ΙΔΙΟΤΙΜΕΣ. Λύση. Σχηματίζουμε την εξίσωση (2): x = 0. Οι κολώνες του πίνακα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΙΔΙΟΤΙΜΕΣ. Λύση. Σχηματίζουμε την εξίσωση (2): x = 0. Οι κολώνες του πίνακα"

Transcript

1 ΙΔΙΟΤΙΜΕΣ Σημείωση Προς το πρόν, κινούμεθ στο σώμ R των πργμτικών ριθμών Έν ιδιοδιάνυσμ ή χρκτηριστικό διάνυσμ ενός πίνκ Α, που ντιστοιχεί στην ιδιοτιμή, είνι εκείνο το μη μηδενικό διάνυσμ το οποίο πηροί την εξίσωση A (), γι κάποιο μονόμετρο Η εξίσωση () οδηγεί στο ομογενές σύστημ (A I) (), το οποίο έχει ύση διάφορο της μηδενικής, ν κι μόνον ν οι κοώνες του πίνκ A I είνι γρμμικά εξρτημένες (βέπε 5) ΠΑΡΑΔΕΙΓΜΑ ) Η τιμή είνι ιδιοτιμή του πίνκ A ; 8 Λύση Σχημτίζουμε την εξίσωση (): Οι κοώνες του πίνκ 8 A I είνι τ δινύσμτ κι, που είνι γρμμικά εξρτημέν Το είνι, 6 οιπόν, ιδιοτιμή του πίνκ Α ) Το διάνυσμ είνι ιδιοδυάνυσμ του πίνκ A 4 ; 8 Λύση Σχημτίζουμε την εξίσωση ():, η οποί μς οδηγεί στο σύστημ ή το οποίο είνι δύντο Άρ το δεν είνι χρκτηριστικό διάνυσμ του πίνκ Α Μί συνθήκη ικνή κι νγκί γι ν είνι οι κοώνες του πίνκ () γρμμικά εξρτημένες, είνι η det ( A I) Το νάπτυγμ της det( A I) είνι έν πουώνυμο p( ), n βθμού, κούμενο χρκτηριστικό πουώνυμο του οποίου οι ρίζες (ιδιοτιμές-χρκτηριστικές ρίζες) είνι υτές που κθιστούν την προηγούμενη συνθήκη ηθή ΠΑΡΑΔΕΙΓΜΑ ) Έστω ο πίνκς δίδοντι πό τις ρίζες του πουωνύμου A p ( ) 6 9 Οι ιδιοτιμές του Α det( A - I) det - - ( )( )( 5) Στην ρίζ, ντιστοιχεί το χρκτηριστικό διάνυσμ, όπου

2 6 Είνι, 9 8 Στην ρίζ, ντιστοιχεί το χρκτηριστικό διάνυσμ, όπου 6 5 Είνι, 9 8 Στην ρίζ 5, ντιστοιχεί το χρκτηριστικό διάνυσμ, όπου Είνι, Πρτηρούμε ότι: ) Το σύνοο {,, } είνι γρμμικά νεξάρτητο, κι συνεπώς είνι δυντόν ν χρησιμοποιηθεί ως βάση του R ) Το πουώνυμο det( A I) έχει τρεις πές ρίζες ) Κάθε χρκτηριστικό διάνυσμ πράγει μί ευθεί που διέρχετι πό την ρχή του συστήμτος νφοράς 4) R < > < > < > 5) r nk(a I) ΠΑΡΑΔΕΙΓΜΑ ) Το χρκτηριστικό πουώνυμο του πίνκ 7 5 A είνι το p( ) ( )( ) Οι ιδιοτιμές του Α είνι οι κι Η εξίσωση ( I), που ντιστοιχεί στην πή ρίζ, δίδει το χρκτηριστικό A διάνυσμ Γι την διπή ρίζ έχουμε: ( A I) 45 5 Το σύστημ δίδει 45 5 π όπου,

3 , Είνι, οιπόν, / / Στην διπή ρίζ ντιστοιχούν τ ιδιοδινύσμτ κι Πρτηρούμε ότι: ) Το σύνοο {,, } είνι γρμμικά νεξάρτητο, κι συνεπώς είνι δυντόν ν χρησιμοποιηθεί ως βάση του R ) Το πουώνυμο det( A I) έχει μί πή ρίζ κι μί διπή ρίζ ) Τ χρκτηριστικά δινύσμτ πράγουν μί ευθεί κι έν επίπεδο, που διέρχοντι πό την ρχή του συστήμτος νφοράς 4) R < > <, > 5) r nk(a I) ΠΑΡΑΔΕΙΓΜΑ ) Το χρκτηριστικό πουώνυμο του πίνκ A είνι το p( ) ( )( ) Οι ιδιοτιμές του Α είνι οι κι Η εξίσωση ( I), που ντιστοιχεί στην πή ρίζ, δίδει το χρκτηριστικό A διάνυσμ Γι την διπή ρίζ έχουμε: ( A I) π όπου, Πρτηρούμε ότι: ) Το σύνοο {, } είνι γρμμικά νεξάρτητο, κι συνεπώς δεν είνι δυντόν ν χρησιμοποιηθεί ως βάση του R ) Το πουώνυμο det( A I) έχει μί πή ρίζ κι μί διπή ρίζ ) Τ χρκτηριστικά δινύσμτ πράγουν δύο ευθείες, που διέρχοντι πό την ρχή του συστήμτος νφοράς 4) W < > < > R, υπόχωρος που πράγετι πό τ χρκτηριστικά δινύσμτ 5) r nk(a I) ΠΑΡΑΔΕΙΓΜΑ 4) Το χρκτηριστικό πουώνυμο του πίνκ

4 4 A 4 είνι το p Ο Α έχει μί ιδιοτιμή Γι την μονδική τριπή ρίζ ( ) ( ) έχουμε: ( A I) π όπου, κι - Πρτηρούμε ότι: ) Το σύνοο {, } είνι γρμμικά νεξάρτητο, κι συνεπώς δεν είνι δυντόν ν χρησιμοποιηθεί ως βάση του R ) Το πουώνυμο det( A I) έχει μί τριπή ρίζ ) Τ δύο χρκτηριστικά δινύσμτ που προκύπτουν, πράγουν δύο ευθείες, που διέρχοντι πό την ρχή του συστήμτος νφοράς 4) W < > < > R, υπόχωρος που πράγετι πό τ χρκτηριστικά δινύσμτ 5) r nk(a I) Ορισμός Οι ιδιόχωροι του πίνκ Α, είνι εκείνοι οι υπόχωροι, οι οποίοι πράγοντι πό τ χρκτηριστικά μη μηδενικά δινύσμτ του Α Στην περίπτωση, που ο Α έχει το ως ιδιοτιμή, η εξίσωση (A I) μεττρέπετι στην A, η οποί έχει ύση διφορετική της μηδενικής, ν κι μόνον ν deta οπότε πίνκς Α δεν ντιστρέφετι Ισχύει συνεπώς η πρότση, ΠΡΟΤΑΣΗ Ο n n πίνκς Α είνι ντιστρέψιμος, ν κι μόνον ν δεν έχει ιδιοτιμή την ΠΡΟΤΑΣΗ Τ χρκτηριστικά δινύσμτ {,, Kρ} του Α, που ντιστοιχούν σε διφορετικές ιδιοτιμές, ποτεούν σύνοο γρμμικά νεξάρτητο Απόδειξη Έστω το,, K } γρμμικά εξρτημένο Μπορούμε τότε ν { ρ υποθέτουμε ότι κ γ γ K γ κ κ με γ i, i κ - κι το σύνοο {,, K κ } γρμμικά νεξάρτητο Η δράση του πίνκ Α πάνω στο κ δίδει την A κ γa γa K γ κ A κ ή κι κκ γ γ K γκ κ κ Έχουμε κι τις i κ γi γi K γκ iκ, i κ Άρ κι τις ( κ i ) κ γ( i) γ( i) K γκ ( κ i) κ Γι i κ προκύπτει η γ ( κ ) γ( κ ) K γκ ( κ κ ) κ Το σύνοο {,, K κ } είνι γρμμικά νεξάρτητο Άρ γ i ( i κ ) γι i κ Όμως πό υπόθεση i Άρ γι i κ, γ, άτοπο κ Έστω Α τριγωνικός πίνκς Τ διγώνι στοιχεί του, είνι κι οι ιδιοτιμές του, μι κι η ορίζουσ τριγωνικού πίνκ, ισούτι με το γινόμενο των διγωνίων στοιχείων του (βέπε ενότητ ΟΡΙΖΟΥΣΕΣ) i

5 5 ΠΑΡΑΔΕΙΓΜΑ Περίπτωση πίνκ Έστω A Το χρκτηριστικό πουώνυμο είνι το p( ) det ( )( )( ) Διγωνοποίηση πίνκος Ένς n n πίνκς Α είνι διγωνοποιήσιμος, νν είνι όμοιος προς διγώνιο πίνκ D Αν, δηδή, υπάρχει ντιστρέψιμος πίνκς P, τέτοιος ώστε A PDP ΠΡΟΤΑΣΗ Ο πίνκς Α είνι διγωνοποιήσιμος, νν έχει n γρμμικά νεξάρτητ ιδιοδινύσμτ Απόδειξη Κτ ρχήν υπενθυμίζουμε ότι, (βέπε ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ), ν ο P είνι ο n n πίνκς P [ u, u, K ], τότε, AP [Au, Au, KA ] () un un L Επίσης, ν D M O M, τότε, PD [ u, u, Knun ] () L n ) Ο Α είνι διγωνοποιήσιμος Άρ A PDP, ή AP PD, ή [Au, Au, K Au n ] [ u, u, Knun ] άρ κι Au u, Au u, K Au n nun Επειδή ο P ντιστρέψιμος, τ ιδιοδινύσμτ ui, i n είνι γρμμικά νεξάρτητ β) Αν δίδοντι τ n γρμμικά νεξάρτητ ιδιοδινύσμτ u, u, Kun, μπορούμε ν κτσκευάσουμε τον ντιστρέψιμο πίνκ P [ u, u, K ] κι με τις ιδιοτιμές τον πίνκ D Λόγω των () κι () έχουμε την un AP PD, δηδή, την A PDP ΠΑΡΑΔΕΙΓΜΑ Ν διγωνοποιήσετε τον πίνκ Α, ν γίνετι, όπου A 5 Λύση Το χρ/κό πουώνυμο του Α είνι το p( ) det(a I) 4 με ρίζες ( ) (πή) κι ( ) (διπή) Θ πρέπει στις ιδιοτιμές υτές ν ντιστοιχούν τρί διφορετικά γρμμικά νεξάρτητ ιδιοδινύσμτ, που ν πράγουν τον R Αν υτό δεν συμβίνει, τότε ο Α δεν διγωνοποιήτι Γι, u κι γι, u, u Είνι, οιπόν, i

6 6 > < > < u u u, R κι P D ΠΑΡΑΔΕΙΓΜΑ Ν διγωνοποιήσετε τον πίνκ Α, ν γίνετι, όπου A Λύση Το χρ/κό πουώνυμο του Α είνι το ( ) 4 I) det(a p με ρίζες (πή) κι ( ) ) ( (διπή) Θ πρέπει στις ιδιοτιμές υτές ν ντιστοιχούν τρί διφορετικά γρμμικά νεξάρτητ ιδιοδινύσμτ, που ν πράγουν τον R Γι βίνουμε το χρ/κό διάνυσμ Γι u βίνουμε το χρ/κό διάνυσμ Τ δινύσμτ υτά δεν ποτεούν βάση γι τον u R Ο πίνκς Α δεν διγωνοποιήτι ΠΡΟΤΑΣΗ Όμοιοι πίνκες έχουν το ίδιο χρκτηριστικό πουώνυμο Απόδειξη Υποθέτουμε ότι οι πίνκες Α κι Β είνι όμοιοι Τότε, με Ισχύει ότι PAP B PP I ) I det(a ) I)P det(p(a I) det(pap I) det(b ΠΡΟΤΑΣΗ Κάθε πίνκς Α, είνι όμοιος προς έν (άνω) τριγωνικό πίνκ n n Απόδειξη ) Γι, Έστω ιδιοτιμή του Α κι το ιδιοδιάνυσμ, που ντιστοιχεί στην ιδιοτιμή Είνι ή νυτικά, Θεωρούμε τον πίνκ, που έχει ως κοώνες τ δινύσμτ κι, με n A A A ], [ det Είνι,,, με δ det δ Υποογίζουμε το γινόμενο A

7 7 ή A β β, όπου β, β Στην συνέχει υποογίζουμε το γινόμενο β β β γ A δ β δ β β γ ) Ερχόμστε, τώρ, στην γενική περίπτωση Έστω,, K, n οι ιδιοτιμές του πίνκ Α Σχημτίζουμε ένν πίνκ, που έχει σν πρώτη κοών το ιδιοδιάνυσμ, κι έχει det Εκτεούμε την πράξη A κι κτήγουμε σε έν πίνκ που η πρώτη κοών του έχει την μορφή γ Είνι, οιπόν A A Οι πίνκες Α κι A ως M Γ όμοιοι, έχουν τις ίδιες ιδιοτιμές Θεωρούμε, τώρ, τον ( n ) (n ) πίνκ Γ του οποίου οι ιδιοτιμές είνι φνερά οι, K, n, κι εφρμόζουμε κι σ υτόν την προηγούμενη διδικσί Μετά πό n βήμτ, ο Α έχει μεττρπεί σε όμοιο άνω τριγωνικό πίνκ ΘΕΩΡΗΜΑ (Cyley Hmilton) Κάθε τετργωνικός πίνκς πηροί την χρκτηριστική του εξίσωση Απόδειξη Όμοιοι πίνκες έχουν ίδιες ιδιοτιμές κι συνεπώς ίδι χρκτηριστική εξίσωση Αρκεί συνεπώς το Θεώρημ ν ισχύει γι άνω τριγωνικό πίνκ Α Όπως όμως είδμε προηγουμένως, τ διγώνι στοιχεί ενός άνω τριγωνικού πίνκ, είνι οι ιδιοτιμές του Είνι, οιπόν, (ενδεχομένως μερικές ρίζες είνι ποπές), K n K n A M M O M K n Το χρκτηριστικό πουώνυμο του πίνκ Α είνι p() ( )( ) L ( n ) Στο πουώνυμο p (), ντιστοιχεί το p(a) (A I)(A I) L (A ni) Όμως ο πίνκς A ii έχει στην θέση ii i i Άρ ο πίνκς p(a) (A i I) (Πράγμτι, γι δύο πίνκες υτής της i n μορφής,, γι τρείς πίνκες υτής της μορφής είνι,

8 8 κοκ) Ισχύει οιπόν ότι, p(a), n R

Μαθηµατικά Ιβ Σελίδα 1 από 7 ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ

Μαθηµατικά Ιβ Σελίδα 1 από 7 ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ Μθηµτικά Ιβ Σελίδ πό 7 Μάθηµ 7 ο ΟΡΘΟΚΑΝΟΝΙΚΗ ΒΑΣΗ ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ Θεωρί : Γρµµική Άλγεβρ : εδάφιο 6, σελ. (µέχρι Πρότση 4.6), εδάφιο 7, σελ. 5 (όχι την πόδειξη της Πρότσης 4.9). πρδείγµτ που ντιστοιχούν

Διαβάστε περισσότερα

ΠΙΝΑΚΕΣ 1.1. ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ. Ονοµάζουµε πίνακα Α n m µία διάταξη n m αριθµών και j = 1, 2,, m, σε n γραµµές και m στήλες.

ΠΙΝΑΚΕΣ 1.1. ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ. Ονοµάζουµε πίνακα Α n m µία διάταξη n m αριθµών και j = 1, 2,, m, σε n γραµµές και m στήλες. ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ Ονοµάζουµε πίνκ Α n m µί διάτξη n m ριθµών κι j,,, m, σε n γρµµές κι m στήλες ηλδή: Α ( σµβ ij ) ορσ n n m m nm a ij όπου i,,, n Έτσι όπως γράφετι ο πίνκς Α, ο ριθµός a ij,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ

ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ ΚΕΦΑΛΑΙΟ Ο : ΙΑΝΥΣΜΑΤΑ Ιδιότητες πρόσθεσης δινυσµάτων () + = + () ( + ) + γ = + ( + γ) (3) + = (4) + ( ) =. Αν Ο είνι έν σηµείο νφοράς, τότε γι κάθε διάνυσµ ΑΒ έχουµε: AB = OB OA

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ΙΑΝΥΣΜΑΤΑ - ΘΕΩΡΙΑ & ΜΕΘΟ ΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ε (ρχή) φορές (πέρς) 1. Τι ορίζετι ως διάνυσµ ; Το διάνυσµ ορίζετι ως έν προσντολισµένο

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί

Διαβάστε περισσότερα

Εμβαδόν τετραγώνου: Ε = α 2. Εμβαδόν ορθογωνίου παραλληλογράμμου: Ε = α β. β Εμβαδόν πλάγιου παραλληλογράμμου: Ε = υ β. α υ

Εμβαδόν τετραγώνου: Ε = α 2. Εμβαδόν ορθογωνίου παραλληλογράμμου: Ε = α β. β Εμβαδόν πλάγιου παραλληλογράμμου: Ε = υ β. α υ Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η ποτελεσμτική μάθηση δεν θέλει κόπο λλά τρόπο, δηλδή ma8eno.gr Συνοπτική Θεωρί Μθημτικών Α Γυμνσίου Αριθμητική - Άλγερ Γεωμετρί Αριθμητική πράστση ονομάζετι

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009. ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9. ΘΕΜΑ ο Α. Έστω, Δ. Δικρίνουμε τις περιπτώσεις: Αν =, τότε f( ) = f( ). Αν

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ -8 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑ Αν η συνάρτηση f είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της, ν γρφεί η εξίσωση της εφπτομένης της γρφικής πράστσης της f στο σημείο Α(,f( ))

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Β ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ 0 ΜΑΘΗΜΑΤΙΚΑ κτεύθυνσης Β ΛΥΚΕΙΟΥ Συνοπτικη θεωρι με ποδειξεις Λυμεν θεμτ γι εξετάσεις Θέμτ πό εξετάσεις Βγγέλης Α Νικολκάκης Μθημτικός ΠΕΡΙΕΧΟΜΕΝΑ ENOTHTA ΘΕΜΑ ΣΕΛΙΔΕΣ ΤΥΠΟΛΟΓΙΑ-ΑΠΟΔΕΙΞΕΙΣ-ΕΡΩΤΗΣΕΙΣ

Διαβάστε περισσότερα

1 ΔΙΑΝΥΣΜΑΤΑ. Εισαγωγή

1 ΔΙΑΝΥΣΜΑΤΑ. Εισαγωγή ΔΙΑΝΥΣΜΑΤΑ Εισγωγή Το διάνυσμ είνι έν χρκτηριστικό πράδειγμ έννοις που νπτύχθηκε μέσ πό τη στενή λληλεπίδρση Μθημτικών κι Φυσικής Ο κνόνς του πρλληλόγρμμου, σύμφων με τον οποίο το μέτρο κι η κτεύθυνση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Ν ρεθεί η εξίσωση του κύκλου σε κθεµιά πό τις πρκάτω περιπτώσεις: ) έχει κέντρο την ρχή των ξόνων κι κτίν ) έχει κέντρο το σηµείο (3, - 1) κι κτίν 5 γ) έχει κέντρο το σηµείο (-, 1) κι διέρχετι πό το

Διαβάστε περισσότερα

ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστα Βακαλόπουλου, Βασίλη Καρκάνη, Άννας Βακαλοπούλου

ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστα Βακαλόπουλου, Βασίλη Καρκάνη, Άννας Βακαλοπούλου ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστ Βκλόπουλου, Βσίλη Κρκάνη, Άννς Βκλοπούλου Άσκηση η Δίνοντι τ δινύσμτ, β διάφορ του μηδνικού γι τ οποί ισχύι: β, β κι β i) Ν βρθούν τ μέτρ των δινυσμάτων,

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Μάρτιος 1998.

ΠΡΟΛΟΓΟΣ. Μάρτιος 1998. ΠΡΟΛΟΓΟΣ Το βιβλίο υτό περιλμβάνει την ύλη των Μθημτικών, που προβλέπετι πό το πρόγρμμ σπουδών της Θετικής Κτεύθυνσης της Β τάξης του Ενιίου Λυκείου, του οποίου η εφρμογή ρχίζει πό το σχολικό έτος 998-999

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΜΑΘΗΜΑΤΙΚΑ. Β Τάξη Ενιαίου Λυκείου Θετική Κατεύθυνση ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΜΑΘΗΜΑΤΙΚΑ. Β Τάξη Ενιαίου Λυκείου Θετική Κατεύθυνση ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΜΑΘΗΜΑΤΙΚΑ Β Τάξη Ενιίου Λυκείου Θετική Κτεύθυνση ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ Με πόφση της ελληνικής

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΓΑ() ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α.. Α.. Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνί: Κυρική 7 Απριλίου ιάρκει Εξέτσης: ώρες ΑΠΑΝΤΗΣΕΙΣ Βλέπε πόδειξη () σελ.75 σχολικού βιβλίου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE ΚΕΦΑΛΑΙΟ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE 1. Το σηµείο Μ (-, ) νήκει στη γρµµή µε εξίσωση Α. = = - Γ. = 1. ( ) ( - ) = 1 Ε. = -. Το κέντρο του κύκλου που έχει διάµετρο ΑΒ µε Α

Διαβάστε περισσότερα

Κεφάλαιο 11 Διαγράμματα Φάσεων

Κεφάλαιο 11 Διαγράμματα Φάσεων Κεφάλιο 11 Διγράμμτ Φάσεων Συχνά, σε πολλές διεργσίες, νμιγνύουμε δύο ή κι περισσότερ διφορετικά υλικά, κι πρέπει ν πντήσουμε στο ερώτημ: ποιά θ είνι η φύση του υλικού που θ προκύψει πό υτή την νάμιξη:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004)

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (7 /5/ 4) ΘΕΜΑ ο Α. Έστω μι συνάρτηση f ορισμένη σ' έν διάστημ Δ κι έν εσωτερικό σημείο του Δ. Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιμη

Διαβάστε περισσότερα

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων Ο3 Γενικά περί φκών. Γενικά Φκός ονοµάζετι κάθε οµογενές, ισότροπο κι διφνές οπτικό µέσο που διµορφώνετι πό δυο σφιρικές επιφάνειες (ή πό µι σφιρική κι µι επίπεδη). Βσική () () Σχήµ. ιτάξεις πρισµάτων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ. είναι ακέραιος.

ΕΦΑΡΜΟΓΕΣ. είναι ακέραιος. ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ ΕΦΑΡΜΟΓΕΣ Αν ο είνι κέριος κι ο ( ) είνι κέριος ΑΠΟΔΕΙΞΗ Επειδή τ δυντά υπόλοιπ του με τον είνι 0,,, ο κέριος έχει μί πό τις μορφές κ ή κ, κ Z Αν κ, κ Z ) κ (κ ) κ(9κ

Διαβάστε περισσότερα

είναι n ανεξάρτητες τυποποιημένες κανονικές τυχαίες μεταβλητές, δηλαδή, αν Z i

είναι n ανεξάρτητες τυποποιημένες κανονικές τυχαίες μεταβλητές, δηλαδή, αν Z i Οι Κτνομές χ, t κι F Οι Κτνομές χ, t κι F Σε υτή την ενότητ προυσιάζουμε συνοπτικά τρεις συνεχείς κτνομές οι οποίες, όπως κι η κνονική κτνομή, είνι πολύ χρήσιμες στη Σττιστική Συμπερσμτολογί Είνι ξιοσημείωτο,

Διαβάστε περισσότερα

τετραγωνικό εκατοστόµετρο 1 cm 2 1 10000 m2 =

τετραγωνικό εκατοστόµετρο 1 cm 2 1 10000 m2 = 3.5 ΜΟΝΑ ΕΣ ΜΕΤΡΗΣΗΣ ΘΕΩΡΙΑ. Μονάδες µέτρησης µήκους Βσική µονάδ το µέτρο. Συµβολίζετι m Υποδιιρέσεις του µέτρου : δεκτόµετρο dm = 0 m = 0, m Πολλπλάσιο του µέτρου : εκτοστόµετρο cm = 00 m = 0,0 m χιλιοστόµετρο

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΚΑΤΑΣΚΕΥΩΝ Ι

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΚΑΤΑΣΚΕΥΩΝ Ι ΔΗΜΟΣΘΕΝΗΣ ΤΑΛΑΣΛΙΔΗΣ ΗΛΙΑΣ ΜΠΟΥΓΑΪΔΗΣ ΙΩΑΝΝΗΣ ΝΤΙΝΟΠΟΥΛΟΣ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΚΑΤΑΣΚΕΥΩΝ Ι ΤΕΥΧΟΣ A Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Α Κ Ε Σ Σ Η Μ Ε Ι Ω Σ Ε Ι Σ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Α.Π.Θ. ΤΟΜΕΑΣ ΕΠΙΣΤΗΜΗΣ

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ ΜΑΪΟΥ 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµ 1ο Α. Έστω µι συνεχής συνάρτηση f ορισµένη σε έν διάστηµ.

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 008 ( ΠΡΟΚΗΡΥΞΗ Π /008) ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδος: ΠΕ 0 ΜΑΘΗΜΑΤΙΚΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ (Γνωστικό ντικείμενο)

Διαβάστε περισσότερα

«Ανάλυση χρονολογικών σειρών»

«Ανάλυση χρονολογικών σειρών» Διτμημτικό Πρόγρμμ Μετπτυχικών Σπουδών των Τμημάτων Μθημτικών κι Μηχνικών Η/Υ & Πληροφορικής «Μθημτικά των Υπολογιστών κι των Αποφάσεων». (Κτεύθυνση: Σττιστική Θεωρί Αποφάσεων κι Εφρμογές). Διπλωμτική

Διαβάστε περισσότερα

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους 0 Πργμτικοί ριθμοί Οι πράξεις & οι ιιότητες τους Βρέντζου Τίν Φυσικός Μετπτυχικός τίτλος ΜEd: «Σπουές στην εκπίευση» 0 1 Πργμτικοί ριθμοί : Αποτελούντι πό τους ρητούς ριθμούς κι τους άρρητους ριθμούς.

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ Κεφάλιο 2 ΤΟ ΝΕΟΚΛΑΣΙΚΟ ΥΠΟΔΕΙΓΜΑ SOOW-SWAN Εισγωγή Η νάλυση της θεωρίς της οικονομικής μεγέθυνσης θ ξεκινήσει νλύοντς το πιο πλό δυνμικό υπόδειγμ

Διαβάστε περισσότερα

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση. . Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 30 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 30 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 3 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o A. Έστω µι συνεχής συνάρτηση σ' έν διάστηµ [, ]. Αν G είνι µι πράγουσ

Διαβάστε περισσότερα

Θεωρία και Πολιτική της. Οικονομικής Μεγέθυνσης. Πανεπιστημιακές Παραδόσεις. Θεόδωρος Παλυβός

Θεωρία και Πολιτική της. Οικονομικής Μεγέθυνσης. Πανεπιστημιακές Παραδόσεις. Θεόδωρος Παλυβός Πνεπιστήμιο Μκεδονίς Τμήμ Οικονομικών Επιστημών Θερί κι Πολιτική της Οικονομικής Μεγέθυνσης Πνεπιστημικές Πρδόσεις Θεόδρος Πλυβός Ενότητ Εισγγή στη Γενική Ισορροπί κι την Οικονομική της Ευημερίς Mare-Esrt-Léon

Διαβάστε περισσότερα

2.1 ΟΙ ΠΡΑΞΕΙΣ & ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΟΙ ΠΡΑΞΕΙΣ & ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ 1.1 ΟΙ ΠΡΑΞΕΙΣ & ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ ΘΕΩΡΙΑ 1. Ιδιότητες των πράξεων ( β ι γ δ) + γ β + δ ( β ι γ δ) γ βδ β + γ β + γ Αν γ 0, τότε : β 0 0 ή β 0 β γ βγ. Ιδιότητες των δυνάµεων λ +λ β ( β ( ) λ λ ) λ β λ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Α. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Α. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΘΕΩΡΙΣ ΣΚΗΣΗ Ο πρκάτω πίνκς περιέχει τ πρόσηµ των λγεβρικών τιµών της τχύτητς κι της επιτάχνσης. Σµπληρώστε τον πρκάτω πίνκ. >, > >, <

Διαβάστε περισσότερα

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. Περιέχει την ύλη που διδάσκεται στα Μαθηματικά της Κατεύθυνσης στη Γ Λυκείου

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. Περιέχει την ύλη που διδάσκεται στα Μαθηματικά της Κατεύθυνσης στη Γ Λυκείου ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ Περιέχει την ύλη που διδάσκετι στ Μθημτικά της Κτεύθυνσης στη Γ Λυκείου Στους δσκάλους μου με ευγνωμοσύνη Στους μθητές μου με ελπίδ Κάθε γνήσιο ντίτυπο έχει την ιδιόχειρη υπογρφή του συγγρφέ

Διαβάστε περισσότερα

Ιωάννης Αθαν. ΘΕΟΔΩΡΟΥ Τμήμα Μαθηματικών Σχολή Θετικών Επιστημών Πανεπιστήμιο Πατρών. ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ (Επιβλέπων Καθηγητής: Κων/νος Α.

Ιωάννης Αθαν. ΘΕΟΔΩΡΟΥ Τμήμα Μαθηματικών Σχολή Θετικών Επιστημών Πανεπιστήμιο Πατρών. ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ (Επιβλέπων Καθηγητής: Κων/νος Α. Ιωάννης Αθν ΘΕΟΔΩΡΟΥ Τμήμ Μθημτικών Σχολή Θετικών Επιστημών Πνεπιστήμιο Πτρών ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ (Επιβλέπων Κθηγητής: Κων/νος Α Δρόσος) ΠΑΤΡΑ 005 "So fa as aws of mathematcs efe to eaty they ae ot ceta

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑο Α Έστω µι συνάρτηση f ορισµένη σ' έν διάστηµ κι έν εσωτερικό σηµείο του Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιµη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑο Α Έστω µι συνάρτηση f ορισµένη σ' έν διάστηµ κι έν εσωτερικό σηµείο του Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιµη στο σηµείο

Διαβάστε περισσότερα

ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ - ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ

ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ - ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟ ΒΑΙΗ - ΜΑΥΡΑΓΑΝΗ ΤΑΘΗ ΠΑΝΕΗΝΙΕ ΕΞΕΤΑΕΙ 5 - - Οι πρκάτω σημειώσεις βσίστηκν στ έντυπ του Κ.Ε.Ε. (999 ) κι στη θεμτοδοσί των Πνελλδικών Εξετάσεων στ Μθημτικά Κτεύθυνσης της Γ υκείου. τις επόμενες

Διαβάστε περισσότερα

Οι Νέες Τεχνολογίες ως Εργαλείο κατανόησης βασικών εννοιών στο Γυµνάσιο

Οι Νέες Τεχνολογίες ως Εργαλείο κατανόησης βασικών εννοιών στο Γυµνάσιο Οι Νέες Τεχνολογίες ως Εργλείο κτνόησης σικών εννοιών στο Γυµνάσιο ΗΜΗΤΡΙΟΣ ΚΟΝΤΟΓΕΩΡΓΟΣ Μθηµτικός-Υπεύθυνος του Μθηµτικού Εργστηρίου του Λυκείου Ελληνικού kontod@yahoo.gr ΚΩΝ/ΝΟΣ ΜΑΡΑΓΚΟΣ Μθηµτικός -Κθ.

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Α Θέµα 1ο (Μονάδες 5) (Μονάδες 5) (Μονάδες 5) (Μονάδες 5) (Μονάδες

ΔΙΑΓΩΝΙΣΜΑ Α Θέµα 1ο (Μονάδες 5) (Μονάδες 5) (Μονάδες 5) (Μονάδες 5) (Μονάδες ΔΙΑΓΩΝΙΣΜΑ Α Θέµ ο Από τις πρκάτω πολλπλές πντήσεις ν επιλέξετε τη σωστή..κάθε µετφορικό trn :. συνδέετι µε έν συγκεκριµένο µινοξύ β. συνδέετι µε οποιοδήποτε µινοξύ γ. µπορεί ν µετφέρει πό έως 6 διφορετικά

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Τι ονομάζεται διάμεσος δ ενός δείγματος ν παρατηρήσεων που έχουν διαταχθεί σε αύξουσα σειρά;

ΘΕΜΑ Α Α1. Τι ονομάζεται διάμεσος δ ενός δείγματος ν παρατηρήσεων που έχουν διαταχθεί σε αύξουσα σειρά; ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ Β ) ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ι ΗΜΕΡΗΣΙΑ ΘΕΜΑ

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ Στο διπλνό ορθοώνιο τρίωνο, έχουμε φέρει πλά το ύψος που κτλήει στην υποτείνουσ. Είνι προφνές ότι, με υτό τον τρόπο, το μεάλο ορθοώνιο τρίωνο χωρίστηκε σε δύο μικρότερ ορθοώνι, τ κι. Σε

Διαβάστε περισσότερα

Παρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ

Παρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ Προυσίση ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ Προυσίση. Μετρικές σχέσεις στ τρίγων Α Μετρικές σχέσεις σε ορθογώνιο τρίγωνο Α Προβολή σηµείου σε ευθεί Ορθή προβολή Α ονοµάζετι το ίχνος της κάθετης που φέρνουµε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Ενότητα 6 ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Ενότητα 6 ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ ΜΙΓΑ ΙΚΟΙ Ενότητ 6 ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΟΛΟΚΛΗΡΩΜΑΤΩΝ Ορισµό ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Έστω f µί συνάρτηση ορισµένη σε έν διάστηµ. Αρχιή συνάρτηση ή πράουσ f στο ονοµάζετι άθε συνάρτηση F που είνι πρωίσιµη στο ι ισχύει

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ I

ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ I ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ I Σε κθεµιά πό τις πρκάτω περιπτώσεις ν κυκλώσετε το γράµµ Α, ν ο ισχυρισµός είνι ληθής κι το γράµµ Ψ, ν ο ισχυρισµός είνι ψευδής δικιολογώντς συγχρόνως την πάντησή

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου Επνληπτικό Διγώνισμ Μθημτικών Γενικής Πιδείς Γ Λυκείου Θέμ A Α. Ν ποδείξετε ότι η πράγωγος της συνάρτησης f(x)=x ισούτι με x, δηλδή(x ) =x. (6 μονάδες) A. Ν δώσετε τον ορισμό:. του ξιωμτικού ορισμού της

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Δίνετι η εκθετική συνάρτηση: f a Γι ποιες τιμές του η ) γνησίως ύξουσ; β) γνησίως φθίνουσ; ( ) είνι:. Δίνοντι οι

Διαβάστε περισσότερα

Σύστηµα Ουράς. Πειθαρχία ουράς ή Πειθαρχία εξυπηρέτησης

Σύστηµα Ουράς. Πειθαρχία ουράς ή Πειθαρχία εξυπηρέτησης ΘΕΩΡΙΑ ΟΥΡΑΣ Ουρές ή Γρές Ανονής: Φινόενο που δηιουργείτι ότν η τρέχουσ ζήτηση γι ί εξυπηρέτηση είνι εγύτερη πό την τρέχουσ ικνότητ εξυπηρέτησης του συστήτος Αντικειενικός σκοπός του προβήτος της ουράς:

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων ικριτά Μηµτικά κι Μηµτική Λογική ΠΛΗ Ε ρ γ σ ί 4η Θεωρί Γρφηµάτων Α π ν τ ή σ ε ι ς Ε ρ ω τ η µ ά τ ω ν Ερώτηµ. ίετι το ένρο του πρκάτω σχήµτος. e d f b l i a k m p c g h n o Θεωρώντς σν ρίζ του ένρου

Διαβάστε περισσότερα

ΣΧΕΣΕΙΣ ΙΑΤΑΞΗΣ, Α Α.

ΣΧΕΣΕΙΣ ΙΑΤΑΞΗΣ, Α Α. ΣΧΕΣΕΙΣ ΙΑΤΑΞΗΣ, Α Α. 1. ΣΧΕΣΕΙΣ ΔΙΑΤΑΞΗΣ: επνεπίσκεψη. Η εξής πρτήρηση γι τις (μονομερείς) διμελείς σχέσεις, εξυπηρετεί την τξινόμησή τους: τ ζεύγη μις οποιδήποτε τέτοις σχέσης εμπίπτουν σε τρείς κτηγορίες:

Διαβάστε περισσότερα

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ Θέρµνση Ψύξη ΚλιµτισµόςΙΙ Ψυχροµετρί Εργστήριο Αιολικής Ενέργεις Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κτσπρκάκης Ξηρόςκιυγρός τµοσφιρικόςέρς Ξηρόςκιυγρόςτµοσφιρικός έρς Ξηρός τµοσφιρικός έρς: ο πλλγµένος πό τους

Διαβάστε περισσότερα

«Ι ΑΚΤΙΚΗ ΚΑΙ ΜΕΘΟ ΟΛΟΓΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Θεωρήµατα Σταθερού Σηµείου και ιδακτικές Εφαρµογές. Γεώργιος Κυριακόπουλος

«Ι ΑΚΤΙΚΗ ΚΑΙ ΜΕΘΟ ΟΛΟΓΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Θεωρήµατα Σταθερού Σηµείου και ιδακτικές Εφαρµογές. Γεώργιος Κυριακόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΜΗΜΑ ΜΕΘΟ ΟΛΟΓΙΑΣ, ΙΣΤΟΡΙΑΣ KΑΙ ΘΕΩΡΙΑΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΨΥΧΟΛΟΓΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ δυδικό η εξετστική περίοδος πό 9/0/5 έως 9/04/5 γρπτή εξέτση στo μάθημ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ ΛΥΚΕΙΟΥ Τμήμ: Βθμός: Ονομτεπώνυμο: Κθηγητές: Θ Ε Μ Α Α Α. Έστω μι συνάρτηση

Διαβάστε περισσότερα

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto. 1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΕΣ ΑΣΚΗΣΕΙΣ. α) του αριθμού των αγοριών προς τον αριθμό των κοριτσιών:... β) του αριθμού των κοριτσιών προς τον αριθμό των αγοριών:...

ΑΝΑΛΟΓΙΕΣ ΑΣΚΗΣΕΙΣ. α) του αριθμού των αγοριών προς τον αριθμό των κοριτσιών:... β) του αριθμού των κοριτσιών προς τον αριθμό των αγοριών:... ΑΝΑΛΟΓΙΕΣ Μι νθοδέσμη έχει 5 λευκά κι 15 κόκκιν γρύφλλ. Τι μπορούμε ν πρτηρήσουμε; ότι τ κόκκιν είνι κτά δέκ περισσότερ πό τ λευκά, λλά κι ότι τ κόκκιν γρύφλλ είνι τρεις φορές περισσότερ πό τ λευκά Η μέτρηση

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Σχολή Ανθρωπιστικών και Κοινωνικών Επιστημών Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Πρόγραμμα Μεταπτυχιακών Σπουδών

Πανεπιστήμιο Πατρών Σχολή Ανθρωπιστικών και Κοινωνικών Επιστημών Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Πρόγραμμα Μεταπτυχιακών Σπουδών Πνεπιστήμιο Πτρών Σχολή Ανθρωπιστικών κι Κοινωνικών Επιστημών Πιδγωγικό Τμήμ Δημοτικής Εκπίδευσης Πρόγρμμ Μετπτυχικών Σπουδών Mετπτυχική Εργσί Πεποιθήσεις κι κίνητρ. Μι ερευνητική προσέγγιση σε πολιτισμικά

Διαβάστε περισσότερα

ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ Ι ΑΚΤΙΚΟΙ ΣΤΟΧΟΙ

ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ Ι ΑΚΤΙΚΟΙ ΣΤΟΧΟΙ «Αρχή σοφίς φόος Κυρίου» ( Ψλµός 110, 10.) ΓΥΜΝΑΣΙΟ: ΤΑΞΗ : Γ ΓΥΜΝΑΣΙΟΥ ΤΜΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ: ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ: ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ Ι ΑΚΤΙΚΟΙ ΣΤΟΧΟΙ ΟΙ ΜΑΘΗΤΕΣ ΠΡΕΠΕΙ: Ν γνωρίζουν πότε µι ισότητ

Διαβάστε περισσότερα

Αλυσοειδής - Eνειλιγµένη και Έλκουσα. Καµπύλη

Αλυσοειδής - Eνειλιγµένη και Έλκουσα. Καµπύλη ΙΣΤΟΡΙΚΕΣ ΚΑΜΠΥΛΕΣ Αλυσοειδής - Eνειλιγµένη κι Έλκουσ Κµπύλη ηµήτρης Ι. Μπουνάκης Σ. Σ. Μ. 1. ΑΛΥΣΟΕΙ ΗΣ ΚΑΜΠΥΛΗ ΕΙΣΑΓΩΓΗ - ΙΣΤΟΡΙΑ Μι πό τις ιστορικές κι ονοµστές κµπύλες, του επιπέδου που µελετήθηκε

Διαβάστε περισσότερα

Ορισμένο ολοκλήρωμα συνάρτησης Η συνάρτηση F( x ) = ( )

Ορισμένο ολοκλήρωμα συνάρτησης Η συνάρτηση F( x ) = ( ) 9 Ορισμένο ολοκλήρωμ συνάρτησης Η συνάρτηση F( = f t dt Θεωρούμε τη συνεχή συνάρτηση f:a R με A = [,] Χωρίζουμε το [,] σε ν ισομήκη υοδιστήμτ ου το κθέν έχει μήκος Δ = Σε κάθε υοδιάστημ ου σχημτίζετι ν

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 2002 ΚΛΑΔΟΣ ΠΕ 03 ΜΑΘΗΜΑΤΙΚΩΝ. EΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ «Γνωστικό Αντικείμενο» Kυριακή 8-12-2002

ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 2002 ΚΛΑΔΟΣ ΠΕ 03 ΜΑΘΗΜΑΤΙΚΩΝ. EΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ «Γνωστικό Αντικείμενο» Kυριακή 8-12-2002 ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 00 ΚΛΑΔΟΣ ΠΕ 0 ΜΑΘΗΜΑΤΙΚΩΝ EΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ «Γνωστικό Αντικείμενο» Kυρική 8--00 Η

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. 1 Ευκλείδεια Γεωµετρία Α και Β Ενιαίου Λυκείου ΟΕ Β (παραγ. 6.4)

ΕΙΣΑΓΩΓΗ. 1 Ευκλείδεια Γεωµετρία Α και Β Ενιαίου Λυκείου ΟΕ Β (παραγ. 6.4) ΕΙΣΑΓΩΓΗ Ότν σιγά σιγά άρχισ ν ενηµερώνοµι γύρω πό τις µθηµτικές γνώσεις των ρχίων Ελλήνων µθηµτικών κι µελετητών, ένοιωσ µεγάλη έκπληξη τόσο γι την ποιότητ κι ποσότητ των γνώσεών τους, όσο κι γι τη δική

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f (x)=α x,α>0 και α 1 λέγεται εκθετική συνάρτηση

ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f (x)=α x,α>0 και α 1 λέγεται εκθετική συνάρτηση ΔΥΝΑΜΕΙΣ ΜΕ ΕΚΘΕΤΗ ΡΗΤΟ - ΑΡΡΗΤΟ Αν >0, μ κέριος κι ν θετικός κέριος, τότε ορίζουμε: Επιπλέον, ν μ,ν θετικοί κέριοι, ορίζουμε: 0 =0. Πρδείγμτ: 4 4,, 5 5, 4 0 =0. Γενικότερ μπορούμε ν ορίσουμε δυνάμεις

Διαβάστε περισσότερα

Ίσα Τρίγωνα όχι, Ψευδοΐσα ναι

Ίσα Τρίγωνα όχι, Ψευδοΐσα ναι Ίσ Τρίω όχι Ψευδοΐσ ι ημοσιεύτηε στο περιοδιό «φ» τ.5 008 ημ. Ι. Μπουάης Σχ. Σύμουλος Μθημτιώ Οι ερωτήσεις τω μθητώ μς είι σφλώς πάτ ευπρόσδετες λλά πρέπει ι τις εθρρύουμε με άθε τρόπο. Όχι μόο ιτί ζωτεύου

Διαβάστε περισσότερα

= k. n! k! (n k)!, k=0

= k. n! k! (n k)!, k=0 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Συμπληρωματικές Ασκήσεις Χειμερινό Εξάμηνο 2015 Χρήστος Α Αθανασιάδης Συμβολίζουμε με O το μηδενικό πίνακα καταλλήλων διαστάσεων, με I (ορισμένες φορές, με I n τον n n ταυτοτικό πίνακα,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Ηράκλειο, 3 Mαρτίου 2011 ΘΕΜΑ: «Ι ΑΚΤΙΚΟ ΥΛΙΚΟ Γ ΛΥΚΕΙΟΥ Μ. Κ.: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ»

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Ηράκλειο, 3 Mαρτίου 2011 ΘΕΜΑ: «Ι ΑΚΤΙΚΟ ΥΛΙΚΟ Γ ΛΥΚΕΙΟΥ Μ. Κ.: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ» ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Ηράκλειο, 3 Mρτίου Aρ. πρ. 66 ΠΕΡΙΦΕΡΕΙΑΚΗ /ΝΣΗ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΚΡΗΤΗΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ. Ε. Ν. ΗΡΑΚΛΕΙΟΥ ηµήτριος Ι. Μπουνάκης Σχολικός Σύµουλος Μθηµτικών Τχ. /νση

Διαβάστε περισσότερα

Α5. Με καρυότυπο μπορεί να διαγνωστεί α. η β-θαλασσαιμία β. ο αλφισμός γ. το σύνδρομο Down δ. η οικογενής υπερχοληστερολαιμία.

Α5. Με καρυότυπο μπορεί να διαγνωστεί α. η β-θαλασσαιμία β. ο αλφισμός γ. το σύνδρομο Down δ. η οικογενής υπερχοληστερολαιμία. Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 2 0 1 5 ΙΟΛΟΓΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 22/05/2015 ΘΕΜΑ Α Ν γράψετε στο τετράδιό σς τον ριθμό κθεμίς πό τις πρκάτω ημιτελείς

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΒΙΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΒΙΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΒΙΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ημιτελείς προτάσεις Α1 έως Α5 κι δίπλ το γράμμ που

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1 ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1. ) Πότε µι συνάρτηση µε Πεδίο ορισµού το Α ονοµάζετι περιοδική; β) Ποιο είνι το πεδίο ορισµού κι η περίοδος των συνρτήσεων ηµx, συνx, εφx κι σφx;. Περιοδική ονοµάζετι

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 24 ΜΑΪΟΥ 202 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ Τ Ρ Ι Γ Ω Ν Ω Ν

ΣΤΟΙΧΕΙΑ Τ Ρ Ι Γ Ω Ν Ω Ν ΣΤΟΙΧΕΙ Τ Ρ Ι Ω Ν Ω Ν Θυμάμι ότι... ˆ + ˆ + ˆ = 180 ο ντί ν ράφουμε συνέχει «το τρίωνο» μπορούμε ν ράφουμε Δ. ΠΛΕΥΡΕΣ = = = ΩΝΙΕΣ = = = ν χωρίσουμε τ τρίων σε κτηορίες, με κριτήριο τ κύρι στοιχεί τους,

Διαβάστε περισσότερα

ΠΕΡΙΚΛΗΣ Γ. ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΟΡΟΣΗΜΟ ΖΩΓΡΑΦΟΥ

ΠΕΡΙΚΛΗΣ Γ. ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΟΡΟΣΗΜΟ ΖΩΓΡΑΦΟΥ ΠΕΡΙΚΛΗΣ Γ ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΚΕΝΤΡΙΚΗ ΔΙΑΘΕΣΗ Τρυλντώνη 8, 577 Ζωγράφου Τηλ: 747344 747395 email:info@orosimoeu wwworosimoeu ISBN: 978-68-873--4 ΕΚΔΟΣΕΙΣ

Διαβάστε περισσότερα

H Ευκλείδεια Γεωµετρία είναι και εδώ : Οι Κωνικές Τοµές της Β Λυκείου

H Ευκλείδεια Γεωµετρία είναι και εδώ : Οι Κωνικές Τοµές της Β Λυκείου H Ευκλείδει Γεωµετρί είνι κι εδώ : Οι Κωνικές Τοµές της Β Λυκείου (EΥΚΛΕΙ ΗΣ Γ, Τ. 73,010) ηµήτρης Ι. Μπουνάκης Σχολικός Σύµβουλος Μθηµτικών dimitrmp@sch.gr Περίληψη Η µελέτη των κωνικών τοµών η οποί γίνετι,

Διαβάστε περισσότερα

ΘΕΜΑ: Φορολογική μεταχείριση των μερισμάτων που λαμβάνουν νομικά πρόσωπα από την κοινοπραξία στην οποία συμμετέχουν.

ΘΕΜΑ: Φορολογική μεταχείριση των μερισμάτων που λαμβάνουν νομικά πρόσωπα από την κοινοπραξία στην οποία συμμετέχουν. ΑΔΑ: 6ΩΗΩΗ 5ΓΡ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αθήν, 15 Ιουνίου 2015 ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΔΗΜΟΣΙΩΝ ΕΣΟΔΩΝ ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΦΟΡΟΛΟΓΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΔΙΕΥΘΥΝΣΗ ΕΦΑΡΜΟΓΗΣ ΑΜΕΣΗΣ ΦΟΡΟΛΟΓΙΑΣ ΤΜΗΜΑ: Β Τχ.

Διαβάστε περισσότερα

ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ

ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ Δύο ομογενείς δίσκοι, ένς μεγάλος μάζς Μ=3kg κι κτίνς =40 κι ένς μικρός μάζς m=kg κι κτίνς =10, ενώνοντι έτσι ώστε ν συμπίπτουν τ κέντρ τους. Ο δίσκος κτίνς διθέτει υλάκι

Διαβάστε περισσότερα

3.1. Ασκήσεις σχ. βιβλίου σελίδας 144 146 Α ΟΜΑ ΑΣ

3.1. Ασκήσεις σχ. βιβλίου σελίδας 144 146 Α ΟΜΑ ΑΣ 1 3.1 σκήσεις σχ. ιλίου σελίδς 144 146 Ο Σ 1. Έν κουτί έχει τρεις µπάλες, µι άσπρη, µι µύρη κι µι κόκκινη. άνουµε το εξής πείρµ : πίρνουµε πό το κουτί µι µπάλ, κτγράφουµε το χρώµ της κι την ξνάζουµε στο

Διαβάστε περισσότερα

Σημειωση Αν καποια προταση απο τις επομενες χρησιμοποιηθει χρειαζεται αποδειξη. Εξαιρεση αποτελουν οι(3),(13),(21)

Σημειωση Αν καποια προταση απο τις επομενες χρησιμοποιηθει χρειαζεται αποδειξη. Εξαιρεση αποτελουν οι(3),(13),(21) È Ö Ñ Ø Ä Ó Ù Ð ËÕÓÐ ËÑ ÖÒ ¾½ÆÓ Ñ ÖÓÙ¾¼¼ È Ö ØÛÔ Ö Ð Ñ ÒÓÒØ Ñ Ö ÔÖÓØ Ñ Ö Ð ÑÑ Ø ÕÖ Ñ È ÖÐ Ý Ø Ü Ø ØÓÑ Ñ Ø ÙÒ Ø ³ÄÙ ÓÙº Σημειωση Αν κποι προτση πο τις επομενες χρησιμοποιηθει χρειζετι ποδειξη. Εξιρεση ποτελουν

Διαβάστε περισσότερα

4.4 Η ΠΥΡΑΜΙΔΑ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ

4.4 Η ΠΥΡΑΜΙΔΑ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΜΡΟΣ 4.4 Η ΠΥΡΜΙ Ι Τ ΣΤΟΙΧΙ ΤΗΣ 89 4.4 Η ΠΥΡΜΙ Ι Τ ΣΤΟΙΧΙ ΤΗΣ Ορισμός Πυρμίδ λέγετι έν στερεό, ου µί έδρ του είνι έν ολύγωνο κι όλες οι άλλες έδρες του είνι τρίγων µε κοινή κορυφή. Τ στοιχεί της υρμίδς

Διαβάστε περισσότερα

ΙΣΤΟΡΙΕΣ ΦΩΤΟΣ (Ερωτήσεις δικαιολόγησης στη Γεωµετρική Οπτική)

ΙΣΤΟΡΙΕΣ ΦΩΤΟΣ (Ερωτήσεις δικαιολόγησης στη Γεωµετρική Οπτική) ΙΣΤΡΙΕΣ ΦΩΤΣ (Ερωτήσεις δικιολόγησης στη εωµετρική πτική). Η πργκωνισµένη νάκλση στο προσκήνιο Τις περισσότερες ορές που ντιµετωπίζουµε έν έµ το οποίο σχετίζετι µε έν πρίσµ δινούς υλικού, έχουµε συνηίσει

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ

Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ ΘΕΜΑ Α Επνληπτικό Διγώνισµ Μθηµτικών Γ Λυκείου ΕΠΑΛ Α. Ν δώσετε τον ορισµό της συχνότητς κι της σχετικής συχνότητς µις πρτήρησης x i. (7 Μονάδες) Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς

Διαβάστε περισσότερα

Θέμα: Ολοκληρώματα. Υπολογισμός ολοκληρωμάτων. Μέθοδοι ολοκλήρωσης. Εμβαδά. Η συνάρτηση που ορίζεται από ολοκλήρωμα

Θέμα: Ολοκληρώματα. Υπολογισμός ολοκληρωμάτων. Μέθοδοι ολοκλήρωσης. Εμβαδά. Η συνάρτηση που ορίζεται από ολοκλήρωμα Θέμ: Ολοκληρώμτ Υολογισμός ολοκληρωμάτων Μέθοδοι ολοκλήρωσης Εμβδά Η συνάρτηση ου ορίζετι ό ολοκλήρωμ Ενλητικές σκήσεις ολοκληρωμάτων ΥΠΟΛΟΓΙΣΜΟΣ ΟΛΟΚΛΗΡΩΜΑΤΩΝ ΜΕ ΕΥΡΕΣΗ ΤΗΣ ΑΡΧΙΚΗΣ ή ΠΑΡΑΓΟΥΣΑΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

Σηµειώσεις στις ακολουθίες

Σηµειώσεις στις ακολουθίες Σηµειώσεις στις κολουθίες Η έννοι της κολουθίς Ας ρίξουµε µι µτιά στην επόµενη πράθεση ριθµών: 7,, 5, 9,, 7,, Όπως κτλβίνει κνείς, υπάρχουν άπειροι ριθµοί που διδέχοντι ο ένς τον άλλο, µε κάποι λογική

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Πρόχειρες σημειώσεις. Βασισμένες στο βιβλίο του Σ.Γ. ΦΡΑΓΚΟΠΟΥΛΟΥ: ΒΑΣΙΚΗ ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ. Μέρος Α: Κυκλώματα συνεχούς ρεύματος

Πρόχειρες σημειώσεις. Βασισμένες στο βιβλίο του Σ.Γ. ΦΡΑΓΚΟΠΟΥΛΟΥ: ΒΑΣΙΚΗ ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ. Μέρος Α: Κυκλώματα συνεχούς ρεύματος Πρόχειρες σημειώσεις Βσισμένες στο ιλίο του Σ.Γ. ΦΡΑΓΚΟΠΟΥΛΟΥ: ΒΑΣΙΚΗ ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Μέρος Α: Κυκλώμτ συνεχούς ρεύμτος Κ. Μουτζούρης Τμήμ Ηλεκτρονικής, ΤΕΙ Αθήνς Θερινό εξάμηνο 009

Διαβάστε περισσότερα

ΣΥΝΟΛΑ Σηµείωση. Γράφουµε νν ντί του ν κι µόνον ν.. Προλεγόµεν. Σε ότι κολουθεί, ο νγνώστης θ έρθει σε επφή µε έννοιες πό την Μθηµτική Λογική, την Θεωρί Συνόλων, κι την Άλγεβρ. Σύµφων µε την Πλτωνική ντίληψη

Διαβάστε περισσότερα

Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη

Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα ISBN 978-960-456-314-2 Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη Tο παρόν έργο πνευματικής ιδιοκτησίας προστατεύεται

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1.

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. Δύο μηχνικά κύμτ ίδις συχνότητς διδίδοντι σε ελστική χορδή. Αν λ 1 κι λ 2 τ μήκη κύμτος υτών των κυμάτων ισχύει: ) λ 1 λ 2 γ) λ 1 =λ 2 Δικιολογήστε την πάντησή

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 13 Ε_3.ΦλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνί: Κυρική 8 Απριλίου 13 ιάρκει Εξέτσης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Τ.Ε.Ι. ΚΑΛΑΜΑΤΑΣ. Τ Μ Η Μ Α ΔΙΟΙΚΗΣΗΣ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ κ ΠΡΟΝΟΙΑΣ ΘΕΜΑ

Τ.Ε.Ι. ΚΑΛΑΜΑΤΑΣ. Τ Μ Η Μ Α ΔΙΟΙΚΗΣΗΣ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ κ ΠΡΟΝΟΙΑΣ ΘΕΜΑ Τ.Ε.Ι. ΚΑΛΑΜΑΤΑΣ Σ χ ο λ ή Διο ίκ η σ η ς κ Ο ικ ο ν ο μ ί ς Τ Μ Η Μ Α ΔΙΟΙΚΗΣΗΣ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ κ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ ΔΙΕΡΕΥΝΗΣΗ ΑΠΟΨΕΩΝ ΧΡΗΣΤΩΝ ΥΠΗΡΕΣΙΩΝ ΥΓΕΙΑΣ ΤΩΝ ΕΞΩΤΕΡΙΚΩΝ ΙΑΤΡΕΙΩΝ ΤΟΥ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΠΥΡΗΝΙΚΗΣ ΦΥΣΙΚΗΣ ΚΑΙ. Μιλτιάδης Γ. Ζώης Α.Μ.: 200113

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΠΥΡΗΝΙΚΗΣ ΦΥΣΙΚΗΣ ΚΑΙ. Μιλτιάδης Γ. Ζώης Α.Μ.: 200113 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΠΥΡΗΝΙΚΗΣ ΦΥΣΙΚΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩ ΩΝ ΣΩΜΑΤΙΩΝ Μιλτιάδης Γ. Ζώης Α.Μ.: 00113 ΤΑΛΑΝΤΩΣΕΙΣ ΝΕΤΡΙΝΩΝ: ΑΝΑΛΥΣΗ ΤΗΣ ΑΠΟΚΡΙΣΗΣ ΤΟΥ ΑΝΙΧΝΕΥΤΗ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ MINOS

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο Ε Λ Λ

Διαβάστε περισσότερα

Οι ΤΠΕ ως παιδαγωγική εμπειρία μέσα από τα βιώματα των παιδιών: Εμπειρίες και προκλήσεις για το ψηφιακό χάσμα

Οι ΤΠΕ ως παιδαγωγική εμπειρία μέσα από τα βιώματα των παιδιών: Εμπειρίες και προκλήσεις για το ψηφιακό χάσμα Οι ΤΠΕ ως πιδγωγική εμπειρί μέσ πό τ βιώμτ των πιδιών: Εμπειρίες κι προκλήσεις γι το ψηφικό χάσμ Στύρου Χριστίν Ευρωπϊκό Πνεπιστήμιο Κύπρου & Βρυωνίδης Μάριος Ευρωπϊκό Πνεπιστήμιο Κύπρου Περίληψη H προύσ

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02 Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν

Διαβάστε περισσότερα

Ορισμός: Μια συνάρτηση f/α ονομάζεται συνεχής στο σημείο x ο

Ορισμός: Μια συνάρτηση f/α ονομάζεται συνεχής στο σημείο x ο 0 ΜΑΘΗΜΑ.4. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ.4.. Συνέχει συνάρτησης στ o Ορισμός: Μι συνάρτηση f/α νμάζετι συνεχής στ σημεί Α, ότν υπάρχει τ lim f () ι είνι: lim f() = f( ) ΙΣΟΔΥΝΑΜΟΣ ΟΡΙΣΜΟΣ Ότν υπάρχει δ > 0 ώστε

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΡΙΤΗ 3 IOYNIOY 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα