Coduri grup - coduri Hamming

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Coduri grup - coduri Hamming"

Transcript

1 Capitolul 5 Coduri grup - coduri Hamming 5. Breviar teoretic Dacăîn capitolul precedent s-a pus problema codării surselor pentru eficientiezarea unei transmisiuni ce se presupunea a nu fi perturbată de erori, de această dată ne adresăm unei transmisiuni în condiţii de zgomot, când mesajul transmis este modificat de erori. Cerinţa este să se genereze coduri capabile să detecteze şi corecteze erorile apărute pe parcurs. Operaţii cu elemente ale mulţimii {0, } Simbolurile ce intră în discuţie nu pot lua decât valori de 0 sau. Operaţiile obişnuite în acest caz se desfăşoară conform tabelelor: Tabela 5.: Adunarea elementelor mulţimii {0, } Tabela 5.2: Înmulţirea elementelor mulţimii {0, }. Distanţa Hamming Distanţa Hamming între două cuvinte este egalăcunumărul poziţiilor în care cele două cuvinte diferă. De exemplu: distanţa Hamming între 0000 şi 000 este întrucât diferă doar simbolul de pe prima poziţie. distanţa Hamming între 0000 şi este 3 întrucât diferă simbolurile de pe poziţile 3, 5 şi 7. 47

2 48 CAPITOLUL 5. CODURI GRUP - CODURI HAMMING Erori. Detecţie şi corecţie Dacă v este un cuvânt (vector de simboluri) de cod valid, cuvănt care este transmis pe un canal cu perturbaţii, iar ε este vectorul perturbator, atunci v = v + ε este cuvântul recepţionat. Dacă perturbarea a fost cu o singură eroare, atunci cuvântul eroare ε va avea un singur, pe pozţia modificată şi în rest 0. Distanţa Hamming între cuvântul transmis şi cuvântul recepţionat este (şi este egală cu numărul erorilor introduse. Dacă toate combinaţiile posibile cu k biţi sunt considerate cuvinte, atunci distantă minimă între cuvinte este. În acest caz când toate combinaţiile posibile ale simbolurilor de informaţie sunt cuvinte de cod, iar în timpul transmisiunii apare o eroare atunci cuvântul recepţionat va fi tot un cuvânt cu sens deşi este greşit. De aceea dacă sedoreşte detecţia erorilor cuvintele de cod trebuie spaţiate (crescută distantăîntre ele). Acest lucru se realizează prinadăugarea simbolurilor de control. Acestea sunt în număr de m, iar lungimea unui cuvânt de cod este: n = k + m. Simbolurile de control vor fi combinaţii ale simbolurilor de informaţie care vor fi transmise astfel de mai multe ori, crescându-se redundanţa. Pentru detecţie a e d erori, distanţa minimăîntre două cuvinte de cod trebuie să fied min = e d +; în acest mod, orice cuvânt cu sens, ce ulterior va fi eronat, va fi plasat la o distanţă maximă e d şi va conduce la un cuvânt făra sens. Pentru corecţie distanţa trebuie mărită. Dacă sedoreşte un cod cabapil să corecteze e c erori atunci distanţa minimă trebuie să fied min =2e c +;în acest fel, fiind dat un cuvânt fără sens, se poate identifica şi cuvântul cu sens din care a provenit. Identificarea erorii se face cu ajutorul simbolurilor de control. Dacă un cod este capabil să corecteze eroare, aceasta poate fi pe oricare din cele n poziţii ale cuvântului de cod. Pentru 2 erori, acestea pot fi în orice combinătie de n luate câte 2. Generalizând, dacă sunte c erori atunci cazurile posibile sunt e c i= Ci n. Având m simboluri de control numărul cuvintelor construibile cu acestea sunt 2 m. Dacă reţinemopoziţie pentru cuvântul corect iar restul sunt folosite pentru identificarea erorilor atunci putem scrie relaţia cunoscută ca marginea Hamming : e c 2 m Cn i (5.) Codarea Codarea presupune construcţia cuvântului de cod pornind de la simbolurile de informaţie. Există două variante de codare:. Codarea v = ig, unde v este vectorul asociat cuvântului de cod, i este vectorul asociat cuvântului de informaţie, iar G este matricea generatoare. Aceasta are k linii şi n coloane. Dacă g, g 2,...g k sunt liniile matricei G, iari,i 2,...i k sunt simbolurile de informaţie atunci relaţia de codare se poate rescrie astfel: i= v = i g + i 2 g i k g k (5.2) De aici rezultă că cuvintele de cod sunt toate combinaţiile liniare ale liniilor matricei generatoare. 2. Codarea Hv T = 0, unde H este o matrice de m linii şi n coloaneceestedenumită matrice de control. Pentru aflarea relaţiilor de codare, în acest caz, se vor plasa simboluri de control pe poziţiile corespunzătoare coloanelor matricei H având un singur, şi se va rezolva sistemul rezultant, având drept necunoscute simbolurile de control.

3 5.2. Probleme rezolvate 49 Decodarea. Corectîa erorilor Decodarea se face pe baza relaţiei Hv T = 0. Dacă v este un cuvânt cu sens (cuvânt nealterat de erori) atunci înmulţindul cu cu H se va obţine 0. Dacă rezultatul este nenul atunci sunt erori. În acest caz, dacă circuitul funcţioneazăîn regim:. detecţie atunci se va semnala existenţa unor erori. 2. corecţie atunci se vor corecta erorile Pentru corecţia erorii se calculează sindromul s. Dacă cuvântul recepţionat este v = v + ε atunci H(v ) T = Hv T + Hε T =0+Hv T = s (5.3) Sindromul s identifică eroarea. Dacă de exemplu există o singură eroare, pe poziţia 2 atunci sindromulvafiegalcucoloanaa2amatriceih. Odată identificate pozţia erorilor (sau cu alte cuvinte identificat vectorul eroare) corecţia se obţine adunând simbolurilor corecpunzătoare recepţionate. Adică v = v + ε. 5.2 Probleme rezolvate. [8] Un cod grup are matricea de control : 0 0 H = (a) Să se determine numărul de simboluri de informaţie şi numărul de simboluri de control. Să se determine proprietăţile de corecţie / detecţie ale acestui cod. Acest cod este perfect? (b) Să se calculeze matricea generatoare a codului. (c) Să se deducă relaţiile de codare. (d) Să se realizeze codarea atât cu matrice G cât şi c matricea H. (e) Cuvântul [] este cuvânt de cod?. Să se explice funcţionare decodorului în cazul in care se recepţionează acest cuvânt. Rezolvare: (a) Parametrii codului : se ştie că matricea H are m (numărul de simboluri de control) linii şi n (lungimea cuvântului de cod) coloane: m =3,n=5= k =2 Având k simboluri de informaţie numarul maxim de mesaje care se pot coda cu acest cod sunt: 2 k = 4 mesaje ale sursei Numărul de erori corectabile este de dat de marginea Hamming (aceasta este o condiţie necesară nu şi suficientă): e c 2 m i= C i n

4 50 CAPITOLUL 5. CODURI GRUP - CODURI HAMMING Membrul stâng este: 2 m =7. Membrul drept este: În cazul unei erori n =5< 2 m În cazul a 2 erori C n + C 2 n > 7 = codul e corector de o eroare Un cod corector de e c erori poate detecta e d =2e c erori.un cod capabil să corecteze e c erori are distanţa minimă d m in =2e c +=e d +. Codul nu este perfect (nu se obţine egalitate in marginea Hamming). Un cod perfect are exact numarul de corectori necesari pentru a detecta orice variantă de eroare. (b) Matricea de control a codului este scrisă în forma canonică: H =[I m Q]. Matricea generatore (in formă canonică) se poate obtine ca: G =[Q t I k ].; Q = 0 0 [ ] [ ] = Q t 0 = = G =[Q t 0 0 I k ]= (c) Structura unui cuvânt de cod sistematic presupune o separare a biţilor de control de cei de informaţie. Făcând convenţie că biţi de control corespund coloanelor din H care au un singur succesiunea simbolurilo într-un cuvânt de cod este: v = [c c 2 c 3 i i 2 ]. De fapt forma canonica a matricelor de control si generatoare impune un cod sistematic.relaţiile de codare presupun aflarea modului în care se formează biţii de control din biţii de informaţie. Vom considera ca punct de pornire relaţia Hv T =0 c c 2 c 3 i i 2 = c + i + i 2 c 2 + i 2 c 3 + i =0 In baza 2 scăderea cu x este echivalentă cu adunarea cu x. Adică: c = i + i 2 c 2 = i 2 c 3 = i Schema codorului este prezentată în figura 5.; (d) Pentru a calcula cuvintele de cod avem doua variante: să calculăm relaţiile de codare folosind matricea H sau să calculam cuvintele de cod folosind direct matricea G: v = ig

5 5.2. Probleme rezolvate 5 Figura 5.: Codorul. Schema logică urmareşte relaţiile de codare. Fiecare simbol este stocat într-o celulă a unui registru de deplasare; la fiecare tact, o celulă comunică valoarea celulei din stânga sa. După formarea cuvântului de cod intrările (biţi de infomaţie) sunt blocate si conţinutul este vărsat la ieşire sub forma unui tren de impulsuri. Un cuvânt de infomaţie conîne două simboluri: i = [ ] [ αβ ]. Matricea generatoare poate scrisă pe linii G = g g 2. Atunci relaţia de codare devine: In acest caz cuvintele de cod sunt: [ ] [ ] g V = ig = αβ = αg + βg 2 g 2 α β v αβ = αg + βg Tabela 5.3: Cuvintele de cod Se poate observa că ponderea minima a unui cuvânt de cod este 3. (e) Cuvântul recepţionat este: v = [] Considerăm corectorul: Hv,T 0 0 = = z = Fiindcă corectorul este nenul există erori. Atunci se poate spune: dacă decodorul functioneazăîn regim de corecţie este capabil să corecteze o eroare (orice variantă deeroare). Eroareestepepoziţia.Poziţia erorii se determină prin identificare coloanei din matricea de control H egală cu corectorul calculat z. Acelaşi lucru se constată si dacă se compara cuvantul eronat cu cuvintele cu sens determinate în tabelul 5.3. În acest caz cuvăntul cu sens este v = [0]. Dacă

6 52 CAPITOLUL 5. CODURI GRUP - CODURI HAMMING cuvântul recepţionat conţine două erori atunci corectorul dă informaţii greşite. Să consideram alt exemplu : v = [00] ε = [000] v = v + ε = 00 Corectorul calculat este: Hv,T = = z = Adică eroare este pe poziţia 3 si deci cuvântul cu sens este v=[000]. Ceea ce nu este adevarat.un cod corector de o eroare nu poate corecta două erori dacă decodorul functioneză in regim de detecţie, fiindcă corectorul este nenul însemană că există erori. În regim de detecţie nu se poate spune nimic despre numărul si poziţiaerorilor. Dacăexistă mai multe eroridecât codul poate detecta, se obin aberaţii. De exemplu pentru un cuvânt eroare ε = [00] şi pentru cuvântul cu sens v = [00] se obţine alt cuvănt cu sens şi, deci nu se detectează nimic. Adică un cod detector de 2 erori nu poate detecta trei erori. 2. [8] Cele 6 simboluri generate de o sursă sunt transmise pe un canal binar cu perturbaţii folosind un cod Hamming grup corector de o eroare. (a) Să se determine numărul de simboluri de informaţie, de control si lungimea cuvintelor de cod. Codul este perfect? (b) Să se scrie matricile de control şi generatoare a codului? Codul este sistematic? (c) Să se scrie cuvintele de cod şi să se determine ponderea minimă a acestora. (d) Să se explice ce se întâmplă dacă într-un cuvânt recepţionat apar două erori, pe poziţiile şi 2. Rezolvare: (a) Cele 6 simboluri pot fi reprezentate folosin k biţi de informaţie: 2 k 6= k =3 Marginea Hamming pentru un cod corector de e c = erori este: 2 m n = m + k = m +3 2 m 4 m = m =3 n = k + m =6 Dat fiind ca nu îşi atinge margine (nu avem egalitate) codul nu e perfect.

7 5.2. Probleme rezolvate 53 (b) Matricea de control a unui cod Hamming se obţine codând pe fiecare coloana indicele ei în baza 2: ] H = [h h 2 h 3 h 4 h 5 h Dacă facem convenţia că plasăm simbolurile de control pe poziţiile corespunzătoare colanele matricei de control care conţin un singur unu, cuvântul de cod este de forma: În acest caz, codul nu e sistematic. v =[c c 2 i c 3 i 2 i 3 ] Hv T =0 c c 2 i c 3 + i 2 + i = c c i + i 3 =0 c i 2 + i + i 2 i 3 c = i + i 2 c 2 = i + i 3 c 3 = i 2 + i 2 Se poate arăta foarte uşor că pe linii G are cuvinte de cod. ] v = ig = [i g i 2 i 3 = i g + i 2 g 2 + i 3 g 3 g 2 g 3 i =0;i 2 =0;i 3 == v = g 3 = [000] i =0;i 2 =;i 3 =0= v = g 2 = [000] i =;i 2 =0;i 3 =0= v = g = [000] G = Alte cuvinte de cod sunt:

8 54 CAPITOLUL 5. CODURI GRUP - CODURI HAMMING i =0,i 2 =0,i 3 =0= v = [000000] i =0,i 2 =0,i 3 =0= v = g + g 2 + g 3 = [00] i =,i 2 =,i 3 =0= v = g + g 2 = [00] i =0,i 2 =,i 3 == v = g 2 + g 3 = [00] i =,i 2 =0,i 3 == v = g + g 3 = [00] (c) ε = [0000] Hε T 0 = 0 Dat fiind faptul ca corectorul este nenul, se poate spune că: Dacă functionarea este in regim de corecţie se hotărăşte că eroarea este pe poziţia 3. Greşeala se datorează apariţiei a doua erori când codul poate corecta numai una. Pentru a corecta două erori este necesar ca suma a oricare doua coloane a lui H sa aibă rezultat diferit. Aici:h + h 2 = h 3. Dacă corectorul obţinut era z = [] T, care este diferit de orice coloana a lui H, înseamnă că au fost două erori: fie pe poziţiile şi 6, fie pe 2 şi 5. Acest fenomen se datorează faptului că codul nu e perfect. Dacă functionarea este in regim de detecţie se depistează apariţia unor erori. 5.3 Probleme propuse. [7] Se consideră osursă de informaţie având un alfabet de dimensiune Q = 5 simboluri echiprobabile. (a) Să se determine parametrii k, m, n ai unui cod bloc Hamming corector de erori singulare. (b) Să se scrie matricea H de control a codului. (c) Să se precizeze structura cuvântului de cod. (d) Codul este sistematic? De ce? (e) Să se efectueze codarea utilizând matricea H de control a codului. (f) Să se scrie matricea G generatoare a codului. (g) Să se verifice prin calcul direct relaţia de ortogonalitate între matricile H si G. (h) Să se efectueze codarea utilizând matricea G generatoare a codului. (i) Să se deseneze schema codorului şi să se explice funcţionarea sa. (j) Să se scrie toate cuvintele de cod. (k) Să se efectueze codarea Hamming sistematică extinsă cu matricea H ext a vectorului informaţional având nenule doar primul şi ultimul simbol.

9 5.3. Probleme propuse 55 (l) Să se scrie matricea generatoare de cod sistematic extins G ext. (m) Se consideră cuvântul de cod extins având simbolul de control a parităţii eronat. Să se scrie vectorul eroare extins. Să se calculeze vectorul corector (extins). (n) Să se scrie vectorul eroare pentru eroare dublă, de simboluri informaţionale consecutive în partea centrală a zonei informaţionale a cuvântului de cod sistematic. (o) Să se scrie corectorul extins pentru eroarea dublă de mai sus şi să se explice utilizarea sa. 2. [7] Un număr de 20 simboluri se transmit pe un canal cu perturbaţii utilizând cod Hamming grup corector de o eroare. (a) Să se determine numărul simbolurilor de informaţie k, al celor de control m si lungimea n a fiecărui cuvânt de cod. (b) Să se scrie matricea de control a codului H. (c) Să se scrie formele canonice ale matricei de control. (d) Să se scrie formele canonice ale matricei generatoare. (e) Să se deducă matricea generatoare. (f) Să se scrie toate cuvintele de cod. (g) Să se stabilească expresia corectorului pentru cazul că se eronează poziţia 4 din cuvântul de cod. (h) Să se explice ce se întâmplă dacă într-un cuvânt de cod se eronează poziţiile 2 şi 7. (i) Să se stabilească schema codorului. 3. [8] Se dă matricea de control a unui cod grup: H = (a) Să se determine numărul de simboluri de control, numărul de simboluri de informaţie, lungimea cuvintelor de cod, numărul de simboluri ce pot fi transmise cu acest cod şi numărul de erori ce pot fi corectate. Codul este perfect? Codul este sistematic? (b) Să se precizeze structura cuvintelor de cod şi să se scrie ecuaţiile de codare. (c) Să se determine matricea generatoare a codului. (d) Să se calculeze corectorul şi să se explice decizia luată la decodare dacă se recepţionează uncuvânt eronat pe poziţiile 2 si 3?

10 56 CAPITOLUL 5. CODURI GRUP - CODURI HAMMING 4. [4] Fie matricea de control H = (a) Arătaţi că, prin transformări elementare, această matrice poate fi adusă laforma H =[I 3 Q]. (b) Arătaţi că respectivele transformări potfiastfelaleseîncât proprietăţile de detecţie şi corecţie a erorilor să rămână aceleaşi. (c) Să se determine simbolurile de control în funcţie de cele de informaţie atât pentru matricea H cât şi pentru matricea H. 5. [4] Considerând matricea H = să se determine matricea generatoare G =[PI k ]şi să se realizeze codarea după aceasta. 6. [4] Se consideră uncodcun =6şi k =3acărui matrice de control este: H = (a) Codul este sau nu perfect? (b) Ce decizie de ia pentru un corector cu valoarea z t = [00]? Dar pentru z t = []

11 Bibliografie [] Mihai Ciuc. Note de seminar. [2] A. T. Murgan, I. Spânu, I. Gavăt, I. Sztojanov, V. E. Neagoe, şi A. Vlad. Teoria Transmisiunii Informatîei - probleme. Editura Didactică şi Pedagogică, Bucureşti, România, 983. [3] Alexandru Spătaru. Teoria Transmisiunii Informatţiei. Editura Didactică şi Pedagogică, Bucureşti, România, 983. [4] Alexandru Spătaru. Fondements de la theorie de la transmisssion de línformation. Presses polytechniques romandes, Lausanne, Elveţia, 987. [5] Rodica Stoian. Note de seminar. [6] Dan Alexandru Stoichescu. Note de seminar. [7] Eugen Vasile. Note de seminar. [8] Constantin Vertan. Note de seminar. 67

Similar cu matricea generatoare, G, de la coduri grup, aici se utilizează polinomul generator, notat g(x). Gradul acestuia este m:

Similar cu matricea generatoare, G, de la coduri grup, aici se utilizează polinomul generator, notat g(x). Gradul acestuia este m: Capitolul 6 Coduri ciclice 6. Breviar teoretic Codurile ciclice constituie un caz particular al codurilor grup. Permutare ciclică Denumirea de ciclic provine de la faptul că orice permutare ciclicăa unui

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Tranzistoare bipolare şi cu efect de câmp

Tranzistoare bipolare şi cu efect de câmp apitolul 3 apitolul 3 26. Pentru circuitul de polarizare din fig. 26 se cunosc: = 5, = 5, = 2KΩ, = 5KΩ, iar pentru tranzistor se cunosc următorii parametrii: β = 200, 0 = 0, μa, = 0,6. a) ă se determine

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Examen AG. Student:... Grupa: ianuarie 2016

Examen AG. Student:... Grupa: ianuarie 2016 16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se

Διαβάστε περισσότερα

Coduri detectoare şi corectoare de erori

Coduri detectoare şi corectoare de erori Coduri detectoare şi corectoare de erori Adrian Atanasiu Editura Universităţii BUCUREŞTI Prefaţă Vă uitaţi la televizor care transmite imagini prin satelit? Vorbiţi la telefon (celular)? Folosiţi Internetul?

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Demonstraţie: Să considerăm polinomul {f(x)} asociat cuvântului - cod: f(x) = h(1) + h(α)x h(α n 1 )X n 1 = a 0 (1 + X + X

Demonstraţie: Să considerăm polinomul {f(x)} asociat cuvântului - cod: f(x) = h(1) + h(α)x h(α n 1 )X n 1 = a 0 (1 + X + X Prelegerea 13 Coduri Reed - Solomon 13.1 Definirea codurilor RS O clasă foarte interesantă de coduri ciclice a fost definită în 1960 de Reed şi Solomon. Numite în articolul iniţial coduri polinomiale,

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

1.4 Schimbarea bazei unui spaţiu vectorial

1.4 Schimbarea bazei unui spaţiu vectorial Algebră liniară, geometrie analitică şi diferenţială. Schimbarea bazei unui spaţiu vectorial După cum s-a văzut deja, într-un spaţiu vectorial V avem mai multe baze, iar un vector x V va avea câte un sistem

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba

Διαβάστε περισσότερα

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Problema 1. Arătaţi că numărul 1 se poate reprezenta ca suma

Διαβάστε περισσότερα

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,... 1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

Seminar Algebra. det(a λi 3 ) = 0

Seminar Algebra. det(a λi 3 ) = 0 Rezolvari ale unor probleme propuse "Matematica const în a dovedi ceea ce este evident în cel mai puµin evident mod." George Polya P/Seminar Valori si vectori proprii : Solutie: ( ) a) A = Valorile proprii:

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Circuite electrice in regim permanent

Circuite electrice in regim permanent Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme apitolul. ircuite electrice in regim permanent. În fig. este prezentată diagrama fazorială a unui circuit serie. a) e fenomen este

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

, m ecuańii, n necunoscute;

, m ecuańii, n necunoscute; Sisteme liniare NotaŃii: a ij coeficienńi, i necunoscute, b i termeni liberi, i0{1,,..., n}, j0{1,,..., m}; a11 1 + a1 +... + a1 nn = b1 a11 + a +... + an n = b (S), m ecuańii, n necunoscute;... am11 +

Διαβάστε περισσότερα

Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu

Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu INTRODUCERE Laborator 1: ÎN ALGORITMI Întocmit de: Claudia Pârloagă Îndrumător: Asist. Drd. Gabriel Danciu I. NOŢIUNI TEORETICE A. Sortarea prin selecţie Date de intrare: un şir A, de date Date de ieşire:

Διαβάστε περισσότερα

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1 FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile

Διαβάστε περισσότερα

Examen AG. Student:... Grupa:... ianuarie 2011

Examen AG. Student:... Grupa:... ianuarie 2011 Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

Aurelian Claudiu VOLF. Coduri. Universitatea Al. I Cuza Iaşi

Aurelian Claudiu VOLF. Coduri. Universitatea Al. I Cuza Iaşi Aurelian Claudiu VOLF Coduri Universitatea Al. I Cuza Iaşi 2011 Cuprins Cuprins... 2 Prefaţă... 3 Unele notaţii... 5 I. Coduri corectoare de erori... 6 II. Coduri liniare... 14 III. Corpuri finite... 26

Διαβάστε περισσότερα

Cursul de recuperare Algebra. v n. daca in schimb exista coecienti λ 1, λ 2,..., λ n nu toti nuli care satisfac relatia (1), de exemplu λ i 0 = A =

Cursul de recuperare Algebra. v n. daca in schimb exista coecienti λ 1, λ 2,..., λ n nu toti nuli care satisfac relatia (1), de exemplu λ i 0 = A = Matrice, determinanti Un punct de vedere liniar independent "A judeca matematic nu înseamn a gândi losoc, a judeca losoc nu înseamn a liber, a gândi liber nu înseamn a losof " Blaise Pascal Liniar independenta:

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1 Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Capitolul 14. Asamblari prin pene

Capitolul 14. Asamblari prin pene Capitolul 14 Asamblari prin pene T.14.1. Momentul de torsiune este transmis de la arbore la butuc prin intermediul unei pene paralele (figura 14.1). De care din cotele indicate depinde tensiunea superficiala

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

2. Circuite logice 2.2. Diagrame Karnaugh. Copyright Paul GASNER 1

2. Circuite logice 2.2. Diagrame Karnaugh. Copyright Paul GASNER 1 2. Circuite logice 2.2. Diagrame Karnaugh Copyright Paul GASNER Diagrame Karnaugh Tehnică de simplificare a unei expresii în sumă minimă de produse (minimal sum of products MSP): Există un număr minim

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ CONCURS DE ADMITERE, 7 iulie 207 Proba scrisă la MATEMATICĂ SUBIECTUL I (30 puncte) ) (0 puncte) Să se arate că oricare ar

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

L.2. Verificarea metrologică a aparatelor de măsurare analogice

L.2. Verificarea metrologică a aparatelor de măsurare analogice L.2. Verificarea metrologică a aparatelor de măsurare analogice 1. Obiectul lucrării Prin verificarea metrologică a unui aparat de măsurat se stabileşte: Dacă acesta se încadrează în limitele erorilor

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Lectia VII Dreapta si planul

Lectia VII Dreapta si planul Planul. Ecuatii, pozitii relative Dreapta. Ecuatii, pozitii relative Aplicatii Lectia VII Dreapta si planul Oana Constantinescu Oana Constantinescu Lectia VII Planul. Ecuatii, pozitii relative Dreapta.

Διαβάστε περισσότερα

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL 7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013

O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013 O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013 Marius Tărnăuceanu 1 Aprilie 2013 Abstract În această lucrare vom prezenta un rezultat ce extinde Problema

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie) Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener 1 Caracteristica statică a unei diode Zener În cadranul, dioda Zener (DZ) se comportă ca o diodă redresoare

Διαβάστε περισσότερα

Transformata Laplace

Transformata Laplace Tranformata Laplace Tranformata Laplace generalizează ideea tranformatei Fourier in tot planul complex Pt un emnal x(t) pectrul au tranformata Fourier ete t ( ω) X = xte dt Pt acelaşi emnal x(t) e poate

Διαβάστε περισσότερα

14. Grinzi cu zăbrele Metoda secţiunilor...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

14. Grinzi cu zăbrele Metoda secţiunilor...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR GRINZI CU ZĂBRELE METODA SECŢIUNILOR CUPRINS. Grinzi cu zăbrele Metoda secţiunilor... Cuprins... Introducere..... Aspecte teoretice..... Aplicaţii rezolvate.... Grinzi cu zăbrele Metoda secţiunilor

Διαβάστε περισσότερα

Acesta este capitolul 2 Noţiuni de teoria informaţiei al ediţiei electronică

Acesta este capitolul 2 Noţiuni de teoria informaţiei al ediţiei electronică Acesta este capitolul 2 Noţiuni de teoria informaţiei al ediţiei electronică a cărţii Reţele de calculatoare, publicată la Casa Cărţii de Ştiinţă, în 2008, ISBN: 978-973-133-377-9. Drepturile de autor

Διαβάστε περισσότερα

CUPRINS 5. Reducerea sistemelor de forţe (continuare)... 1 Cuprins..1

CUPRINS 5. Reducerea sistemelor de forţe (continuare)... 1 Cuprins..1 CURS 5 REDUCEREA SISTEMELOR DE FORŢE (CONTINUARE) CUPRINS 5. Reducerea sistemelor de forţe (continuare)...... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 5.1. Teorema lui Varignon pentru sisteme

Διαβάστε περισσότερα

CIRCUITE LOGICE CU TB

CIRCUITE LOGICE CU TB CIRCUITE LOGICE CU T I. OIECTIVE a) Determinarea experimentală a unor funcţii logice pentru circuite din familiile RTL, DTL. b) Determinarea dependenţei caracteristicilor statice de transfer în tensiune

Διαβάστε περισσότερα

Criterii de comutativitate a grupurilor

Criterii de comutativitate a grupurilor Criterii de comutativitate a grupurilor Marius Tărnăuceanu 10.03.2017 Abstract În această lucrare vom prezenta mai multe condiţii suficiente de comutativitate a grupurilor. MSC (2010): 20A05, 20K99. Key

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

ANEXA 4. OPERAŢII ARITMETICE IMPLEMENTĂRI

ANEXA 4. OPERAŢII ARITMETICE IMPLEMENTĂRI ANEXA 4. OPERAŢII ARITMETICE IMPLEMENTĂRI ADUNAREA ÎN BINAR: A + B Adunarea a două numere de câte N biţi va furniza un rezultat pe N+1 biţi. Figura1. Anexa4. Sumator binar complet Schema bloc a unui sumator

Διαβάστε περισσότερα

Platformă de e learning și curriculă e content pentru învățământul superior tehnic

Platformă de e learning și curriculă e content pentru învățământul superior tehnic Platformă de e learning și curriculă e content pentru învățământul superior tehnic Proiectarea Logică 24. Echivalenta starilor STARILE ECHIVALENTE DIN CIRCUITELE SECVENTIALE Realizarea unui circuit secvenţial

Διαβάστε περισσότερα

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian.

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian. Spaţii vectoriale 1. Spaţii vectoriale. Definiţii şi proprietăţi de bază În continuare prin corp vom înţelege corp comutativ. Dacă nu se precizează altceva, se vor folosi notaţiile standard pentru elementele

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

Capitolul 30. Transmisii prin lant

Capitolul 30. Transmisii prin lant Capitolul 30 Transmisii prin lant T.30.1. Sa se precizeze domeniile de utilizare a transmisiilor prin lant. T.30.2. Sa se precizeze avantajele si dezavantajele transmisiilor prin lant. T.30.3. Realizati

Διαβάστε περισσότερα

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Nicolae Cotfas ELEMENTE DE ALGEBRĂ LINIARĂ EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Introducere Pe parcursul acestei cărţi ne propunem să prezentăm într-un mod cât mai accesibil noţiuni si rezultate de bază

Διαβάστε περισσότερα

FLUXURI MAXIME ÎN REŢELE DE TRANSPORT. x 4

FLUXURI MAXIME ÎN REŢELE DE TRANSPORT. x 4 FLUXURI MAXIME ÎN REŢELE DE TRANSPORT Se numeşte reţea de transport un graf în care fiecărui arc îi este asociat capacitatea arcului şi în care eistă un singur punct de intrare şi un singur punct de ieşire.

Διαβάστε περισσότερα

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1 Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric

Διαβάστε περισσότερα

3.4. Minimizarea funcţiilor booleene

3.4. Minimizarea funcţiilor booleene 56 3.4. Minimizarea funcţiilor booleene Minimizarea constă în obţinerea formei celei mai simple de exprimare a funcţiilor booleene în scopul reducerii numărului de circuite şi a numărului de intrări ale

Διαβάστε περισσότερα