v 0x = v 0 > 0, v 0y = 0.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "v 0x = v 0 > 0, v 0y = 0."

Transcript

1 Εθνικό Κποδιστρικό Πνεπιστήμιο Αθηνών, Τμήμ Φυσικής Εξετάσεις στη Μηχνική Ι, Τμήμ Κ Τσίγκνου & Ν Βλχάκη, 4 Ινουρίου 07 Διάρκει εξέτσης 3 ώρες, Κλή επιτυχί bonus ερωτήμτ) Ονομτεπώνυμο:, ΑΜ: Ν ληφθεί υπόψη η πρόοδος της 5ης Δεκεμβρίου 06: ΝΑΙ ΟΧΙ ν ΝΑΙ μην πντήσετε τ θέμτ Εχω πρδώσει εργσίες: ΝΑΙ ΟΧΙ Θέμ ο : Εστω ιδνικό εκκρεμές, δηλ σημεικό σώμ μάζς m δεμένο σε βρές, μη εκττό νήμ μήκους R το άλλο άκρο του οποίου είνι στθερό Στο σώμ εκτός του βάρους mg της τάσης του νήμτος σκείτι ντίστση έρ νάλογη του τετργώνου της τχύτητς, δηλ F a mλ R v, όπου λ στθερά Το σώμ ξεκινά πό το κτώτερο σημείο με οριζόντι τχύτητ v 0 ) Γράψτε το νόμο Νεύτων νλύστε τον σε πολικές συντετγμένες γι ν βρείτε την διφορική εξίσωση που ικνοποιεί η fφ), θεωρούμενη gr συνάρτηση της γωνίς φ που διγράφει το νήμ β) Ποι η τχύτητ σε κάθε θέση όσο το σώμ νεβίνει; γ) Ποι πρέπει ν είνι η v 0 ώστε το σώμ ν φτάσει στο νώτερο σημείο χωρίς ν χλρώσει το νήμ; Δίνετι ότι η γενική λύση της dy + λy sin x dx είνι η y De λx cos x λ sin x + + λ Επίσης δίνετι η μορφή της επιτάχυνσης σε πολικές συντετγμένες a ϖ ϖ φ ) ˆϖ + ϖ φ + ϖ φ) ˆφ Θέμ ο : Σώμ μάζς m φορτίου q κινείτι σε μγνητικό πεδίο B xẑ σε κτάλληλες μονάδες) Αρχικά γι t 0) βρίσκετι στη θέση r 0 x 0ˆx + y 0 ŷ έχει τχύτητ v 0 v 0xˆx + v 0y ŷ ) Δείξτε ότι οι συνιστώσες του νόμου Νεύτων m a q v B συνεπάγοντι τ κόλουθ: ) Η κίνηση γίνετι στο επίπεδο z 0 ) Η v y μπορεί ν εκφρστεί σν v y x) δηλ σν συνάρτηση της συντετγμένης x, την οποί ν βρείτε) 3 ) Η κίνηση νάγετι σε μονοδιάσττη ẍ F x) βρείτε την «δύνμη» F x)) β) Δείξτε ότι το ντίστοιχο ολοκλήρωμ ενέργεις ẋ v + V x) E είνι ισοδύνμο με v στθερά, δηλ η «δυνμική ενέργει» είνι η V x) [v yx)] Δείξτε επίσης ότι η V x), νάλογ με τις ρχικές συνθήκες, έχει τη μορφή μίς πό τις κμπύλες του κόλουθου σχήμτος 0 Vx) γ) Εστω οι ρχικές συνθήκες είνι x 0, y 0 0, v 0x v 0 > 0, v 0y 0 γ ) Δείξτε ότι στην περίπτωση υτή η «δυνμική ενέργει» είνι V x) x ) Ποι πό τις κμπύλες του πρπάνω σχήμτος ντιστοιχεί σε υτή την V x); γ ) Περιγράψτε την κίνηση στην x κτεύθυνση νάλογ με την τιμή της ρχικής τχύτητς γ 3 ) Γι μικρές τιμές της ρχικής τχύτητς v 0 βρείτε την xt) στη συνέχει την yt) Θέμ 3 ο : ) Δείξτε ότι η εξίσωση μις έλλειψης με μικρό ημιάξον b, εκκεντρότητ e, κέντρο συμμετρίς Ο στην ρχή του συστήμτος Oxy μεγάλο ημιάξον πάνω στον άξον Ox είνι : ρ b cos θ, όπου ρ είνι η πόστση τυχόντος σημείου Σx, y) της έλλειψης πό το κέντρο Ο θ η γωνί του άξον Οx με το ΟΣρ β) Θεωρείστε ότι η ελλειπτική υτή τροχιά διγράφετι πό έν σωμτίδιο μάζς m σε έν πεδίο κεντρικών δυνάμεων με κέντρο το Ο Δείξτε ότι η δύνμη που σκείτι στο σωμτίδιο είνι ελκτική νάλογη της πόστσης ρ πό το κέντρο Ο, F ρ) kρ Υπολογίστε τη στθερά k γι δεδομένη στροφορμή L γ) Δείξτε ότι η ολική ενέργει του σωμτιδίου είνι : E k e ), x

2 όπου ο μεγάλος ημιάξονς της ελλειπτικής τροχιάς δ) Δείξτε ότι ν ρχικά ρ t0 θ t0 0 οι χρονικές εξρτήσεις της γωνίς θt) της πόστσης ρt) δίδοντι πό τις σχέσεις : tan θ tanωt), ρ sin ωt), με ω k/m Θ χρειστείτε έν πό τ κόλουθ ολοκληρώμτ: θ 0 cos θ arctan tan θ, dz cz + bz + a cz + b arccos c b 4ac +στθερά Θέμ 4 ο : Εν κοντινό στέρι έχει πράλλξη φ o 05, δλδ, η γωνί υπό την οποί φίνετι πό το άστρο η τροχιά της Γης πόστσης γύρω πό τον Ηλιο είνι μισό δευτερόλεπτο τόξου, λλιώς, κθώς η Γη περιστρέφετι γύρω πό τον Ηλιο το άστρο φίνετι ν μετκινείτι στον ουρνό κτά γωνί φ o ΑΣΤΡΟ φ o D ΓΗ o ΗΛΙΟΣ ΓΗ Επιπρόσθετ όμως, πρτηρείτι ότι η θέση του άστρου στον ουρνό εκτελεί μι μικρή τλάντωση με γωνικό πλάτος φ 00 περίοδο T Υποθέτουμε ότι η μικρή υτή τλάντωση της θέσης του άστρου οφείλετι στην ύπρξη κάποιου πλνήτη, ο οποίος περιφέρετι σε κυκλική τροχιά κτίνς γύρω πο τον στέρ Κτά τ γνωστά, το άστρο μάζς m ο πλνήτης μάζς m κινούντι γύρω πό το κοινό κέντρο μάζς τους με κτίνες της τροχιάς τους, ντίστοιχ ΑΣΤΡΟ m ) ΚΜ ΠΛΑΝΗΤΗΣ m ) D φ ΗΛΙΟΣ ) Δείξτε ότι η μάζ m του πλνήτη ως προς τη μάζ του Ηλιου δίδετι πό τη σχέση : m φ ) /3 To φ o T όπου m +m είνι η συνολική μάζ του στέρ του πλνήτη, έτος T η περίοδος της κίνησης του κάθε σώμτος γύρω πό το κοινό κέντρο μάζς Υπόδειξη: Δείξτε πρώτ ότι φ /φ o a /a o β) Ν υπολογισθεί η μάζ του πλνήτη m ν χρησιμοποιηθούν τ εξής πρτηρησικά δεδομέν, 05, T 6 έτη γ) Αν δεν είχμε υποθέσει ότι η τροχιά του πλνήτη είνι κυκλικ τι μπορούμε ν συμπεράνουμε γι τη μάζ του πλνήτη σε σχέση με τον προηγούμενο υπολογισμό ;

3 ΛΥΣΕΙΣ: Θέμ ο : ) Νόμος Νεύτων : m a m g + T v F a v Σε πολικές συντετγμένες στο σύστημ με άξον x κτκόρυφο προς τ κάτω y οριζόντιο προς την ρχική φορά κίνησης, γράφετι mr φ ˆφ m φ R ˆϖ mg cos φ ˆϖ mg sin φ ˆφ T ˆϖ mλ v v, v R φ ˆφ R Με φ d φ dφ φ d φ dφ dv R dφ, όπου φ v /R στο νέβσμ είνι φ > 0), η ˆφ συνιστώσ δίνει df + λf sin φ dφ β) Η γενική λύση της πρπάνω εξίσωσης δίνετι f De λφ cos φ λ sin φ + + λ f φ0 v 0 gr οπότε D v 0 gr + λ v v σε κάθε θέση gr 0 gr ) e λφ + + λ cos φ λ sin φ + λ γ) Η κτινική συνιστώσ του νόμου Νεύτων δίνει σε κάθε θέση T mv + mg cos φ Οσο το σώμ R νεβίνει τόσο η τχύτητ όσο το cos φ ελττώνοντι, οπότε προφνώς κτά το νέβσμ η τάση πίρνει την ελάχιστη τιμή της στο νώτερο σημείο Αυτό φίνετι ) πό την πράγωγο της τάσης d T d df f + cos φ) dφ mg dφ dφ sin φ λf 3 sin φ η οποί είνι < 0 γι φ [0, π] Ορικά λοιπόν στο νώτερο σημείο είνι T 0, οπότε μόνο το βάρος πίζει το ρόλο της κεντρομόλου, δηλ mg f φπ mv φπ R v 0 gr ) e λπ + λ + λ v 0 gr + λ + + ) e λπ Αυτή είνι η + λ ελάχιστη τιμή της v 0 γι ν μην χλρώσει το νήμ στο νέβσμ Θέμ ο : ) Οι συνιστώσες της a x v ẑ είνι ẍ xẏ, ÿ xẋ, z 0 ) Η ẑ συνιστώσ δίνει z z 0 + v 0z t με τις στθερές ολοκλήρωσης z 0 v 0z ν μηδενίζοντι πό τις ρχικές συνθήκες z t0 0, ż t0 0 Άρ z 0 ) Η ŷ συνιστώσ ολοκληρώνετι σε ẏ+x C στθερά Η τιμή της στθεράς βρίσκετι πό τις ρχικές συνθήκες Άρ v y x) C x με C v 0y + x 0 3 ) Η ˆx συνιστώσ, ντικθιστώντς την v y x), γράφετι ẍ F x) με F x) xx C) β) Η εξίσωση κίνησης ẍ F x) είνι ισοδύνμη με ολοκλήρωμ ενέργεις + V x) E, όπου V F x)dx x C) μηδενίζοντς την υθίρετη προσθετική στθερά) Το ολοκλήρωμ είνι ισοδύνμο με τη διτήρηση της κινητικής ενέργεις η οποί ισχύει φού το έργο της δύνμης πό το μγνητικό πεδίο η οποί είνι κάθετη στην κίνηση είνι μηδενικό), φού v x + vy + vz ẋ + x C) E στθερά Το γράφημ της δυνμικής ενέργεις εξρτάτι πό την τιμή της πρμέτρου C Είνι V x C), V xx C), V 6x C Αν C > 0 υπάρχουν τρί τοπικά κρόττ, τ ελάχιστ x ± C στ οποί V min 0 το τοπικό μέγιστο x 0 στο οποίο V max C / Η V x) είνι άρτι συνάρτηση οπότε ρκεί η μελέτη στ θετικά x Είνι φθίνουσ στο 0 < x < C ύξουσ στο C < x < + με lim ẋ V x) + Το γράφημ της V x) ντιστοιχεί στην κόκκινη δικεκομμένη) κμπύλη Αν C 0 υπάρχει έν ελάχιστο το x 0 στο οποίο V min 0 Η V x) είνι ύξουσ στο 0 < x < + με lim V x) + Το γράφημ της V x) ντιστοιχεί στην πράσινη συνεχή) κμπύλη Αν C < 0 υπάρχει έν ελάχιστο το x 0 στο οποίο V min C / Η V x) είνι ύξουσ στο 0 < x < + με lim V x) + Το γράφημ της V x) ντιστοιχεί στην μπλε στικτή) κμπύλη γ ) Γι τις δοσμένες ρχικές συνθήκες C v 0y + x 0 άρ η δυνμική ενέργει είνι V x ) Το γράφημ της δυνμικής ενέργεις ντιστοιχεί στην κόκκινη δικεκομμένη) κμπύλη Υπάρχουν τρί τοπικά κρόττ, τ ελάχιστ x ± στ οποί V min 0 το τοπικό μέγιστο x 0 στο οποίο V max / γ ) Η ενέργει είνι E v0/ Αν E < V max v 0 < το σώμ εκτελεί τλάντωση μετξύ των δύο θετικών ριζών της V x) E, δηλ v 0 x

4 + v0 Αν E > V max v 0 > το σώμ εκτελεί τλάντωση μετξύ των δύο ριζών της V x) E, δηλ + v 0 x + v 0 Στην ορική περίπτωση E V max v 0 το σώμ φού νκλστεί στο σημείο x όπου V x) E) θ προσεγγίζει επ άπειρον το τοπικό μέγιστο x 0 γ 3 ) Γι μικρές τιμές της ρχικής τχύτητς το σώμ θ μείνει στη γειτονιά του τοπικού ελχίστου x Με x + ɛ είνι F V + ɛ) V )ɛ 4ɛ οπότε ɛ + 4ɛ 0 με λύση ɛ C sint) + C cost) Άρ x + C sint) + C cost), ẋ C cost) C sint) Από τις ρχικές συνθήκες βρίσκουμε τελικά x + v 0 sint) Γι την yt) είνι ẏ C x με C, δηλ ẏ x ẏ v 0 sint) γνοώντς όρους Oɛ ) που έχουμε γνοήσει στη λύση xt) Ολοκληρώνοντς βρίσκουμε y v 0 + v 0 cost) Είνι x ) + y + v 0 /) v 0 /), δηλ βρήκμε την νμενόμενη κυκλική κίνηση γύρω πό το τοπικά ομογενές) μγνητικό πεδίο Θέμ 3 ο : ) Οι συντετγμένες x, y) τυχόντος σημείου Σ της έλλειψης, με την ρχή Ο στο κέντρο της έλλειψης, είνι : x ρ cos θ, y ρ sin θ Από την εξίσωση της έλλειψης σε κρτεσινές συντετγμένες, x + y b έχουμε ρ ρ cos θ b sin θ + b cos θ b ) έχουμε ρ + sin θ b ) Αντικθιστώντς b cos θ β) u ρ e cos θ b u e cos θ sin θ b cos θ, u e cos θ sin θ e cos 4 θ, b cos θ) 3/ cos θ ρ b sin θ ρ e ρ + b οπότε ρ e ρ e μετ πό ντικτάστση στην προηγούμενη έχουμε u ρ4 e ρ 4 b 4, u + u )ρ 3 b 4 ρ b 4 F ρ) L mρ u + u) L ρ kρ με m b 4 k L m b 4 γ) Η δυνμική ενέργει του τλντωτή είνι V kρ Η ολική ενέργει Ε υπολογισμένη στο περίκεντρο της έλλειψης ρ όπου ρ 0 είνι : E L m + k Αλλά k L L m b 4 m b, οπότε L mk b Ετσι έχουμε: L m kb E k + b ) k e ) δ) Υπολογισμός της θt) Χρησιμοποιώντς την προηγούμενη έκφρση της στροφορμής, L mk b : L k m m b ω ρ θ, έχουμε : θ 0 cos θ ωt Χρησιμοποιώντς το δεδομένο ολοκλήρωμ έχουμε, θ 0 cos θ arctan tan θ Επομένως τελικά, tan θ tanωt) Υπολογισμός της ρt) Πργωγίζοντς ως προς το χρόνο το προηγούμενο ωt ποτέλεσμ tan θ tanωt) έχουμε, θ cos θ ω cos ωt θ + tan θ) θ[ + ) tan ωt] ω cos ωt, οπότε θ ω sin ωt Χρησιμοποιώντς την προηγούμενη έκφρση ω ρ θ λύνοντς ως προς ρ έχουμε ρ a sin ωt) Β τρόπος: Στην ρ b cos θ ντικθιστούμε cos θ + tan θ + ) tan ωt) cos ωt) sin ωt), οπότε ρ b e sin ωt) δλδ η ζητούμενη Γ τρόπος: Η ρt) μπορεί ν βρεθεί άμεσ, μέσω του ολοκληρώμτος ενέργεις m ρ + L mρ + kρ E Αντικθιστώντς E k e ), L mk b, b ) k mω προκύπτει ρ ±ω e ) ρ 4 ) ρ ρdρ ±ωt e ) ρ ρ 4 4 ) Θέτοντς z ρ / χρησιμοποιώντς το δεύτερο δεδομένο ολοκλήρωμ προκύπτει

5 dz z + e )z + e z + e arccos e ±ωt ±ωt ± C, όπου C στ- z + e θερά Άρ cosωt + C) Από e ρχικές συνθήκες z t0 βρίσκουμε C π, z + e οπότε cosωt) sin ωt) e πό την οποί προκύπτει η ζητούμενη Θέμ 4 ο : ) Από τη γεωμετρί των σχημάτων έχουμε, sin φ o D, ή φού η γωνί είνι μικρή φ o D Dφ o όμοι Dφ, οπότε, φ φ o η προς πόδειξη σχέση γίνετι, ) 3 ) 3 ) ) m To T ) T ) T m ) T ) 3 ) 3 ) ) ) 3 ) m ) 3 ) 3 επειδή m Η τελευτί όμως σχέση είνι ο γνωστός νόμος του Κεπλερ β) Αντικθιστώντς 05, T 6 yrs, m φ o 05, φ 00 προκύπτει, ) /3 05 ) /3 ) / Δλδ, ο εξωπλνήτης έχει 800 φορές μικρότερη μάζ πό τον Ηλιο, δηλ, είνι της τάξεως της 800 μάζς του Δί γ) Ας υποθέσουμε ότι οι ληθινές τροχιές των δύο σωμάτων δεν είνι κυκλικές λλά ελλειπτικές Σε υτή την περίπτωση, η πργμτική μάζ του πλνήτη θ ήτν μεγλύτερη πό υτή που υπολογίσμε υποθέτοντς κυκλικές τροχιές Γι ν το κτνοήσουμε υτό, ς υποθέσουμε ότι ο μικρός ημιάξονς της τροχιάς b είνι πολύ μικρότερος του μεγάλου ημιάξον της τροχιάς Εστω, γι πράδειγμ, ότι έχουμε ελλειπτική τροχιά της οποίς ο μεγάλος άξονς είνι στη διεύθυνση που πρτηρούμε τον στέρ ο μικρός ημιάξονς b κάθετος στη διεύθυνση που πρτηρούμε τον στέρ Τότε το πργμτικό θ ήτν πολύ μεγλύτερο υτού που χρησιμοποιήσμε με την υπόθεση της κυκλικής τροχιάς το οποίο ισούτι με το b της ελλειπτικής τροχιάς Αυτό έχει σν ποτέλεσμ, το ληθινό m που είνι νάλογο του ληθινού ν είνι μεγλύτερο υτού που υπολογίσμε

mr 3 e 2λt. 1 + e d dt 2G v 1 = m 2 r o, 2 ˆr + 1 r , v 2 = m 1

mr 3 e 2λt. 1 + e d dt 2G v 1 = m 2 r o, 2 ˆr + 1 r , v 2 = m 1 Εθνικό κι Κποδιστρικό Πνεπιστήμιο Αθηνών, Τμήμ Φυσικής Εξετάσεις στη Μηχνική Ι, Τμήμ Κ Τσίγκνου & Ν Βλχάκη, 4 Σεπτεμβρίου 8 Διάρκει εξέτσης 3 ώρες, Κλή επιτυχί bonus ερωτήμτ Ονομτεπώνυμο:, ΑΜ: Ν ληφθεί

Διαβάστε περισσότερα

Εισαγωγή στις Φυσικές Επιστήμες ( ) Α. Δύο σώματα ίσης μάζας m κινούνται σε οριζόντιο επίπεδο όπως φαίνεται στο παρακάτω σχήμα.

Εισαγωγή στις Φυσικές Επιστήμες ( ) Α. Δύο σώματα ίσης μάζας m κινούνται σε οριζόντιο επίπεδο όπως φαίνεται στο παρακάτω σχήμα. Εισγωγή στις Φυσικές Επιστήμες (7-7-7) Μηχνική Ονομτεπώνυμο Τμήμ ΘΕΜΑ 1 Α. Δύο σώμτ ίσης μάζς m κινούντι σε οριζόντιο επίπεδο όπως φίνετι στο πρκάτω σχήμ. Α υ Β a O = Εάν γι t = το σώμ Α κινείτι με στθερή

Διαβάστε περισσότερα

Επιτάχυνση και ισχύς σε καμπυλόγραμμη κίνηση

Επιτάχυνση και ισχύς σε καμπυλόγραμμη κίνηση Επιτάχυνση κι ισχύς σε κμπυλόγρμμη κίνηση Έν σημεικό σφιρίδιο Σ μάζς m=0,kg είνι δεμένο m στο άκρο βρούς κι μη Σ εκττού νήμτος μήκους =0,m, το άλλο άκρο του οποίου είνι στερεωμένο σε οριζόντι οροφή. Το

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς

Διαβάστε περισσότερα

Ονοματεπώνυμο. Τμήμα

Ονοματεπώνυμο. Τμήμα Ηλεκτρομγνητισμός (6-7-9) Ονομτεπώνυμο Τμήμ ΘΕΜΑ 1 A. Έν σωμάτιο με φορτίο -6. n τοποθετείτι στο κέντρο ενός μη γώγιμου σφιρικού φλοιού εσωτερικής κτίνς c κι εξωτερικής 5 c. Ο σφιρικός φλοιός περιέχει

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 13 Ε_3.ΦλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνί: Κυρική 8 Απριλίου 13 ιάρκει Εξέτσης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4

Διαβάστε περισσότερα

Η ΒΡΑΧΥΣΤΟΧΡΟΝΗ ΚΑΜΠΥΛΗ ΚΑΙ ΟΙ ΕΞΙΣΩΣΕΙΣ EULER LAGRANGE

Η ΒΡΑΧΥΣΤΟΧΡΟΝΗ ΚΑΜΠΥΛΗ ΚΑΙ ΟΙ ΕΞΙΣΩΣΕΙΣ EULER LAGRANGE Η ΒΡΑΧΥΣΤΟΧΡΟΝΗ ΚΑΜΠΥΛΗ ΚΑΙ ΟΙ ΕΞΙΣΩΣΕΙΣ EULER LAGRANGE Η δημοσίευση του Γιάννη Φιορεντίνου γι το πρόβλημ της βρχυστόχρονου ήτν μι πρό(σ)κληση. Διβάζοντς την εκφώνηση του προβλήμτος ποφάσισ ν δώσω μι πλήρη

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΡΓΟ - ΕΝΕΡΓΕΙΑ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΡΓΟ - ΕΝΕΡΓΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΡΓΟ - ΕΝΕΡΓΕΙΑ Συγγρφή Επιμέλει: Πνγιώτης Φ. Μοίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.pias.weebl.c ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙ: 15/0/015 ΘΕΜ 1 ο Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις 1-4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÑÏÌÂÏÓ

ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÑÏÌÂÏÓ ΘΕΜ 1ο ΘΕΜΤ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ - 000 Στις ερωτήσεις 1-4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ το γράµµ που ντιστοιχεί στη σωστή πάντηση. 1. Ένς νεµιστήρς

Διαβάστε περισσότερα

Κίνηση σε Μαγνητικό πεδίο

Κίνηση σε Μαγνητικό πεδίο Κίνηση σε γνητικό πεδίο 4.1. Ακτίν κι Περίοδος στο ΟΠ. Από έν σημείο Α μέσ σε ομογενές μγνητικό πεδίο έντσης Β=2Τ, εκτοξεύοντι δύο σωμτίδι Σ 1 κι Σ 2 ίδις μάζς m=10-10 kg κι ντίθετων φορτίων, με τχύτητες

Διαβάστε περισσότερα

ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ

ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ Δύο ομογενείς δίσκοι, ένς μεγάλος μάζς Μ=3kg κι κτίνς =40 κι ένς μικρός μάζς m=kg κι κτίνς =10, ενώνοντι έτσι ώστε ν συμπίπτουν τ κέντρ τους. Ο δίσκος κτίνς διθέτει υλάκι

Διαβάστε περισσότερα

1ο Επαναληπτικό Διαγώνισμα Φυσικής Α τάξης Γενικού Λυκείου

1ο Επαναληπτικό Διαγώνισμα Φυσικής Α τάξης Γενικού Λυκείου ο Επνληπτικό Διγώνισμ Φυσικής Α τάξης Γενικού Λυκείου Θέμ Α: (Γι τις ερωτήσεις Α. έως κι Α.4 ν γράψετε στο τετράδιό σς τον ριθμό της πρότσης κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πρότση.) Α. Στην ευθύγρμμη

Διαβάστε περισσότερα

ΓΙΟ-ΓΙΟ ΚΑΙ ΚΟΨΙΜΟ ΝΗΜΑΤΟΣ

ΓΙΟ-ΓΙΟ ΚΑΙ ΚΟΨΙΜΟ ΝΗΜΑΤΟΣ ΓΙΟ-ΓΙΟ ΚΙ ΚΟΨΙΜΟ ΝΗΜΤΟΣ Ο ομογενής κύλινδρος(γιο-γιό) του σχήμτος έχει μάζ Μ=5kg κι κτίν R=0,m. Γύρω πό τον κύλινδρο είνι τυλιγμένο βρές κι μη εκττό νήμ, το ελεύθερο άκρο του οποίου τρβάμε προς τ πάνω

Διαβάστε περισσότερα

E f (x)dx f (x)dx E. 7 f (x)dx (3). 7 f (x)dx E E E E.

E f (x)dx f (x)dx E. 7 f (x)dx (3). 7 f (x)dx E E E E. ΘΕΜΑ Α Α i Σχολικό βιβλίο σελίδ 6 ii Σχολικό βιβλίο σελίδ 6 Α Σχολικό βιβλίο σελίδ 85 Α3 Ισχύει ότι 7 3 7 ()d ()d ()d () 3 Στο,3 είνι () οπότε το εμβδό του χωρίου Ω που ορίζετι πό την κι τις ευθείες, 3

Διαβάστε περισσότερα

GMm. 1 2GM ) 2 + L2 2 + R L=4.5 L=4 L=3.7 L= 1 2 =3.46 L= V (r) = L 2 /2r 2 - L 2 /r 3-1/r

GMm. 1 2GM ) 2 + L2 2 + R L=4.5 L=4 L=3.7 L= 1 2 =3.46 L= V (r) = L 2 /2r 2 - L 2 /r 3-1/r Ονοματεπώνυμο: Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ Τσίγκανου & Ν Βλαχάκη, Σεπτεμβρίου 05 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία = bonus ερωτήματα),

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1.

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. Δύο μηχνικά κύμτ ίδις συχνότητς διδίδοντι σε ελστική χορδή. Αν λ 1 κι λ 2 τ μήκη κύμτος υτών των κυμάτων ισχύει: ) λ 1 λ 2 γ) λ 1 =λ 2 Δικιολογήστε την πάντησή

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μθητής που έχει μελετήσει το κεφάλιο υτό θ πρέπει ν είνι σε θέση:. Ν γνωρίζει τις έννοιες πράγουσ ή ρχική συνάρτηση, όριστο ολοκλήρωμ κι ν μπορεί ν υπολογίζει πλά όριστ ολοκληρώμτ με τη οήθει των μεθόδων

Διαβάστε περισσότερα

GMR L = m. dx a + bx + cx. arcsin 2cx b b2 4ac. r 3. cos φ = eg. 2 = 1 c

GMR L = m. dx a + bx + cx. arcsin 2cx b b2 4ac. r 3. cos φ = eg. 2 = 1 c Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, 9 Μαΐου 01 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία bonus ερωτήματα Ονοματεπώνυμο:,

Διαβάστε περισσότερα

Επιτάχυνση και ισχύς σε καμπυλόγραμμη κίνηση

Επιτάχυνση και ισχύς σε καμπυλόγραμμη κίνηση Υλικό Φσικής-Χηµείς Επνληπτικά Θέµτ. Επιτάχνση κι ισχύς σε κμπλόγρμμη κίνηση Έν σηµεικό σφιρίδιο Σ µάζς m=0,kg είνι δεµένο στο ά- κρο βρούς κι µη εκττού νήµτος µήκος =0,m, το άλλο άκρο το οποίο είνι στερεωµένο

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής. Μαθηματικός Λογισμός. Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ.

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής. Μαθηματικός Λογισμός. Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ. Ιόνιο Πνεπιστήμιο - Τμήμ Πληροορικής Μθημτικός Λογισμός Ενότητ: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ Πνγιώτης Βλάμος Αδειες Χρήσης Το πρόν εκπιδευτικό υλικό υπόκειτι σε άδειες χρήσης Cativ Commo

Διαβάστε περισσότερα

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση. . Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών

Διαβάστε περισσότερα

* ' 4. Σώµ εκτελεί γ..τ µε συχνότητ f. H συχνότητ µε την οποί µεγιστοποιείτι η δυνµική ενέργει τλάντωσης είνι. f =2f β. f =f/2 γ. f =f δ. f =4f Β. Στη

* ' 4. Σώµ εκτελεί γ..τ µε συχνότητ f. H συχνότητ µε την οποί µεγιστοποιείτι η δυνµική ενέργει τλάντωσης είνι. f =2f β. f =f/2 γ. f =f δ. f =4f Β. Στη * '! " # $ # # " % $ " ' " % $ ' " ( # " ' ) % $ THΛ: 270727 222594 THΛ: 919113 949422 ' " % +, Α. Γι τις πρκάτω προτάσεις 1-4 ν γράψετε το γράµµ, β, γ ή δ, που ντιστοιχεί στην σωστή πάντηση 1. Κύκλωµ

Διαβάστε περισσότερα

1 Η μετρική Schwarzschild

1 Η μετρική Schwarzschild ΤΟ ΗΛΙΑΚΟ ΣΥΣΤΗΜΑ - ΜΕΛΑΝΕΣ ΟΠΕΣ Διδάσκων: Θεόδωρος Ν. Τομράς 1 Η μετρική Schwazschil Οπως είπμε σε προηγούμενο μάθημ, η γεωμετρί του χωρόχρονου γύρω πό μιά σφιρικά συμμετρική κτνομή συνολικής μάζς Μ ή

Διαβάστε περισσότερα

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i. . Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,

Διαβάστε περισσότερα

Reynolds. du 1 ξ2 sin 2 u. (2n)!! ( (http://www.natgeotv.com/uk/street-genius/ videos/bulletproof-balloons) n=0

Reynolds. du 1 ξ2 sin 2 u. (2n)!! ( (http://www.natgeotv.com/uk/street-genius/ videos/bulletproof-balloons) n=0 Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, Μαΐου 7 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία ( = bonus ερωτήματα) Ονοματεπώνυμο:,

Διαβάστε περισσότερα

ΘΕΜΑ 1 0 Οδηγία: Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 0 Οδηγία: Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 8//6 ΘΕΜΑ Οδηγί: Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθμό της ερώτησης κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η

Διαβάστε περισσότερα

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x ΔΙΑΓΩΝΙΣΜΑΤΑ Διγώνισμ Θέμ Α Α Ν ποδειχθεί ότι η συνάρτηση f = ln,, είνι πργωγίσιμη στο κι ισχύει f = Μονάδες 7 Α Πότε μί συνάρτηση f λέμε ότι είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της; Α Πότε

Διαβάστε περισσότερα

dx cos x = ln 1 + sin x 1 sin x.

dx cos x = ln 1 + sin x 1 sin x. Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 17-18 Ν. Βλαχάκης 1. Εστω πεδίο δύναμης F = g () cos y ˆ + λ g() sin y ŷ, όπου λ = σταθερά και g() = 1 e π/ B C (σε κατάλληλες μονάδες). (α) Υπολογίστε πόση ενέργεια

Διαβάστε περισσότερα

είναι το διάνυσµα θέσης του σωµατιδίου σε καρτεσιανές συντεταγµένες. dt r r (3) F dr = dw, είναι ο ορισµός του στοιχειώδους έργου r r r (4) r 2

είναι το διάνυσµα θέσης του σωµατιδίου σε καρτεσιανές συντεταγµένες. dt r r (3) F dr = dw, είναι ο ορισµός του στοιχειώδους έργου r r r (4) r 2 ΚΕΦΑΛΑΙΟ 3: ΕΝΕΡΓΕΙΑ ΚΑΙ ΣΤΡΟΦΟΡΜΗ 3. Συντηρητικές δυνάµεις Στο κεφάλιο υτό γενικεύουµε στις 3 διστάσεις ό,τι εξετάσµε στο προηγούµενο κεφάλιο κι συγκεκριµέν θ σχοληθούµε µε το πρόβληµ της κίνησης ενός

Διαβάστε περισσότερα

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1. Λύση

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1. Λύση 39th International Physics Olympiad - Hanoi - Vietnam - 8 11 Υπολογισμός της πόστσης TG Λύση 3 3 3 Ο όγκος του νερού στην κοιλότητ είνι V = 1cm = 1 m Το μήκος του πυθμέν της κοιλότητς είνι d = L atan 6

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d

Διαβάστε περισσότερα

ΑΚΟΛΟΥΘΙΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. α,α,,α, ή συνοπτικά με. * n. α α λ, για κάθε. n και υπάρχει. (αντ. αn αn 1

ΑΚΟΛΟΥΘΙΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. α,α,,α, ή συνοπτικά με. * n. α α λ, για κάθε. n και υπάρχει. (αντ. αn αn 1 ΑΚΟΛΟΥΘΙΕΣ ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ Ακολουθί στοιχείων ενός συνόλου Ε ονομάζετι κάθε πεικόνιση : Ε Στην πεικόνιση υτή η εικόν του θ σηιώνετι κι θ ονομάζετι γενικός ή -οστός όρος της κολουθίς Η κολουθί υτή θ σηιώνετι

Διαβάστε περισσότερα

Ενότητα Να βρεθούν οι ευθείες οι οποίες διέρχονται από το σημείο Α(1,2) και απέχει από το σημείο Β(3,1) απόσταση d=2.

Ενότητα Να βρεθούν οι ευθείες οι οποίες διέρχονται από το σημείο Α(1,2) και απέχει από το σημείο Β(3,1) απόσταση d=2. Ευθεί Ενότητ 7. Απόστση σημείου πό ευθεί Εμβδόν τριγώνου Εφρμογές 7.1 Ν βρεθεί η πόστση: i) του σημείου Μ(1,3) πό την ευθεί (ε) με εξίσωση 3x-4y- 11=0, ii) του σημείου Ρ(,-3) πό την (η) με εξίσωση 5x+1y-=0.

Διαβάστε περισσότερα

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές . ίνετι η συνάρτηση f() e. Α) Ν ποδείξετε ότι η νιοστή πράγωγος της συνάρτησης f µπορεί ν πάρει τη µορφή (ν) f () ( + ν + ν )e όπου ν ν είνι συντελεστές εξρτηµένοι πό το ν τους οποίους κι ν υπολογίσετε.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ B ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ B ΛΥΚΕΙΟΥ Φυσική Κτεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ Θέµ ο κ ΙΑΓΩΝΙΣΜΑ Α. (Βάλτε σε κύκλο το γράµµ µε τη σωστή πάντηση) Αν υξήσουµε την πόστση µετξύ δύο ετερόσηµων σηµεικών ηλεκτρικών φορτίων,. η δυνµική

Διαβάστε περισσότερα

γραπτή εξέταση στα ΦΥΣΙΚΗ Γ' κατεύθυνσης

γραπτή εξέταση στα ΦΥΣΙΚΗ Γ' κατεύθυνσης ΦΡΟΝΤΙΣΤΗΡΙΑ δυδικό η εξετστική περίοδος πό 9//0 έως 09/0/ γρπτή εξέτση στ ΦΥΣΙΚΗ Γ' κτεύθυνσης Τάξη: Γ Λυκείου Τμήμ: Βθμός: Ημερομηνί: 8//00 Ύλη: Ονομτεπώνυμο: Κθηγητές: Τλντώσεις - Κύμτ Αθνσιάδης Φοίβος,

Διαβάστε περισσότερα

4.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ

4.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ - ΑΣΚΗΣΕΙΣ. ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν κάνουμε την μελέτη ή την γρφική πράστση μις συνάρτησης ΜΕΘΟΔΟΛΟΓΙΑ Ότν μς ζητούν κάνουμε την γρφική πράστση

Διαβάστε περισσότερα

L 2 z. 2mR 2 sin 2 mgr cos θ. 0 π/3 π/2 π L z =0.1 L z = L z =3/ 8 L z = 3-1. V eff (θ) =L z. 2 θ)-cosθ. 2 /(2sin.

L 2 z. 2mR 2 sin 2 mgr cos θ. 0 π/3 π/2 π L z =0.1 L z = L z =3/ 8 L z = 3-1. V eff (θ) =L z. 2 θ)-cosθ. 2 /(2sin. Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 15-16 Ν. Βλαχάκης 1. Σημειακό σώμα μάζας m είναι δεμένο σε αβαρές και μη εκτατό νήμα ακτίνας R και κινείται κάτω από την επίδραση του βάρους του mgẑ και της τάσης

Διαβάστε περισσότερα

f(x) dx ή f(x) dx f(x) dx

f(x) dx ή f(x) dx f(x) dx ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Ορισμός. Αν η f είνι ολοκληρώσιμη στο διάστημ [ a, ) ή στο διάστημ (,], τότε ονομάζουμε γενικευμένο ολοκλήρωμ είδους το ολοκλήρωμ της μορφής f() d ή - f() d Ορισμός. Το σημείο

Διαβάστε περισσότερα

Α ν α λ υ τ ι κ η Γ ε ω μ ε τ ρ ι α. K ω ν ι κ ε ς Τ ο μ ε ς. Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς

Α ν α λ υ τ ι κ η Γ ε ω μ ε τ ρ ι α. K ω ν ι κ ε ς Τ ο μ ε ς. Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α ν λ υ τ ι κ η Γ ε ω μ ε τ ρ ι K ω ν ι κ ε ς Τ ο μ ε ς Ε π ι μ ε λ ε ι : Τ κ η ς Τ σ κ λ κ ο ς Κ ω ν ι κ ε ς Τ ο μ ε ς Κ ω ν ι κ ε ς Τ ο μ ε ς Κ ω ν ι κ ε ς Τ ο μ ε ς Κ υ κ λ ο ς Π ρ β ο λ η Ε λ λ ε ι

Διαβάστε περισσότερα

114 ασκήσεις ένα ερώτημα - σε όλη την ύλη. x και g x ln 1 2x ln x. ισχύει η σχέση: είναι περιττή και ισχύει ότι. f x x 2 2x, για κάθε x

114 ασκήσεις ένα ερώτημα - σε όλη την ύλη. x και g x ln 1 2x ln x. ισχύει η σχέση: είναι περιττή και ισχύει ότι. f x x 2 2x, για κάθε x Ν εξετάσετε ν είνι ίσες οι συνρτήσεις f() N ποδείξετε ότι f g, ότν γι κάθε Η συνάρτηση f : f,. 4 σκήσεις έν ερώτημ - σε όλη την ύλη ln κι g ln ln ισχύει η σχέση: είνι περιττή κι ισχύει ότι 4 Ν οριστεί

Διαβάστε περισσότερα

O y. (t) x = 2 cos t. ax2 + bx + c b 2ax b + arcsin. a 2( a) mk.

O y. (t) x = 2 cos t. ax2 + bx + c b 2ax b + arcsin. a 2( a) mk. Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ Τσίγκανου & Ν Βλαχάκη, 3 Ιανουαρίου 018 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία ( = bonus ερωτήματα) Ονοματεπώνυμο:,

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ Σγγρφή Επιμέλει: Πνγιώτης Φ. Μοίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.pmoiras.weebly.om ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ

Διαβάστε περισσότερα

η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1.

η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1. Εκθετική συνάρτηση Αν θετικός πργμτικός ριθμός, σε κάθε ντιστοιχεί η δύνμη. Έτσι ορίζετι η συνάρτηση : f : με f, 0 η οποί ονομάζετι εκθετική συνάρτηση με βάση. Αν, τότε έχουμε τη στθερή συνάρτηση f. Ας

Διαβάστε περισσότερα

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΤΜΗΜ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΘΗΗΤΗΣ ΚΩΣΤΣ ΕΛΕΝΤΖΣ ΣΧΕΤΙΚ ΜΕ ΤΙΣ ΚΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΙ Τ ΠΟΤΕΛΕΣΜΤ ΥΠΟΚΤΣΤΣΗΣ ΚΙ ΕΙΣΟ ΗΜΤΟΣ ΠΕΡΙΠΤΩΣΗ η: Συνρτήσεις ζήτησης κτά arshall Υπόθεση: Το χρηµτικό

Διαβάστε περισσότερα

6 η Εργασία. θ(t) = γt 2 - βt 3

6 η Εργασία. θ(t) = γt 2 - βt 3 1 6 η Εργσί 1) Έν τύµπνο σε µι εκτυπωτική µηχνή στρέφετι κτά γωνί θ(t), που δίνετι πό τη σχέση: θ(t) = γt - βt 3 όπου γ =,5 rad/s κι β = 0,4 rad/s 3. ) Υπολογίστε τη γωνική τχύτητ κι την γωνική επιτάχυνση

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ σε κάθε ριθµό το γράµµ που ντιστοιχεί

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ -8 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑ Αν η συνάρτηση f είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της, ν γρφεί η εξίσωση της εφπτομένης της γρφικής πράστσης της f στο σημείο Α(,f( ))

Διαβάστε περισσότερα

sin x F(x) x 2 3 x παραγουσών προσθέτοντας σταθερές. Το καλούμε αόριστο ολοκλήρωμα της f(x) και το παριστάνουμε με: f(x)dx

sin x F(x) x 2 3 x παραγουσών προσθέτοντας σταθερές. Το καλούμε αόριστο ολοκλήρωμα της f(x) και το παριστάνουμε με: f(x)dx I. ΟΛΟΚΛΗΡΩΜΑ.Ορισμένο ολοκλήρωμ.πράγουσ.θεμελιώδες Θεώρημ.Βσικά ολοκληρώμτ 5.Γρμμικότητ 6.Ολοκλήρωση με λλγή μετλητής ή με ντικτάστση 7.Ολοκλήρωση κτά μέρη 8.Ολοκληρώμτ ρητών 9.Ολοκληρώμτ τριγωνομετρικών.γενικευμένο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Η ΕΛΛΕΙΨΗ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Η ΕΛΛΕΙΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Η ΕΛΛΕΙΨΗ ΟΡΙΣΜΟΣ: Έστω Ε κι Ε δύο σημεί του επιπέδου. Έλλειψη με εστίες τ σημεί Ε κι Ε λέγετι ο γεωμετρικός τόπος των σημείων του επιπέδου των οποίων το άθροισμ των ποστάσεων

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας Μθηµτικά Κτεύθυνσης Γ Λυκείου Θέµτ Θεωρίς ΑΠΟΔΕΙΞΕΙΣ. N ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων κι - είνι συµµετρικές ως προς την ευθεί y που διχοτοµεί τις γωνίες Oy κι Oy Aς πάρουµε µι

Διαβάστε περισσότερα

ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Α. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Α. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΘΕΩΡΙΣ ΣΚΗΣΗ Ο πρκάτω πίνκς περιέχει τ πρόσηµ των λγεβρικών τιµών της τχύτητς κι της επιτάχνσης. Σµπληρώστε τον πρκάτω πίνκ. >, > >, <

Διαβάστε περισσότερα

Α) Να επιλέξετε την σωστή απάντηση. Αν η επίδραση του αέρα είναι αμελητέα τότε το βάρος Β του σώματος θα έχει μέτρο: F α) F β) 3F γ) 3

Α) Να επιλέξετε την σωστή απάντηση. Αν η επίδραση του αέρα είναι αμελητέα τότε το βάρος Β του σώματος θα έχει μέτρο: F α) F β) 3F γ) 3 ΑΠΑΝΤΗΣΕΙΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ο ΚΕΦΑΛΑΙΟ ο ΘΕΜΑ 376/Β. Σε έν σώμ μάζς m που ρχικά ηρεμεί σε οριζόντιο επίπεδο σκούμε κτκόρυφη στθερή δύνμη μέτρου F, οπότε το σώμ κινείτι κτκόρυφ προς τ πάνω με

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΘΕΩΡΙΑ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΘΕΩΡΙΑ ΚΩΝΙΚΕΣ ΤΜΕΣ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Ποι είνι η εξίσωση του κύκλου με κέντρο το (0,0); ρ (0,0) M(,) C Έστω έν σύστημ συντετγμένων στο επίπεδο κι C ο κύκλος με κέντρο το σημείο (0,0) κι κτίν ρ. Γνωρίζουμε πό

Διαβάστε περισσότερα

Τάξη Β Θετική και Τεχνολογική Κατεύθυνση Ερωτήσεις Θεωρίας και απαντήσεις από το σχολικό βιβλίο Καθηγητής: Ν.Σ. Μαυρογιάννης

Τάξη Β Θετική και Τεχνολογική Κατεύθυνση Ερωτήσεις Θεωρίας και απαντήσεις από το σχολικό βιβλίο Καθηγητής: Ν.Σ. Μαυρογιάννης Τάξη Β Θετική κι Τεχνολογική Κτεύθυνση Ερωτήσεις Θεωρίς κι πντήσεις πό το σχολικό ιλίο Κθηγητής: ΝΣ Μυρογιάννης Πότε δύο µη µηδενικά δινύσµτ AB κι Γ λέγοντι πράλληλ ή συγγρµµικά; Απάντηση: Ότν έχουν τον

Διαβάστε περισσότερα

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι Έςτω :RR, ςυνεχήσ ςυνάρτηςη κι,,cr Αποδείξτε ότι ) d d β) d d γ) d c c d c c δ) d c c c d ε) d στ) d Απάντηση:, εάν η είνι περιττή d, εάν η είνι άρτι Πρόκειτι γι πολύ βσική άσκηση, που είνι εφρμογή της

Διαβάστε περισσότερα

Η έννοια του διανύσματος

Η έννοια του διανύσματος Η έννοι του δινύσμτος Από τη γεωμετρί είμστε εξοικειωμένοι με την έννοι του ευθυγράμμου τμήμτος: δύο διφορετικά σημεί Α κι Β μις ευθείς (ε), ορίζουν το ευθύγρμμο τμήμ ΑΒ Έν ευθύγρμμο τμήμ λέγετι προσντολισμένο,

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ 1

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ 1 Υλικό Φσικής-Χηµείς ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΙ ΣΩΣΤΟΥ ΛΘΟΥΣ ΜΕ ΙΤΙΟΛΟΓΗΣΗ ) Στην κάτω άκρη ενός ιδνικού τήριο είνι δεµένο έν σώµ πο έχει µάζ m m κι ισορροπεί. Στην κάτω άκρη ενός άλλο οµοίο τήριο είνι

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 9 Έλλειψη Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισµός Έλλειψη ονοµάζετι ο γεωµετρικός τόπος των σηµείων του επιπέδου, των οποίων το άθροισµ των ποστάσεων πό δύο στθερά σηµεί Ε κι Ε είνι στθερό κι µεγλύτερο

Διαβάστε περισσότερα

γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ η εξετστική ερίοδος ό 8// έως 08/0/ γρτή εξέτση στο μάθημ ΦΥΣΙΚΗ ΚΤΥΘΥΝΣΗΣ Γ ΛΥΚΙΟΥ Τάξη: Γ Λυκείου Τμήμ: Βθμός: Ονομτεώνυμο: Κθηγητές: ΤΡΙΔΗΣ ΓΙΩΡΓΟΣ ΘΜ ο Στις ρκάτω ερωτήσεις ν γράψετε στο τετράδιό σς

Διαβάστε περισσότερα

* 4. Οµογενές στερεό σώµ στρέφετι γύρω πό στθερό άξον, υπό την επίδρση στθερής ροπής τ. Συνεπώς όλ τ υλικά σηµεί που το ποτελούν. έχουν την ίδι επιτρό

* 4. Οµογενές στερεό σώµ στρέφετι γύρω πό στθερό άξον, υπό την επίδρση στθερής ροπής τ. Συνεπώς όλ τ υλικά σηµεί που το ποτελούν. έχουν την ίδι επιτρό *! " # $ # # " % $ " " % $ " ( # " ) % $ THΛ: 270727 222594 THΛ: 919113 949422 " % +, Α. Γι τις πρκάτω προτάσεις 1-4 ν γράψετε το γράµµ, β, γ ή δ, που ντιστοιχεί στην σωστή πάντηση 1. Αν στο διπλνό κύκλωµ

Διαβάστε περισσότερα

7. Κωνικές τομές Τύποι - Βσικές έννοιες ΚΩΝΙΚΕΣ ΤΟΜΕΣ: Τύποι - Βσικές έννοιες Α. ΚΥΚΛΟΣ Εξίσωση κύκλου με κέντρο Ο( 0, 0 ) κι κτίν ρ : + =ρ Εξίσωση εφ

7. Κωνικές τομές Τύποι - Βσικές έννοιες ΚΩΝΙΚΕΣ ΤΟΜΕΣ: Τύποι - Βσικές έννοιες Α. ΚΥΚΛΟΣ Εξίσωση κύκλου με κέντρο Ο( 0, 0 ) κι κτίν ρ : + =ρ Εξίσωση εφ Ο μθητής που έχει μελετήσει τo κεφάλιο των κονικών τομών θ πρέπει ν είνι σε θέση: Ν προσδιορίζει την εξίσωση του κύκλου με κέντρο την ρχή των ξόνων. Με τη μέθοδο της συμπλήρωσης τετργώνου υπολογίζοντι

Διαβάστε περισσότερα

Θέματα Εξετάσεων Φεβρουαρίου 2011:

Θέματα Εξετάσεων Φεβρουαρίου 2011: ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ Θέμτ Εξετάσεων Φεβρουρίου : ΘΕΜΑ μονάδες Πρέπει με κυβικές b-splnes ν πρεμβάλετε, κτά σειρά, τ εξής σημεί:,,,,,,,8, 7, κι,. Ας είνι

Διαβάστε περισσότερα

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto. 1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 19 ΝΟΕΜΒΡΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 19 ΝΟΕΜΒΡΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4 ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 19 ΝΟΕΜΒΡΙΟΥ 017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4 ΘΕΜΑ A Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις

Διαβάστε περισσότερα

dv 2 dx v2 m z Β Ο Γ

dv 2 dx v2 m z Β Ο Γ Μηχανική Ι Εργασία #2 Χειμερινό εξάμηνο 218-219 Ν Βλαχάκης 1 Στην άσκηση 4 της εργασίας #1 αρχικά για t = είναι φ = και η ταχύτητα του σώματος είναι v με φορά κάθετη στο νήμα ώστε αυτό να τυλίγεται στον

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ Α) Προβλήμτ ευθύγρμμης ομλά επιτχυνόμενης κίνησης. ) Απλής εφρμογής τύπων Ακολουθούμε τ εξής βήμτ: i) Συμβολίζουμε τ δεδομέν κι ζητούμεν με τ ντίστοιχ σύμβολ που θ χρησιμοποιούμε.

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

Θεωρήματα, Προτάσεις, Εφαρμογές

Θεωρήματα, Προτάσεις, Εφαρμογές Θεωρήμτ, Προτάσεις, Εφρμογές Μιγδικοί Ιδιότητες συζυγών: Αν z i κι z γ δi είνι δυο μιγδικοί ριθμοί, τότε: Μέτρο: z z z z z z z z 3 z z z z 4 z z z z Αν z, z είνι μιγδικοί ριθμοί, τότε z z z z z z z z 3

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999 Θέµτ Μθηµτικών Θετικής Κτεύθυνσης Β Λυκείου 999 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµ ο Α. Έστω a, ) κι, ) δύο δινύσµτ του κρτεσινού επιπέδου Ο. ) Ν εκφράσετε χωρίς πόδειξη) το εσωτερικό γινόµενο των δινυσµάτων a κι συνρτήσει

Διαβάστε περισσότερα

) z ) r 3. sin cos θ,

) z ) r 3. sin cos θ, Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 4-5 Ν. Βλαχάκης. Σώμα μάζας m κινείται στο πεδίο δύναμης της πρώτης άσκησης της τέταρτης εργασίας με λ, αλλά επιπλέον είναι υποχρεωμένο να κινείται μόνο στην ευθεία

Διαβάστε περισσότερα

(iii) Ο συντελεστής διεύθυνσης λ κάθε ευθείας κάθετης προς την ΓΔ έχει με. τον συντελεστή διεύθυνσης της ΓΔ γινόμενο ίσο με -1. Αρα θα είναι.

(iii) Ο συντελεστής διεύθυνσης λ κάθε ευθείας κάθετης προς την ΓΔ έχει με. τον συντελεστή διεύθυνσης της ΓΔ γινόμενο ίσο με -1. Αρα θα είναι. ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ Α ΟΜΑΔΑΣ (i Ο συντεεστής διεύθυνσης της ευθείς ΑΒ είνι: 6 ( (ii Ο συντεεστής διεύθυνσης της ευθείς ΓΔ είνι: ( (iii Ο συντεεστής διεύθυνσης κάθε ευθείς κάθετης προς την ΓΔ έχει

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ Ι. Σε κθεμιά πό τις πρκάτω περιπτώσεις ν κυκλώσετε το γράμμ Α, ν ο ισχυρισμός είνι ληθής κι το γράμμ Ψ, ν ο ισχυρισμός είνι ψευδής δικιολογώντς συγχρόνως την

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Η συνάρτηση f() =, 0 Υπερβολή Δύο ποσά λέγοντι ντιστρόφως νάλογ, εάν μετβάλλοντι με τέτοιο τρόπο, που ότν οι τιμές του ενός πολλπλσιάζοντι με ένν ριθμό, τότε κι οι ντίστοιχες τιμές του άλλου ν διιρούντι

Διαβάστε περισσότερα

12 η Εβδομάδα Ισορροπία Στερεών Σωμάτων. Ισορροπία στερεών σωμάτων

12 η Εβδομάδα Ισορροπία Στερεών Σωμάτων. Ισορροπία στερεών σωμάτων 1 η Εβδομάδ Ισορροπί Στερεών Σωμάτων Ισορροπί στερεών σωμάτων Γι ν ισορροπεί έν στερεό σώμ πρέπει κι η συνιστμένη όλων των δυνάμεων που σκούντι πάνω του ν είνι ίση με μηδέν κι η συνιστμένη όλων των ροπών

Διαβάστε περισσότερα

2 m g ηµφ = m Β. 2 h. t t. s Β = 1 2 (1) R (3) (4) 2 h cm. s 1. 2mg. A cm. A cm

2 m g ηµφ = m Β. 2 h. t t. s Β = 1 2 (1) R (3) (4) 2 h cm. s 1. 2mg. A cm. A cm ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τετάρτη 9 Απριλίου 05 ΘΕΜΑ ύο κύλινδροι Α κι, που έχουν ντίστοιχ µάζες m m κι m B m κι κτίνες κι B, ήνοντι τυτόχρον ελεύθεροι πό το ίδιο ύψος πλάιου επιπέδου χωρίς ρχική τχύτητ.

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ Συγγρφή Επιμέλει: Πνγιώτης Φ. Μοίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ.

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις) ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρ Ιουνίου 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (Ενδεικτικές Απντήσεις) ΘΕΜΑ Α Α. () Ορισμός σχολικού βιβλίου σελ.5 (β) (i) Μι συνάρτηση

Διαβάστε περισσότερα

(http://www.redbullstratos.com). Barbero 2013, European Journal of Physics, 34, df (z) dz

(http://www.redbullstratos.com). Barbero 2013, European Journal of Physics, 34, df (z) dz Ονοματεπώνυμο: Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, 7 Φεβρουαρίου 5 Διάρκεια εξέτασης ώρες, Καλή επιτυχία, ΑΜ: Να ληφθεί

Διαβάστε περισσότερα

Α2. Πότε μία συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα του πεδίου ορισμού της; Μονάδες 3

Α2. Πότε μία συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα του πεδίου ορισμού της; Μονάδες 3 Βθμός: /25 Τεστ Μθημτικών Εξετζόμενος-η: Προσντολισμού, Γ Λυκείου Θεωρί 1 Κθηγητής: Ιορδάνης Χτζηνικολάου Συνρτήσεις Θέμ Α Α1. Ν ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων f κι f 1 είνι συμμετρικές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ o ΕΚΦΩΝΗΣΕΙΣ A Έστω µι συνεχής συνάρτηση σ' έν διάστηµ [, β] Αν G είνι µι πράγουσ της στο [, β], τότε ν δείξετε ότι β d Gβ G

Διαβάστε περισσότερα

Γενίκευση Πυθαγόρειου ϑεωρήµατος

Γενίκευση Πυθαγόρειου ϑεωρήµατος Γενίκευση Πυθγόρειου ϑεωρήµτος Λυγάτσικς Ζήνων Πρότυπο Πειρµτικό Γ.Ε.Λ. Βρβκείου Σχολής 11 εκεµβρίου 01 Εισγωγή ίνουµε δύο σκήσεις που έχουν σν φετηρί το ϑεώρηµ του συνηµιτόνου. Αρχίζουµε µε έν γνωστό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Β ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ 0 ΜΑΘΗΜΑΤΙΚΑ κτεύθυνσης Β ΛΥΚΕΙΟΥ Συνοπτικη θεωρι με ποδειξεις Λυμεν θεμτ γι εξετάσεις Θέμτ πό εξετάσεις Βγγέλης Α Νικολκάκης Μθημτικός ΠΕΡΙΕΧΟΜΕΝΑ ENOTHTA ΘΕΜΑ ΣΕΛΙΔΕΣ ΤΥΠΟΛΟΓΙΑ-ΑΠΟΔΕΙΞΕΙΣ-ΕΡΩΤΗΣΕΙΣ

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΓΩΝΙΣΜ ΕΚΠ. ΕΤΟΥΣ 03-04 ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡ: (ΠΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙ: 04/0/04 ΘΕΜ Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτσεις -4 κι δίπλ το γράμμ

Διαβάστε περισσότερα

µε Horner 3 + x 2 = 0 (x 1)(x

µε Horner 3 + x 2 = 0 (x 1)(x 998 ΘΕΜΑΤΑ. Η συνάρτηση f: ικνοποιεί τη σχέση f(f()) +f ) Ν ποδείξετε ότι η f είνι «έν προς έν». β) Ν λύσετε την εξίσωση f( 3 + ) f(4 ),. 3 () + 3,. ) Έστω, µε f( ) f( ). Τότε f(f( )) f(f( )) κι f 3 (

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 23

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 23 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Αν η συνάρτηση f είνι συνεχής στο, πργωγίσιμη στο κι γι κάθε ισχύει f f ( ) d = e e e Α) Ν ποδείξετε ότι: f = e i) η f είνι πργωγίσιμη στο κι ισχύει ii) f() = e Β)

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ Ο.Π Β Λ Γ Λ

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ Ο.Π Β Λ Γ Λ ΑΠΑΝΤΗΕΙ ΦΥΙΚΗ Ο.Π Β Λ Γ Λ 3/0/09 ΓΙΑΝΝΗ ΤΖΑΓΚΑΡΑΚΗ ΘΕΜΑ Α Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτσεις Α-Α4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστ πάντηση. Α. ε ποιο πό

Διαβάστε περισσότερα

γ /ω=0.2 γ /ω=1 γ /ω= (ω /g) v. (ω 2 /g)(x-l 0 ) ωt. 2m.

γ /ω=0.2 γ /ω=1 γ /ω= (ω /g) v. (ω 2 /g)(x-l 0 ) ωt. 2m. Μηχανική Ι Εργασία #7 Χειμερινό εξάμηνο 015-016 Ν. Βλαχάκης 1. Σώμα μάζας m και φορτίου q κινείται σε κατακόρυφο άξονα x, δεμένο σε ελατήριο σταθεράς k = mω του οποίου το άλλο άκρο είναι σταθερό. Το σύστημα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Ν ρεθεί η εξίσωση του κύκλου σε κθεµιά πό τις πρκάτω περιπτώσεις: ) έχει κέντρο την ρχή των ξόνων κι κτίν ) έχει κέντρο το σηµείο (3, - 1) κι κτίν 5 γ) έχει κέντρο το σηµείο (-, 1) κι διέρχετι πό το

Διαβάστε περισσότερα

mv V (x) = E με V (x) = mb3 ω 2

mv V (x) = E με V (x) = mb3 ω 2 Ονοματεπώνυμο: Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ Τσίγκανου & Ν Βλαχάκη, 6 Σεπτεμβρίου 6 Διάρκεια εξέτασης ώρες, Καλή επιτυχία ( = bonus ερωτήματα),

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 76 Κεφάλιο 3ο: ΚΩΝΙΚΕΣ ΤΟΜΕΣ Απντήσεις στις ερωτήσεις του τύπου Σωστό - Λάθος. Σ 0. Σ 39. Λ 58. Σ. Σ. Λ 40. Σ 59. Σ 3. Σ. Σ 4. Σ 60. Λ 4. Λ 3. Λ 4. Σ 6. Λ 5. Σ 4.

Διαβάστε περισσότερα

Θ Ε Ω Ρ Ι Α. Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ της Β τάξης

Θ Ε Ω Ρ Ι Α. Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ της Β τάξης 1 Θ Ε Ω Ρ Ι Α Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ της Β τάξης Ο Ρ Ι Σ Μ Ο Ι Τ Υ Π Ο Ι Ι Ι Ο Τ Η Τ Ε Σ Ι Α Ν Υ Σ Μ Α Τ Α Μηδενικό διάνυσµ: AA= 0 µε οποιδήποτε κτεύθυνση Μονδιίο διάνυσµ: AB = 1 Αντίθετ δινύσµτ: ντίθετη

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 28 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΜΕΡΟΣ Α. Ν βρείτε το ολοκλήρωμ: (8x 3 ημx 5 + 7) dx ex (8x 3 ημx 5 e x + 7) dx = (8x3 ημx 5e x + 7)dx =

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α)

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ Γι μθητές Β & Γ Λυκείου ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ ΤΗΣ ΠΑΡΑΓΩΓΟΥ Πολλές συνρτήσεις μπορούν ν πρστθούν γρφικά, χωρίς τη

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 0 Υπερολή Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Oρισµός Υπερολή ονοµάζετι ο γεωµετρικός τόπος των σηµείων του επιπέδου, των οποίων η διφορά των ποστάσεων πό δύο στθερά σηµεί Ε κι Ε είνι στθερή κι µικρότερη πο

Διαβάστε περισσότερα

Ορισμός: Άρα ένα σημείο Μ του επιπέδου είναι σημείο της έλλειψης, αν και μόνο αν 2. Εξίσωση έλλειψης με Εστίες στον άξονα χ χ και κέντρο την αρχή Ο

Ορισμός: Άρα ένα σημείο Μ του επιπέδου είναι σημείο της έλλειψης, αν και μόνο αν 2. Εξίσωση έλλειψης με Εστίες στον άξονα χ χ και κέντρο την αρχή Ο Μθημτικά Β Κτ/νσης ΕΛΛΕΙΨΗ Ορισμός: Έλλειψη με εστίες Ε κι Ε λέγετι ο γεωμ τόπος των σημείων του επιπέδου των οποίων το άθροισμ των ποστάσεων πό τ Ε κι Ε είνι στθερό κι μεγλύτερο του ΕΈ Το στθερό υτό άθροισμ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α) Ν ποδείξετε ότι ν µι συνάρτηση f

Διαβάστε περισσότερα