζες του τριωνύµου f( x) = αx + βx+ γ λέγεται η διακρίνουσα και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 4ο: ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4ο: ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoocom Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ

Διαβάστε περισσότερα

(x) = δ(x) π(x) + υ(x)

(x) = δ(x) π(x) + υ(x) Μάθηµα 12 Κεφάλαιο 4ο: Πολυώνυµα Πολυωνυµικές Εξισώσεις Θεµατικές Ενότητες: Α. ιαίρεση Πολυωνύµων Β. Σχήµα Horner Η ταυτότητα της Ευκλείδειας διαίρεσης Αν ( χ), δ ( χ) δύο πολυώνυµα µε δ ( χ) 0 και βαθµούς

Διαβάστε περισσότερα