Yποθέτουμε ότι αρχικά είναι φορτισμένος ο πυκνωτής με φορτίο Q ο. Mετά το κλείσιμο του κυκλώματος και σε τυχούσα χρονική στιγμή ισχύει:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Yποθέτουμε ότι αρχικά είναι φορτισμένος ο πυκνωτής με φορτίο Q ο. Mετά το κλείσιμο του κυκλώματος και σε τυχούσα χρονική στιγμή ισχύει:"

Transcript

1 0 Kεφ. TAΛANTΩΣEIΣ (prt, pges 0-4 Πράδειγμ 5. Tο κύκλωμ LC Yποθέτουμε ότι ρχικά είνι φορτισμένος ο πυκνωτής με φορτίο Q ο. Mετά το κλείσιμο του κυκλώμτος κι σε τυχούσ χρονική στιγμή ισχύει: O ς κνόνς Kirchhff (δηλ. η εξίσωση κίνησης του συστήμτος LC είνι: - L di - Q C 0 επειδή IdQ/, η εξίσωση υτή γράφετι: d Q - LC Q η οποί κτά τ γνωστά έχει λύση της μορφής: Q A cs(ωtδ όπου ω / LC. Mπορούμε ν εφρμόσουμε τις ρχικές συνθήκες του προλήμτος (δηλ. γι t0 QQ κι I0 κι ν υπολογίσουμε τις στθερές ολοκλήρωσης (A,δ. CHAPTER

2 Συστήμτ με δύο θμούς ελευθερίς: η κτάστση του συστήμτος προσδιορίζετι πλήρως ν δίδοντι δύο χρκτηριστικά μεγέθη του συστήμτος, όπως π.χ. (t κι (t ή I (t κι I (t, Aν οι εξισώσεις κίνησης ενός συστήμτος με θμούς ελευθερίς είνι γρμμικές, τότε η γενική κίνηση του συστήμτος είνι υπέρθεση νεξρτήτων πλών ρμονικών κινήσεων, που ονομάζοντι κνονικοί τρόποι τλάντωσης, nrml mdes f sciltins. CHAPTER

3 Oτν ενεργοποιείτι μόνο ένς κνονικός τρόπος τλάντωσης, τότε κάθε κινούμενο μέρος του συστήμτος εκτελεί πλή ρμονική τλάντωση, δηλ. ισχύουν οι σχέσεις (tasin(ω tφ (tβsin(ω tφ περιγράφουν τον ίδιο κνονικό τρόπο τλάντωσης, εφόσον (ω,φ είνι ίδι. H συχνότητ ω είνι το χρκτηριστικό μέγεθος γι τον συγκεκριμμένο τρόπο τλάντωσης. Πράδειγμ 6. Δύο συζευγμένες μάζες M (μόνο διμήκεις τλντώσεις Oι εξισώσεις κίνησης γι τις μάζες είνι: CHAPTER

4 3 d d k k( k( k ( Eπίλυση του συστήμτος των διφ. εξισώσεων (: Προσθέτοντς κτά μέλη τις εξισώσεις πίρνομε: d ( k( η οποί έχει λύση: ( cs(ω tφ ( όπου ω k / M κι (A,φ είνι το πλάτος τλάντωσης κι η ρχική φάση στον ο κνονικό τρόπο διμήκους τλάντωσης. Aφιρώντς κτά μέλη τις εξισώσεις στο σύστημ (, λμάνουμε d ( 3k( η οποί έχει λύση: ( - cs(ω tφ (3 CHAPTER

5 4 όπου ω 3k / M κι (A,φ είνι το πλάτος τλάντωσης κι η ρχική φάση στον ο κνονικό τρόπο διμήκους τλάντωσης. Mπορούμε ν ρούμε τις συντετγμένες (t κι (t εύκολ πό τις ( κι (3: cs(ω t φ cs(ω t φ cs(ω cs(ω t φ t φ (4 οπότε η κίνηση του κθενός σώμτος είνι υπέρθεση των νεξρτήτων πλών ρμονικών κινήσεων (δηλ. των κνονικών τρόπων τλάντωσης. Mπορούμε ν ντιληφθούμε κλύτερ τους κνονικούς τρόπους τλάντωσης ως εξής: Aπό τις (4, ν γνοήσουσε την ρμονική τλάντωση (A 0, τότε προκύπτει (t (t, δηλ. κι τ δύο σώμτ εκτελούν την ίδι κριώς (διμήκη τλάντωση με συχνότητ ω, όπως φίνετι στο σχήμ Oμοίως πό τις (4, ν γνοήσουσε την η ρμονική τλάντωση (A 0, τότε προκύπτει ότι (t- (t, δηλ. τ δύο σώμτ εκτελούν ντίθετη (διμήκη τλάντωση με συχνότητ ω, όπως φίνετι στο σχήμ CHAPTER

6 5 ω Πράδειγμ 6. Δύο συζευγμένες μάζες M (μόνο εγκάρσιες τλντώσεις. Yποθέτομε ότι οι δύο μάζες εξνγκάζοντι ν κινούντι πάνω στ κτκόρυφ επίπεδ x κι x, ντίστοιχ. (Mπορούμε ν φντστούμε ότι έχουμε κάνει μί οπή σε κάθε σώμ M κι έχουμε περάσει μιά κλόνητο κτκόρυφο ράδο μέσ πό κάθε οπή, έτσι ώστε τ σώμτ ν κινούντι κτκόρυφ χωρίς τριές πάνω στους οδηγούς. H y-συνιστώσ (κτκόρυφος διεύθυνση των σκουμένων δύνμεων επί των σωμάτων είνι: CHAPTER

7 6 CHAPTER y k( k( - - k( - k( sinθ Τ sin θ T F y k( k( - k( - - k( sinθ Τ sin θ T F όπου,, 3, τ μήκη των ελτηρίων, 3 ( Ν θυμηθούμε τη προσέγγιση των μικρών τλντώσεων πό το Πράδειγμ 4, ( ( ε ε ε x / /, γι ε<<, όπου ε(x/, οπότε τ πρπάνω μήκη των ελτηρίων γράφοντι,

8 7 [, κι 3...] οπότε οι δυνάμεις F y,f y γράφοντι (κρτώντς μόνο γρμμικούς όρους στις προσεγγίσεις ως προς τις πομκρύνσεις,, F F y y k( ( k( ( Οι εξισώσεις κίνησης των σωμάτων κτά την εγκάρσι διεύθυνση είνι, d d k k ( ( ( Eπίλυση του συστήμτος των διφ. εξισώσεων: Προσθέτοντς κτά μέλη τις εξισώσεις πίρνομε: d ( k( ( CHAPTER

9 8 η οποί έχει λύση: k ( cs(ω Ε tφ ( όπου ω ( κι (A,φ είνι το πλάτος Ε τλάντωσης κι η ρχική φάση στον ο κνονικό τρόπο εγκάρσις τλάντωσης. Aφιρώντς κτά μέλη τις εξισώσεις στο σύστημ (, λμάνουμε d ( 3k( ο ( η οποί έχει λύση: 3k ( - cs(ω Ε tφ (3 όπου ω ( κι (A,φ είνι το πλάτος Ε τλάντωσης κι η ρχική φάση στον ο κνονικό τρόπο εγκάρσις τλάντωσης. Mπορούμε ν ρούμε τις συντετγμένες (t κι (t εύκολ πό τις ( κι (3: cs(ω cs(ω Ε Ε t φ t φ cs(ω cs(ω Ε Ε t φ t φ (4 CHAPTER

10 9 οπότε η κίνηση του κθενός σώμτος είνι υπέρθεση των νεξρτήτων πλών ρμονικών κινήσεων (δηλ. των κνονικών τρόπων τλάντωσης. Mπορούμε ν ντιληφθούμε κλύτερ τους κνονικούς τρόπους τλάντωσης ως εξής: Aπό τις (4, ν γνοήσουσε την ρμονική τλάντωση (A 0, τότε προκύπτει (t (t, δηλ. κι τ δύο σώμτ εκτελούν την ίδι κριώς (εγκάρσι τλάντωση με συχνότητ ω E, Oμοίως πό τις (4, ν γνοήσουσε την η ρμονική τλάντωση (A 0, τότε προκύπτει ότι (t- (t, δηλ. κι τ δύο σώμτ εκτελούν ντίθετη (εγκάρσι τλάντωση με συχνότητ ω E, CHAPTER

11 0 Συστημτική νζήτηση των κνονικών τρόπων τλάντωσης (nrml mdes Θεωρούμε έν φυσικό σύστημ με θμούς ελευθερίς το οποίο περιγράφετι πό χρκτηριστικές μετλητές, έστω (t κι (t. Eστω ότι έχουμε ρει ομογενείς διφορικές εξισώσεις ς τάξης, οι οποίες περιγράφουν την κινητική κτάστση του συστήμτος, της μορφής, d d Yποθέτουμε ότι το σύστημ διεγείρετι μόνο σε έν συγκεκριμμένο τρόπο τλάντωσης με κυκλική συχνότητ ω, που σημίνει ότι οι μετλητές (t κι (t θ έχουν τη μορφή, cs(ωtφ Βcs(ωtφ ( (ίδι ω κι φ. Aν οι σχέσεις ( είνι λύσεις των εξισώσεων (, τότε θ πρέπει ν ικνοποιούν τις (. Aρ, ντικθιστώντες στις ( προκύπτει, ( ω ή ω CHAPTER

12 ( ω ( ω 0 0 (3 δηλ. κτλήγουμε σε έν ομογενές σύστημ N γρμμικών (λγερικών εξισώσεων. Γι ν έχει μη μηδενική λύση το ομογενές σύστημ, θ πρέπει η χρκτηριστική ορίζουσ ν ισούτι με μηδέν, δηλ. ( ω ( ω 0 π όπου λμάνουμε τη χρκτηριστική εξίσωση, ( ω ( ω 0 H εξίσωση υτή είνι έν τριώνυμο ως προς ω, άρ γενικά θ πρέπει ν έχει μη-μηδενικές λύσεις, (ω κι (ω. Oι λύσεις υτές λέγοντι ιδιοσυχνότητες του συστήμτος (στη Γρμμική Aλγερ, λέγοντι ιδιοτιμές του πίνκ, ( ω, ( ± ( 4( Γι κάθε ιδιοσυχνότητ ω ή ω, μπορούμε υπολογίσουμε τις λύσεις κι πό τις εξισ. (3, ν Β ω (mde CHAPTER

13 Β ω (mde (στη Γρμμική Aλγερ, οι λύσεις κι λέγοντι ιδιοδινύσμτ του πίνκ. Tώρ, η γενική λύση του συστήμτος ( θ είνι υπέρθεση των δύο κνονικών τρόπων τλάντωσης, Β cs(ω t φ cs(ω t φ Β cs(ω cs(ω t φ t φ Oι 4 νεξάρτητες στθερές A, φ, A, φ προσδιορίζοντι πό τις ρχικές συνθήκες του προλήμτος (0, (0, (0, (0. Δικροτήμτ (bets Σύμφων με το θεώρημ της υπέρθεσης, η κίνηση ενός σύστημ με πολλούς ελευθερίς είνι υπέρθεση όλων των νεξρτήτων ρμονικών τλντώσεων που μπορεί ν διεγερθεί, δηλ. η συνιστάμενη διτρχή του συστήμτος θ έχει τη μορφή (γιά θμούς ελευθερίς (t A sin(ω tφ A sin(ω tφ Γι ευκολί μς πίρνουμε A A A, οπότε (t A [sin(ω tφ sin(ω tφ ] CHAPTER

14 3 sin( ω ω t φ φ cs( ω t φ sin(ωt φcs(ωmd t δ md(tsin(ωt όπου ω(ω ω /, φ(φ φ /, δ(φ -φ /, ω md (ω -ω / κι md (tcs(ω md tδ. ω φ φ T md Eφόσον το συνιστάμενο πλάτος τλάντωσης είνι περιοδική συνάρτηση, A md (tta md (t, λμάνουμε την συχνότητ δικροτήμτος, ν ν - ν Θεώρημ του Furier: Aν (t είνι μιά περιοδική συνάρτηση ως προς t, τότε η συνάρτηση υτή μπορεί ν πρστθεί πό μι σειρά τριγωνομετρικών συνρτήσεων της μορφής (t [n sin(πωnt φ Βn cs(πωnt φ] n κάθε σετ (ω n, A n,b n ορίζει την n-στή ρμονική CHAPTER

15 4 b (A n B n ορίζει την έντση της n-στής ρμονικής Στο κόλουθο σχήμ πρίσττι η έντση του φωνήεντος εκφωνούμενο στη θεμελιώδη συχνότητ 00Hz. Δίπλ έχει νλυθεί ο ήχος στις θεμελιώδεις συχνότητες που το πρτίζουν. CHAPTER

* ' 4. Σώµ εκτελεί γ..τ µε συχνότητ f. H συχνότητ µε την οποί µεγιστοποιείτι η δυνµική ενέργει τλάντωσης είνι. f =2f β. f =f/2 γ. f =f δ. f =4f Β. Στη

* ' 4. Σώµ εκτελεί γ..τ µε συχνότητ f. H συχνότητ µε την οποί µεγιστοποιείτι η δυνµική ενέργει τλάντωσης είνι. f =2f β. f =f/2 γ. f =f δ. f =4f Β. Στη * '! " # $ # # " % $ " ' " % $ ' " ( # " ' ) % $ THΛ: 270727 222594 THΛ: 919113 949422 ' " % +, Α. Γι τις πρκάτω προτάσεις 1-4 ν γράψετε το γράµµ, β, γ ή δ, που ντιστοιχεί στην σωστή πάντηση 1. Κύκλωµ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 19 ΝΟΕΜΒΡΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 19 ΝΟΕΜΒΡΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4 ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 19 ΝΟΕΜΒΡΙΟΥ 017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4 ΘΕΜΑ A Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις

Διαβάστε περισσότερα

Η θεωρία στα μαθηματικά της

Η θεωρία στα μαθηματικά της Η θεωρί στ μθημτικά της Γ γυμνσίου ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Γ ΤΑΞΗΣ ((ΑΛΓΕΒΡΑ)) ο ΚΕΦΑΛΑΙΙΟ 1 Αλγγεεριικέέςς Πρσττάσεειιςς Α. 1. 1 1. Τι ονομάζετε δύνμη ν με άση τον πργμτικό κι εκθέτη το φυσικό

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1.

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. Δύο μηχνικά κύμτ ίδις συχνότητς διδίδοντι σε ελστική χορδή. Αν λ 1 κι λ 2 τ μήκη κύμτος υτών των κυμάτων ισχύει: ) λ 1 λ 2 γ) λ 1 =λ 2 Δικιολογήστε την πάντησή

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ Συγγρφή Επιμέλει: Πνγιώτης Φ. Μοίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 13 Ε_3.ΦλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνί: Κυρική 8 Απριλίου 13 ιάρκει Εξέτσης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÑÏÌÂÏÓ

ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÑÏÌÂÏÓ ΘΕΜ 1ο ΘΕΜΤ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ - 000 Στις ερωτήσεις 1-4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ το γράµµ που ντιστοιχεί στη σωστή πάντηση. 1. Ένς νεµιστήρς

Διαβάστε περισσότερα

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης:

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης: Πγκόσμιο χωριό γνώσης.3. ΣΥΝΑΡΤΗΣΕΙΣ.3.1. Ορισμός συνάρτησης: 6 Ο ΜΑΘΗΜΑ Συνάρτηση f / A B, ονομάζετι η διδικσί (νόμος ) που ντιστοιχίζει κάθε στοιχείο του συνόλου Α ( πεδίο ορισμού ) σε έν μόνο στοιχείο

Διαβάστε περισσότερα

4.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ

4.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ - ΑΣΚΗΣΕΙΣ. ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν κάνουμε την μελέτη ή την γρφική πράστση μις συνάρτησης ΜΕΘΟΔΟΛΟΓΙΑ Ότν μς ζητούν κάνουμε την γρφική πράστση

Διαβάστε περισσότερα

γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ η εξετστική ερίοδος ό 8// έως 08/0/ γρτή εξέτση στο μάθημ ΦΥΣΙΚΗ ΚΤΥΘΥΝΣΗΣ Γ ΛΥΚΙΟΥ Τάξη: Γ Λυκείου Τμήμ: Βθμός: Ονομτεώνυμο: Κθηγητές: ΤΡΙΔΗΣ ΓΙΩΡΓΟΣ ΘΜ ο Στις ρκάτω ερωτήσεις ν γράψετε στο τετράδιό σς

Διαβάστε περισσότερα

Kεφ. 1 TAΛANTΩΣEIΣ (part 1, pages 1-9)

Kεφ. 1 TAΛANTΩΣEIΣ (part 1, pages 1-9) Mάθημα: Φυσική, Ακαδ. Ετος: 000-00 Tμήμα: Πολιτικών Mηχανικών, Πανεπιστήμιο Πάτρας Eγχειρίδιο: Mαθήματα Φυσικής Παν. Berkeley, τόμος 3: Kυματική Διδάσκων: Αναπληρωτής Καθηγητής Μ. Βελγάκης Kεφ. TAΛANTΩΣEIΣ

Διαβάστε περισσότερα

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN Ν6_(6)_Σττιστική στη Φυσική Αγωγή 08_Πλινδρόμηση κι συσχέτιση Γούργουλης Βσίλειος Κθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Σε ορισμένες περιπτώσεις πιτείτι η νίχνευση της σχέσης μετξύ δύο ποσοτικών μετβλητών

Διαβάστε περισσότερα

η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1.

η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1. Εκθετική συνάρτηση Αν θετικός πργμτικός ριθμός, σε κάθε ντιστοιχεί η δύνμη. Έτσι ορίζετι η συνάρτηση : f : με f, 0 η οποί ονομάζετι εκθετική συνάρτηση με βάση. Αν, τότε έχουμε τη στθερή συνάρτηση f. Ας

Διαβάστε περισσότερα

Κίνηση σε Μαγνητικό πεδίο

Κίνηση σε Μαγνητικό πεδίο Κίνηση σε γνητικό πεδίο 4.1. Ακτίν κι Περίοδος στο ΟΠ. Από έν σημείο Α μέσ σε ομογενές μγνητικό πεδίο έντσης Β=2Τ, εκτοξεύοντι δύο σωμτίδι Σ 1 κι Σ 2 ίδις μάζς m=10-10 kg κι ντίθετων φορτίων, με τχύτητες

Διαβάστε περισσότερα

Κεφάλαιο 2 ο. Γραμμικά Δικτυώματα

Κεφάλαιο 2 ο. Γραμμικά Δικτυώματα Κεφάλιο 2 ο Γρμμικά Δικτυώμτ Έν ηλεκτρικό κύκλωμ ή δικτύωμ ποτελείτι πό ένν ριθμό πλών κυκλωμτικών στοιχείων, όπως υτά που νφέρθηκν στο Κεφ.1, συνδεδεμένων μετξύ τους. Το κύκλωμ θ περιέχει τουλάχιστον

Διαβάστε περισσότερα

ΘΕΜΑ 1 0 Οδηγία: Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 0 Οδηγία: Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 8//6 ΘΕΜΑ Οδηγί: Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθμό της ερώτησης κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ σε κάθε ριθµό το γράµµ που ντιστοιχεί

Διαβάστε περισσότερα

, οπότε α γ. y x. y y άξονες. τα σημεία της υπερβολής C βρίσκονται έξω από την ταινία των ευθειών x α

, οπότε α γ. y x. y y άξονες. τα σημεία της υπερβολής C βρίσκονται έξω από την ταινία των ευθειών x α YΠΡΒΛΗ ρισμός: Υπερολή με εστίες κι λέγετι ο γεωμ. τόπος των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων πό τ κι είνι στθερή κι μικρότερη του Έ. Τη στθερή υτή διφορά τη συμολίζουμε

Διαβάστε περισσότερα

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση. . Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΓΩΝΙΣΜ ΕΚΠ. ΕΤΟΥΣ 03-04 ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡ: (ΠΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙ: 04/0/04 ΘΕΜ Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτσεις -4 κι δίπλ το γράμμ

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλιο 5: Θεωρήμτ κυκλωμάτων Οι διφάνειες κολουθούν το ιλίο του Κων/νου Ππδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ: 50657177 5 Θεωρήμτ κυκλωμάτων

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f( x ), ( ) σύνολο Α ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ g x είνι δύο πρστάσεις µις µετλητής x πού πίρνει τιµές στο Ανίσωση µε ένν άγνωστο λέγετι κάθε σχέση της µορφής f( x) g( x) f( x) g( x)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Δυνάμεις με ρητό ή άρρητο εκθέτη.

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Δυνάμεις με ρητό ή άρρητο εκθέτη. ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ Δυνάμεις με ρητό ή άρρητο εκέτη. Με την οήει των ορίων κι των δυνάμεων με ρητό εκέτη ορίζετι κι η δύνμη, με > 0 κι. Ισχύουν κι σε υτή την περίπτωση

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλιο 12: Ανάλυση κυκλωμάτων ημιτονοειδούς διέγερσης Οι διφάνειες κολουθούν το ιλίο του Κων/νου Ππδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί

Διαβάστε περισσότερα

just ( u) Πατρόκλου 66 Ίλιον

just ( u) Πατρόκλου 66 Ίλιον just f ( u) du it Πτρόκλου 66 Ίλιον 637345 6944 www.group group-aei aei.gr Νίκος Σούρµπης - - Γιώργος Βρδούκς Ν χρκτηρίσετε τ πρκάτω, σηµειώνοντς Σ (σωστό) ή Λ (λάθος). Αν z, z C, τοτε zz = zz. Η εξίσωση

Διαβάστε περισσότερα

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x ΔΙΑΓΩΝΙΣΜΑΤΑ Διγώνισμ Θέμ Α Α Ν ποδειχθεί ότι η συνάρτηση f = ln,, είνι πργωγίσιμη στο κι ισχύει f = Μονάδες 7 Α Πότε μί συνάρτηση f λέμε ότι είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της; Α Πότε

Διαβάστε περισσότερα

5 Θεωρήματα κυκλωμάτων 5.3 Θεωρήματα Thevenin και Norton

5 Θεωρήματα κυκλωμάτων 5.3 Θεωρήματα Thevenin και Norton Έχουμε δει ότι η χρήση ισοδύνμων κυκλωμάτων σε πολλές περιπτώσεις πλοποιεί την νάλυση ενός κυκλώμτος: Αντιστάσεις συνδεδεμένες με ειδικό τρόπο (σειρά, πράλληλ, σε στέρ ή τρίγωνο) μπορούν ν ντικτστθούν

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ Γι μθητές Β & Γ Λυκείου ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ ΤΗΣ ΠΑΡΑΓΩΓΟΥ Πολλές συνρτήσεις μπορούν ν πρστθούν γρφικά, χωρίς τη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3. Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Πράγουσ συνάρτηση ΟΡΙΣΜΟΣ Έστω f μι συνάρτηση ορισμένη σε έν διάστημ.

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ 1

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ 1 Υλικό Φσικής-Χηµείς ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΙ ΣΩΣΤΟΥ ΛΘΟΥΣ ΜΕ ΙΤΙΟΛΟΓΗΣΗ ) Στην κάτω άκρη ενός ιδνικού τήριο είνι δεµένο έν σώµ πο έχει µάζ m m κι ισορροπεί. Στην κάτω άκρη ενός άλλο οµοίο τήριο είνι

Διαβάστε περισσότερα

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΤΜΗΜ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΘΗΗΤΗΣ ΚΩΣΤΣ ΕΛΕΝΤΖΣ ΣΧΕΤΙΚ ΜΕ ΤΙΣ ΚΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΙ Τ ΠΟΤΕΛΕΣΜΤ ΥΠΟΚΤΣΤΣΗΣ ΚΙ ΕΙΣΟ ΗΜΤΟΣ ΠΕΡΙΠΤΩΣΗ η: Συνρτήσεις ζήτησης κτά arshall Υπόθεση: Το χρηµτικό

Διαβάστε περισσότερα

ΙΔΙΟΤΙΜΕΣ. Λύση. Σχηματίζουμε την εξίσωση (2): x = 0. Οι κολώνες του πίνακα

ΙΔΙΟΤΙΜΕΣ. Λύση. Σχηματίζουμε την εξίσωση (2): x = 0. Οι κολώνες του πίνακα ΙΔΙΟΤΙΜΕΣ Σημείωση Προς το πρόν, κινούμεθ στο σώμ R των πργμτικών ριθμών Έν ιδιοδιάνυσμ ή χρκτηριστικό διάνυσμ ενός πίνκ Α, που ντιστοιχεί στην ιδιοτιμή, είνι εκείνο το μη μηδενικό διάνυσμ το οποίο πηροί

Διαβάστε περισσότερα

ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ

ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ Δύο ομογενείς δίσκοι, ένς μεγάλος μάζς Μ=3kg κι κτίνς =40 κι ένς μικρός μάζς m=kg κι κτίνς =10, ενώνοντι έτσι ώστε ν συμπίπτουν τ κέντρ τους. Ο δίσκος κτίνς διθέτει υλάκι

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙ: 15/0/015 ΘΕΜ 1 ο Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις 1-4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.

Διαβάστε περισσότερα

Ονοματεπώνυμο. Τμήμα

Ονοματεπώνυμο. Τμήμα Ηλεκτρομγνητισμός (6-7-9) Ονομτεπώνυμο Τμήμ ΘΕΜΑ 1 A. Έν σωμάτιο με φορτίο -6. n τοποθετείτι στο κέντρο ενός μη γώγιμου σφιρικού φλοιού εσωτερικής κτίνς c κι εξωτερικής 5 c. Ο σφιρικός φλοιός περιέχει

Διαβάστε περισσότερα

Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Αρχική Συνάρτηση Ορισμός Έστω f μι συνάρτηση ορισμένη σε έν διάστημ Δ. Αρχική συνάρτηση ή πράγουσ της f στο Δ ονομάζετι κάθε συνάρτηση F που είνι πργωγίσιμη στο

Διαβάστε περισσότερα

Τάξη Β Θετική και Τεχνολογική Κατεύθυνση Ερωτήσεις Θεωρίας και απαντήσεις από το σχολικό βιβλίο Καθηγητής: Ν.Σ. Μαυρογιάννης

Τάξη Β Θετική και Τεχνολογική Κατεύθυνση Ερωτήσεις Θεωρίας και απαντήσεις από το σχολικό βιβλίο Καθηγητής: Ν.Σ. Μαυρογιάννης Τάξη Β Θετική κι Τεχνολογική Κτεύθυνση Ερωτήσεις Θεωρίς κι πντήσεις πό το σχολικό ιλίο Κθηγητής: ΝΣ Μυρογιάννης Πότε δύο µη µηδενικά δινύσµτ AB κι Γ λέγοντι πράλληλ ή συγγρµµικά; Απάντηση: Ότν έχουν τον

Διαβάστε περισσότερα

1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς:

1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς: 1. Ν σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους πρκάτω ισχυρισμούς: 1. Αν γι την συνεχή στο συνάρτηση f ισχύουν: f(0) f(2) 0 κι f(0) f(5) 0 τότε η εξίσωση ( ) 0 f έχει τουλάχιστον δύο ρίζες. 2. Αν ισχύει

Διαβάστε περισσότερα

είναι n ανεξάρτητες τυποποιημένες κανονικές τυχαίες μεταβλητές, δηλαδή, αν Z i

είναι n ανεξάρτητες τυποποιημένες κανονικές τυχαίες μεταβλητές, δηλαδή, αν Z i Οι Κτνομές χ, t κι F Οι Κτνομές χ, t κι F Σε υτή την ενότητ προυσιάζουμε συνοπτικά τρεις συνεχείς κτνομές οι οποίες, όπως κι η κνονική κτνομή, είνι πολύ χρήσιμες στη Σττιστική Συμπερσμτολογί Είνι ξιοσημείωτο,

Διαβάστε περισσότερα

ΑΚΟΛΟΥΘΙΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. α,α,,α, ή συνοπτικά με. * n. α α λ, για κάθε. n και υπάρχει. (αντ. αn αn 1

ΑΚΟΛΟΥΘΙΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. α,α,,α, ή συνοπτικά με. * n. α α λ, για κάθε. n και υπάρχει. (αντ. αn αn 1 ΑΚΟΛΟΥΘΙΕΣ ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ Ακολουθί στοιχείων ενός συνόλου Ε ονομάζετι κάθε πεικόνιση : Ε Στην πεικόνιση υτή η εικόν του θ σηιώνετι κι θ ονομάζετι γενικός ή -οστός όρος της κολουθίς Η κολουθί υτή θ σηιώνετι

Διαβάστε περισσότερα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα Λύσεις ης Εργσίς. Γράψτε κι σχεδιάστε ποιοτικά στο ίδιο διάγρµµ κθέν πό τ επόµεν v δινύσµτ στη µορφή x y : () Το διάνυσµ που συνδέει την ρχή του συστήµτος συντετγµένων µε το σηµείο Ρ(,-). () Το διάνυσµ

Διαβάστε περισσότερα

Μαθηµατικά Ιβ Σελίδα 1 από 7 ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ

Μαθηµατικά Ιβ Σελίδα 1 από 7 ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ Μθηµτικά Ιβ Σελίδ πό 7 Μάθηµ 7 ο ΟΡΘΟΚΑΝΟΝΙΚΗ ΒΑΣΗ ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ Θεωρί : Γρµµική Άλγεβρ : εδάφιο 6, σελ. (µέχρι Πρότση 4.6), εδάφιο 7, σελ. 5 (όχι την πόδειξη της Πρότσης 4.9). πρδείγµτ που ντιστοιχούν

Διαβάστε περισσότερα

γραπτή εξέταση στα ΦΥΣΙΚΗ Γ' κατεύθυνσης

γραπτή εξέταση στα ΦΥΣΙΚΗ Γ' κατεύθυνσης ΦΡΟΝΤΙΣΤΗΡΙΑ δυδικό η εξετστική περίοδος πό 9//0 έως 09/0/ γρπτή εξέτση στ ΦΥΣΙΚΗ Γ' κτεύθυνσης Τάξη: Γ Λυκείου Τμήμ: Βθμός: Ημερομηνί: 8//00 Ύλη: Ονομτεπώνυμο: Κθηγητές: Τλντώσεις - Κύμτ Αθνσιάδης Φοίβος,

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. Ν ρεθεί το εμδόν του χωρίου Ω που περικλείετι πό τη γρφική πράστση

Διαβάστε περισσότερα

Εισαγωγή στις Φυσικές Επιστήμες ( ) Α. Δύο σώματα ίσης μάζας m κινούνται σε οριζόντιο επίπεδο όπως φαίνεται στο παρακάτω σχήμα.

Εισαγωγή στις Φυσικές Επιστήμες ( ) Α. Δύο σώματα ίσης μάζας m κινούνται σε οριζόντιο επίπεδο όπως φαίνεται στο παρακάτω σχήμα. Εισγωγή στις Φυσικές Επιστήμες (7-7-7) Μηχνική Ονομτεπώνυμο Τμήμ ΘΕΜΑ 1 Α. Δύο σώμτ ίσης μάζς m κινούντι σε οριζόντιο επίπεδο όπως φίνετι στο πρκάτω σχήμ. Α υ Β a O = Εάν γι t = το σώμ Α κινείτι με στθερή

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Η συνάρτηση f() =, 0 Υπερβολή Δύο ποσά λέγοντι ντιστρόφως νάλογ, εάν μετβάλλοντι με τέτοιο τρόπο, που ότν οι τιμές του ενός πολλπλσιάζοντι με ένν ριθμό, τότε κι οι ντίστοιχες τιμές του άλλου ν διιρούντι

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ B ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ B ΛΥΚΕΙΟΥ Φυσική Κτεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ Θέµ ο κ ΙΑΓΩΝΙΣΜΑ Α. (Βάλτε σε κύκλο το γράµµ µε τη σωστή πάντηση) Αν υξήσουµε την πόστση µετξύ δύο ετερόσηµων σηµεικών ηλεκτρικών φορτίων,. η δυνµική

Διαβάστε περισσότερα

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i. . Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,

Διαβάστε περισσότερα

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι Έςτω :RR, ςυνεχήσ ςυνάρτηςη κι,,cr Αποδείξτε ότι ) d d β) d d γ) d c c d c c δ) d c c c d ε) d στ) d Απάντηση:, εάν η είνι περιττή d, εάν η είνι άρτι Πρόκειτι γι πολύ βσική άσκηση, που είνι εφρμογή της

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 7 Απριλίου 2013 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 7 Απριλίου 2013 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνί: Κυρική 7 Απριλίου ιάρκει Εξέτσης: ώρες ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α.. Βλέπε πόδειξη () σελ.75 σχολικού βιβλίου Α.. ) Βλέπε τον ορισµό στη σελίδ

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 0 Υπερολή Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Oρισµός Υπερολή ονοµάζετι ο γεωµετρικός τόπος των σηµείων του επιπέδου, των οποίων η διφορά των ποστάσεων πό δύο στθερά σηµεί Ε κι Ε είνι στθερή κι µικρότερη πο

Διαβάστε περισσότερα

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto. 1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΓΑ() ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α.. Α.. Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνί: Κυρική 7 Απριλίου ιάρκει Εξέτσης: ώρες ΑΠΑΝΤΗΣΕΙΣ Βλέπε πόδειξη () σελ.75 σχολικού βιβλίου

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α) Ν ποδείξετε ότι ν µι συνάρτηση f

Διαβάστε περισσότερα

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές . ίνετι η συνάρτηση f() e. Α) Ν ποδείξετε ότι η νιοστή πράγωγος της συνάρτησης f µπορεί ν πάρει τη µορφή (ν) f () ( + ν + ν )e όπου ν ν είνι συντελεστές εξρτηµένοι πό το ν τους οποίους κι ν υπολογίσετε.

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 7 ΠΡΟΣΕΓΓΙΣΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ

KΕΦΑΛΑΙΟ 7 ΠΡΟΣΕΓΓΙΣΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ KΕΦΑΛΑΙΟ 7 ΠΡΟΣΕΓΓΙΣΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Είνι γνωστό ότι γι πολλά ορισµέν ολοκληρώµτ δεν υπάρχουν νλυτικές µέθοδοι κριβούς επίλυσής τους. Ετσι λοιπόν έχουν νπτυχθεί προσεγγιστικές µέθοδοι υπολογισµού τέτοιων

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας Μθηµτικά Κτεύθυνσης Γ Λυκείου Θέµτ Θεωρίς ΑΠΟΔΕΙΞΕΙΣ. N ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων κι - είνι συµµετρικές ως προς την ευθεί y που διχοτοµεί τις γωνίες Oy κι Oy Aς πάρουµε µι

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ -8 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑ Αν η συνάρτηση f είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της, ν γρφεί η εξίσωση της εφπτομένης της γρφικής πράστσης της f στο σημείο Α(,f( ))

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Κεφάλιο ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ο Ρ Ι Σ Μ Ο Σ Τι ονομάζετι ορισμένο ολοκλήρωμ μις συνεχούς συνάρτησης f: [, ] πό το έως κι το κι πώς συμολίζετι ; Αν F είνι πράγουσ

Διαβάστε περισσότερα

Μέθοδος Ελαχίστων Τετραγώνων & Φωτογραµµετρία

Μέθοδος Ελαχίστων Τετραγώνων & Φωτογραµµετρία ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΟΛΥΤΕΧΝΕΙΟ Σχολή Αγρονόµων κι Τοπογράφων Μηχ. Τοµές Τοπογρφίς Μέθοδος Ελχίστων Τετργώνων & Φωτογρµµετρί Φωτογρµµετρική Οπισθοτοµί Υποδειγµτικά λυµένη άσκηση εδοµέν Ν συvτχθεί πρόγρµµ Η/Υ

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ Α) Προβλήμτ ευθύγρμμης ομλά επιτχυνόμενης κίνησης. ) Απλής εφρμογής τύπων Ακολουθούμε τ εξής βήμτ: i) Συμβολίζουμε τ δεδομέν κι ζητούμεν με τ ντίστοιχ σύμβολ που θ χρησιμοποιούμε.

Διαβάστε περισσότερα

sin x F(x) x 2 3 x παραγουσών προσθέτοντας σταθερές. Το καλούμε αόριστο ολοκλήρωμα της f(x) και το παριστάνουμε με: f(x)dx

sin x F(x) x 2 3 x παραγουσών προσθέτοντας σταθερές. Το καλούμε αόριστο ολοκλήρωμα της f(x) και το παριστάνουμε με: f(x)dx I. ΟΛΟΚΛΗΡΩΜΑ.Ορισμένο ολοκλήρωμ.πράγουσ.θεμελιώδες Θεώρημ.Βσικά ολοκληρώμτ 5.Γρμμικότητ 6.Ολοκλήρωση με λλγή μετλητής ή με ντικτάστση 7.Ολοκλήρωση κτά μέρη 8.Ολοκληρώμτ ρητών 9.Ολοκληρώμτ τριγωνομετρικών.γενικευμένο

Διαβάστε περισσότερα

* 4. Οµογενές στερεό σώµ στρέφετι γύρω πό στθερό άξον, υπό την επίδρση στθερής ροπής τ. Συνεπώς όλ τ υλικά σηµεί που το ποτελούν. έχουν την ίδι επιτρό

* 4. Οµογενές στερεό σώµ στρέφετι γύρω πό στθερό άξον, υπό την επίδρση στθερής ροπής τ. Συνεπώς όλ τ υλικά σηµεί που το ποτελούν. έχουν την ίδι επιτρό *! " # $ # # " % $ " " % $ " ( # " ) % $ THΛ: 270727 222594 THΛ: 919113 949422 " % +, Α. Γι τις πρκάτω προτάσεις 1-4 ν γράψετε το γράµµ, β, γ ή δ, που ντιστοιχεί στην σωστή πάντηση 1. Αν στο διπλνό κύκλωµ

Διαβάστε περισσότερα

Θεωρήματα, Προτάσεις, Εφαρμογές

Θεωρήματα, Προτάσεις, Εφαρμογές Θεωρήμτ, Προτάσεις, Εφρμογές Μιγδικοί Ιδιότητες συζυγών: Αν z i κι z γ δi είνι δυο μιγδικοί ριθμοί, τότε: Μέτρο: z z z z z z z z 3 z z z z 4 z z z z Αν z, z είνι μιγδικοί ριθμοί, τότε z z z z z z z z 3

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2015

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2015 ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 05 ΘΕΜΑ Α. Γι μι συνεχή συνάρτηση f ν γράψετε τις τρείς κτηγορίες σημείων, τ οποί εινι πιθνές θέσεις τοπικών κροτάτων. (6 Μονάδες). Ν χρκτηρίσετε τις προτάσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 21/10/12

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 21/10/12 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 21/10/12 ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα

Διαβάστε περισσότερα

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους 0 Πργμτικοί ριθμοί Οι πράξεις & οι ιιότητες τους Βρέντζου Τίν Φυσικός Μετπτυχικός τίτλος ΜEd: «Σπουές στην εκπίευση» 0 1 Πργμτικοί ριθμοί : Αποτελούντι πό τους ρητούς ριθμούς κι τους άρρητους ριθμούς.

Διαβάστε περισσότερα

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΜΕΡΟΣ Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ 7. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΟΡΙΣΜΟΣ Ονομάζουμε τετργωνική ρίζ ενός θετικού ριθμού τον θετικό ριθμό (ΣΥΜΒΟΛΙΣΜΟΣ: ) που ότν υψωθεί στο τετράγωνο μς δίνει

Διαβάστε περισσότερα

Η έννοια της συνάρτησης

Η έννοια της συνάρτησης Η έννοι της συνάρτησης Τι ονομάζουμε πργμτική συνάρτηση; Έστω Α έν υποσύνολο του R Ονομάζουμε πργμτική συνάρτηση με πεδίο ορισμού το Α μι διδικσί (κνόν), με την οποί κάθε στοιχείο A ντιστοιχίζετι σε έν

Διαβάστε περισσότερα

ΓΙΟ-ΓΙΟ ΚΑΙ ΚΟΨΙΜΟ ΝΗΜΑΤΟΣ

ΓΙΟ-ΓΙΟ ΚΑΙ ΚΟΨΙΜΟ ΝΗΜΑΤΟΣ ΓΙΟ-ΓΙΟ ΚΙ ΚΟΨΙΜΟ ΝΗΜΤΟΣ Ο ομογενής κύλινδρος(γιο-γιό) του σχήμτος έχει μάζ Μ=5kg κι κτίν R=0,m. Γύρω πό τον κύλινδρο είνι τυλιγμένο βρές κι μη εκττό νήμ, το ελεύθερο άκρο του οποίου τρβάμε προς τ πάνω

Διαβάστε περισσότερα

ΠΕΡΙΚΛΗΣ Γ. ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΟΡΟΣΗΜΟ ΖΩΓΡΑΦΟΥ

ΠΕΡΙΚΛΗΣ Γ. ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΟΡΟΣΗΜΟ ΖΩΓΡΑΦΟΥ ΠΕΡΙΚΛΗΣ Γ ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΚΕΝΤΡΙΚΗ ΔΙΑΘΕΣΗ Τρυλντώνη 8, 577 Ζωγράφου Τηλ: 747344 747395 email:info@orosimoeu wwworosimoeu ISBN: 978-68-873--4 ΕΚΔΟΣΕΙΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΟ 1 Ο ΚΕΦΑΛΑΙΟ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΟ 1 Ο ΚΕΦΑΛΑΙΟ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΟ Ο ΚΕΦΑΛΑΙΟ Μονώ νυμ - Πολυώ νυμ Λέμε λγερική πράστση κάθε πράστση που περιέχει μετλητές. π.χ., +, 5, ( + ), +. Λέμε ριθμητική τιμή ( ή πλά τιμή )

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α)

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΘΗΜ / ΤΞΗ: ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡ: η (ΘΕΡΙΝ) ΗΜΕΡΟΜΗΝΙ: /0/ ΘΕΜ ο ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

β. Το πλάτος της σύνθετης ταλάντωσης είναι : Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν φ) (φ = π rad) Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν π) Α = [Α 1 ² + Α 2

β. Το πλάτος της σύνθετης ταλάντωσης είναι : Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν φ) (φ = π rad) Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν π) Α = [Α 1 ² + Α 2 1) Ένα κινητό εκτελεί συγχρόνως δύο απλές αρμονικές ταλαντώσεις που γίνονται στην ίδια διεύθυνση και γύρω από την θέση ισορροπίας με εξισώσεις : x 1 = 3 ημ [(2 π) t] και x 2 = 4 ημ [(2 π) t + φ], (S.I.).

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΜΑΤΑ-ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ

ΟΛΟΚΛΗΡΩΜΑΤΑ-ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ εθοδολογί Πρδείγµτ σκήσεις πιµέλει.: άτσιος ηµήτρης ΡΩ-Ρ ΡΩ διότητες: Ρ Πρδείγµτ:. υπολογίσετε τ πρκάτω ολοκληρώµτ: 5 d d συν π ( + ) d 4 Π ΡΩ ΡΩΩ. d c 6. d. d. d 4. d 5. συνd f '( ) d f ( ) + c. ηµ συν

Διαβάστε περισσότερα

Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ

Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ Εισγωγή: Όπως στη κθημερινή μς ζωή, γι ν συνεννοηθούμε χρησιμοποιούμε προτάσεις, έτσι κι στ Μθημτικά χρησιμοποιούμε «Μθημτικές» προτάσεις. Γι πράδειγμ στη κθημερινή

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΥΟ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΥΟ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΥΟ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Στην προηγούµενη ενότητ συζητήσµε µετσχηµτισµούς της µορφής Y g( µίς τυχίς µετβλητής Όµως σε έν πολυµετβλητό φινόµενο ενδέχετι ν θέλουµε ν µετσχηµτίσουµε τις ρχικές

Διαβάστε περισσότερα

ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Α. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Α. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΘΕΩΡΙΣ ΣΚΗΣΗ Ο πρκάτω πίνκς περιέχει τ πρόσηµ των λγεβρικών τιµών της τχύτητς κι της επιτάχνσης. Σµπληρώστε τον πρκάτω πίνκ. >, > >, <

Διαβάστε περισσότερα

1ο Επαναληπτικό Διαγώνισμα Φυσικής Α τάξης Γενικού Λυκείου

1ο Επαναληπτικό Διαγώνισμα Φυσικής Α τάξης Γενικού Λυκείου ο Επνληπτικό Διγώνισμ Φυσικής Α τάξης Γενικού Λυκείου Θέμ Α: (Γι τις ερωτήσεις Α. έως κι Α.4 ν γράψετε στο τετράδιό σς τον ριθμό της πρότσης κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πρότση.) Α. Στην ευθύγρμμη

Διαβάστε περισσότερα

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1. Λύση

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1. Λύση 39th International Physics Olympiad - Hanoi - Vietnam - 8 11 Υπολογισμός της πόστσης TG Λύση 3 3 3 Ο όγκος του νερού στην κοιλότητ είνι V = 1cm = 1 m Το μήκος του πυθμέν της κοιλότητς είνι d = L atan 6

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΡΓΟ - ΕΝΕΡΓΕΙΑ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΡΓΟ - ΕΝΕΡΓΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΡΓΟ - ΕΝΕΡΓΕΙΑ Συγγρφή Επιμέλει: Πνγιώτης Φ. Μοίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.pias.weebl.c ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1 ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1. ) Πότε µι συνάρτηση µε Πεδίο ορισµού το Α ονοµάζετι περιοδική; β) Ποιο είνι το πεδίο ορισµού κι η περίοδος των συνρτήσεων ηµx, συνx, εφx κι σφx;. Περιοδική ονοµάζετι

Διαβάστε περισσότερα

Α. ΕΠΊΛΥΣΗ ΕΞΙΣΩΣΕΩΝ 2 ου ΒΑΘΜΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗΣ

Α. ΕΠΊΛΥΣΗ ΕΞΙΣΩΣΕΩΝ 2 ου ΒΑΘΜΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗΣ ΜΑΘΗΜΑ 13 Κεφάλιο o : Αλγερικές Πρστάσεις Υποενότητ.: Εξισώσεις ου Βθµού ( γ, ). Θεµτικές Ενότητες: 1. Επίλυση εξισώσεων ου θµού µε τη οήθει της πργοντοποίησης.. Επίλυση εξισώσεων ου θµού µε τη οήθει τύπου.

Διαβάστε περισσότερα

t 1 t 2 t 3 t 4 δ. Η κινητική ενέργεια του σώματος τη χρονική στιγμή t 1, ισούται με τη δυναμική ενέργεια της ταλάντωσης τη χρονική στιγμή t 2.

t 1 t 2 t 3 t 4 δ. Η κινητική ενέργεια του σώματος τη χρονική στιγμή t 1, ισούται με τη δυναμική ενέργεια της ταλάντωσης τη χρονική στιγμή t 2. Τάξη Μάθημα : Γ ΛΥΚΕΙΟΥ : Φυσική Εξεταστέα Ύλη : ΚΕΦΑΛΑΙΟ 1 ΚΑΙ 2 Καθηγητής : ΝΙΚΟΛΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ Ημερομηνία : 11-11 -2012 ΘΕΜΑ 1ο 1) Η ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση μεταβάλλεται,

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ Ι. Σε κθεμιά πό τις πρκάτω περιπτώσεις ν κυκλώσετε το γράμμ Α, ν ο ισχυρισμός είνι ληθής κι το γράμμ Ψ, ν ο ισχυρισμός είνι ψευδής δικιολογώντς συγχρόνως την

Διαβάστε περισσότερα

Εμβαδόν τετραγώνου: Ε = α 2. Εμβαδόν ορθογωνίου παραλληλογράμμου: Ε = α β. β Εμβαδόν πλάγιου παραλληλογράμμου: Ε = υ β. α υ

Εμβαδόν τετραγώνου: Ε = α 2. Εμβαδόν ορθογωνίου παραλληλογράμμου: Ε = α β. β Εμβαδόν πλάγιου παραλληλογράμμου: Ε = υ β. α υ Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η ποτελεσμτική μάθηση δεν θέλει κόπο λλά τρόπο, δηλδή ma8eno.gr Συνοπτική Θεωρί Μθημτικών Α Γυμνσίου Αριθμητική - Άλγερ Γεωμετρί Αριθμητική πράστση ονομάζετι

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΗΣΥΝΑΡΤΗΣΗ-ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ

ΕΚΘΕΤΙΚΗΣΥΝΑΡΤΗΣΗ-ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ Εκθετική συνάρτηση Αν θετικός πργμτικός ριθμός, σε κάθε ντιστοιχεί η δύνμη. Έτσι ορίζετι η συνάρτηση : f : με f, 0 η οποί ονομάζετι εκθετική συνάρτηση με βάση. Αν, τότε έχουμε τη στθερή συνάρτηση f. Ας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ΙΑΝΥΣΜΑΤΑ - ΘΕΩΡΙΑ & ΜΕΘΟ ΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ε (ρχή) φορές (πέρς) 1. Τι ορίζετι ως διάνυσµ ; Το διάνυσµ ορίζετι ως έν προσντολισµένο

Διαβάστε περισσότερα

v 0x = v 0 > 0, v 0y = 0.

v 0x = v 0 > 0, v 0y = 0. Εθνικό Κποδιστρικό Πνεπιστήμιο Αθηνών, Τμήμ Φυσικής Εξετάσεις στη Μηχνική Ι, Τμήμ Κ Τσίγκνου & Ν Βλχάκη, 4 Ινουρίου 07 Διάρκει εξέτσης 3 ώρες, Κλή επιτυχί bonus ερωτήμτ) Ονομτεπώνυμο:, ΑΜ: Ν ληφθεί υπόψη

Διαβάστε περισσότερα

Ο Ρ Ι Ζ Ο Υ Σ Ε Σ. το σύνολο των μεταθέσεων (βλέπε σελ. 19) Ν. Την μετάθεση p [permutation] την συμβολίζουν ως εξής:

Ο Ρ Ι Ζ Ο Υ Σ Ε Σ. το σύνολο των μεταθέσεων (βλέπε σελ. 19) Ν. Την μετάθεση p [permutation] την συμβολίζουν ως εξής: III Ο Ρ Ι Ζ Ο Υ Σ Ε Σ Μετθέσεις Θεωρούμε έν σύνολο Ν με πεπερσμένο το πλήθος ντικείμεν Τ ριθμούμε υτά κτά κάποιο τρόπο, κι στη συνέχει, νφερόμεθ σ υτά με τον ριθμό τους Εστω, λοιπόν, Ν {,,, } το δοσμένο

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009. ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9. ΘΕΜΑ ο Α. Έστω, Δ. Δικρίνουμε τις περιπτώσεις: Αν =, τότε f( ) = f( ). Αν

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ Κεφάλιο 2 ΤΟ ΝΕΟΚΛΑΣΙΚΟ ΥΠΟΔΕΙΓΜΑ SOOW-SWAN Εισγωγή Η νάλυση της θεωρίς της οικονομικής μεγέθυνσης θ ξεκινήσει νλύοντς το πιο πλό δυνμικό υπόδειγμ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ Φ4 ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΛΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΥ ΚΕΝΤΡΙΚ 3ο ΓΕΝΙΚ ΛΥΚΕΙ Ν. ΣΜΥΡΝΗΣ ΘΕΩΡΙΑ ΣΩΣΤ-ΛΑΘΣ ΠΛΛΑΠΛΗΣ ΕΠΙΛΓΗΣ ΣΥΜΠΛΗΡΩΣΗΣ ΚΕΝΥ ΠΑΡΑΤΗΡΗΣΕΙΣ ΑΣΚΗΣΕΙΣ Α &

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 63

ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 63 ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 6 ΑΣΚΗΣΗ. ύο σφίρες φορτίου q κι µάζς m g, κρέµοντι πό το ίδιο σηµείο µε νήµτ µήκους 40cm. Αν οι σφίρες ισορροπούν ότν τ νήµτ σχηµτίζουν γωνί φ 60 ο, ν ρεθεί το φορτίο q. ίνοντι g 0m/s

Διαβάστε περισσότερα

3.2 Eνα υψιπερατό φίλτρο έχει την εξής µορφή: y(n)=-0.9y(n-1)+0.1x(n). Βρείτε την απόκριση συχνότητας Η(e jω ) για α)ω=0, και β)ω=π Λύση

3.2 Eνα υψιπερατό φίλτρο έχει την εξής µορφή: y(n)=-0.9y(n-1)+0.1x(n). Βρείτε την απόκριση συχνότητας Η(e jω ) για α)ω=0, και β)ω=π Λύση Μετπτ. Πρόγρµµ / ΨΕΣ Λύσεις σκ.κεφ DTFT ΚΕΦ. DTFT ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΣΕΩΝ. Βρείτε το φάσµ δηλ. τον Μετσχ. Fourir ικριτού Χρόνου (DTFT γι τ επόµεν σήµτ: x(nδ(n+δ(n-+δ(n- β x(nδ(n+-δ(n- γ x(nu(n+-u(n- x(nδ(n+δ(n-+δ(n-

Διαβάστε περισσότερα