Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδρολογικών γεγονότων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδρολογικών γεγονότων"

Transcript

1 Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων ηµήτρης Κουτσογιάννης Τοµέας Υδατικών Πόρων Εθνικό Μετσόβιο Πουτεχνείο 1. Ακραία υδροογικά περιστατικά Καταιγίδες, πηµµύρες και ξηρασίες: Ορισµοί Πηµµύρα: η υπερχείιση νερού σε περιοχές της ξηράς που συνήθως δεν κατακύζονται (U.S. Committee o Opportuities i the Hydrological Scieces, 1992 σ. 23). Καταιγίδα: Ισχυρή βροχόπτωση που (συνήθως) προκαεί πηµµύρα Ξηρασία: υπάρχουν διάφοροι ορισµοί (Rasmusso et al., 1993) Μετεωροογική ξηρασία: Η περίοδος (γενικά της τάξης µεγέθους µηνών ή ετών) κατά τη διάρκεια της οποίας η φυσική παροχή υγρασίας σε ένα δεδοµένο τόπο σωρευτικά υποείπεται της αντίστοιχης κιµατικής τιµής. Υδροογική ξηρασία: Η περίοδος κατά την οποία η απορροή είναι µικρότερη της κανονικής εναακτικά: η περίοδος κατά την οποία αδειάζουν οι ταµιευτήρες. Γεωργική ξηρασία: Η περίοδος κατά την οποία η εδαφική υγρασία είναι ανεπαρκής για να ικανοποιήσει τις ανάγκες εξατµοδιαπνοής έτσι ώστε να συντηρήσει την ανάπτυξη των φυτών. Οικονοµική ξηρασία: Όρος που χρησιµοποιείται για να περιγράψει τις οικονοµικές συνιστώσες των ανθρώπινων δραστηριοτήτων που επηρεάζονται από την ξηρασία.. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 1

2 Χαρακτηριστικά µεγέθη και αντιµετώπισή τους Ύψος βροχής καταιγίδας, h (πιθανοτική αντιµετώπιση) Ένταση βροχής καταιγίδας: στιγµιαία, i = dh /dt µέση, i m = h / t (πιθανοτική αντιµετώπιση) ιάρκεια βροχής καταιγίδας, τµηµατική ή οική, d (ειδική πιθανοτική αντιµετώπιση σε συνδυασµό µε το ύψος ή την ένταση όµβριες καµπύες) Παροχή πηµµύρας, Q (συνήθως ως δύο τάξεις µεγέθους µεγαύτερη από τη µέση παροχή πιθανοτική αντιµετώπιση) ιάρκεια πηµµύρας (συνήθως τάξης µεγέθους επτών, ωρών ή ηµερών) και σχήµα πηµµυρογραφήµατος (ειδική αντιµετώπιση συνήθως όχι πιθανοτική) Ύψος βροχής ξηρασίας (αθροιστικό µικρότερο του συνήθους για την ίδια διάρκεια) Παροχή ξηρασίας, Q (συνήθως ως µία τάξη µεγέθους µικρότερη από τη µέση παροχή, ή και µηδενική για χειµάρρους πιθανοτική αντιµετώπιση) ιάρκεια ξηρασίας, b (συνήθως τάξης µεγέθους µηνών ή ετών πιθανοτική αντιµετώπιση). Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 2 2. Υπενθύµιση εννοιών στατιστικής υδροογίας Πιθανότητα, Πυκνότητα πιθανότητας, Περίοδος επαναφοράς ειγµατικός χώρος, Ω: Τυχαία µεταβητή, Χ(ω): Πιθανότητα, P(δ): Συνάρτηση κατανοµής: F X () := P(X ) Πιθανότητα υπέρβασης: Συνάρτηση πυκνότητας πιθανότητας: Περίοδος επαναφοράς µέγιστων τιµών T = Περίοδος επαναφοράς εάχιστων τιµών T = όπου ω = 1 έτος 1 Σύνοο που τα στοιχεία του ω αντιστοιχούν στις δυνατές εκβάσεις ενός πειράµατος ή µιας διεργασίας Απεικόνιση του δειγµατικού χώρου στο R Απεικόνιση µιας οικογένειας Φ υποσυνόων δ του Ω στο διάστηµα [0, 1] F 1X () = P(X > ) = 1 F X () f X () := df X() d 1 ω P(X > ) = 1 ω F 1X () = 1 ω [1 F X ()] 1 ω P(X = ) = 1 ω F X () = 1 ω [1 F 1X ()]. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 3

3 Πιθανοφάνεια - Ροπές Έστω η τυχαία µεταβητή Χ µε συνάρτηση πιθανότητας f X () και συνάρτηση κατανοµής F Χ (). Οι συναρτήσεις f X () και F Χ () εξαρτώνται από m παραµέτρους θ 1, θ 2,, θ m γι αυτό και µπορεί να συµβοίζονται f X (; θ 1,, θ m ) και F Χ (; θ 1,, θ m ), αντίστοιχα. Οι δείκτες Χ για ευκοία παραείπονται. Έστω ακόµη δείγµα τιµών της µεταβητής X, που συµβοίζεται ως ( 1,, ). Ορίζονται τα ακόουθα µεγέθη: Λογαριθµική συνάρτηση πιθανοφάνειας: Ροπή περί την αρχή τάξης r (r = 1, 2, ): Ειδική περίπτωση για r = 1 Μέση τιµή: Κεντρική ροπή τάξης r (r = 1, 2, ): L( 1,, ; θ 1,, θ m ) = l f( i, θ 1,, θ m ) i = 1 m r E[X r ] := r f() d m E[X] := f() d µ r E[(X m) r ] := ( m) r f() d. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 4 Ειδικές περιπτώσεις Ροπές: Ειδικές περιπτώσεις Εκτιµήσεις ιασπορά (r = 2): σ 2 := µ 2 E[(X m) 2 ] σ 2 = m 2 m 2 Τρίτη κεντρική ροπή (r = 3): µ 3 E[(X m) 3 ] µ 3 = m 3 3 m 2 m + 2 m 3 Τέταρτη κεντρική ροπή (r = 4): µ 4 E[(X m X ) 4 ] µ 4 = m 4 4 m 3 m + 6 m 2 m 2 3 m 4 Αδιάστατοι συντεεστές Συντεεστής µεταβητότητας: C v := σ / m Συντεεστής ασυµµετρίας: C s := µ 3 / σ 3 Συντεεστής κύρτωσης C k := µ 4 / σ 4 Εκτίµηση ροπής περί την αρχή από δείγµα (αµερόηπτη): m^ r = 1 r i = 1 i Ειδική περίπτωση ειγµατική µέση τιµή: := m^ = 1 i i = 1 Εκτίµηση κεντρικής ροπής από δείγµα (µεροηπτική): Από τη σχέση κεντρικής ροπής προς ροπή περί την αρχή. Ειδική περίπτωση ειγµατική µέση τιµή: s 2 := µ^2 = 1 Αµερόηπτη δειγµατική διασπορά: s *2 = 1 s2 2 i = 1 i 2. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 5

4 Ροπές και σχήµα κατανοµής Επίδραση της µέσης τιµής (0) (1) µ 4 2 σ 1 1 C s 1 1 C k f X () (1) (0) (α) f X () (1) (0) (β) X Επίδραση της τυπικής απόκισης (0) (1) µ 4 4 σ 1 2 C s 1 1 C k Επίδραση του συντεεστή ασυµµετρίας (0) (1) (2) µ σ C s C k f X () (1) (2) (0) (γ) f X () (1) (δ) (2) (0) Επίδραση του συντεεστή κύρτωσης (0) (1) (2) µ σ C s C k Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 6 3. Πιθανοτικά σταθµισµένες ροπές και L ροπές Ορισµοί Πιθανοτικά σταθµισµένη ροπή (probability-weighted momet) τάξης r (r = 0, 1, 2, ): β r E{X [F(X)] r } := [F()] r 1 f() d = (u) u r du 0 L ροπή τάξης r (r = 0, 1, ): r E{X P * r 1 [F(X)] } := 0 1 (u) P * r 1 (u) du όπου P * (u) το µετατοπισµένο πουώνυµο Legedre βαθµού r, ήτοι r P* (u) := r µε συντεεστές p * := r,k ( 1)r k r r + k k k = ( 1)r k (r + k)! (k!) 2 (r k)! r 1 * Σχέση L ροπών και πιθανοτικά σταθµισµένων ροπών: r = p β r k = 0 r,k r p * k = 0 r,k uk Σηµείωση: Οι πιθανοτικά σταθµισµένες ροπές έχουν εισαχθεί από τους Greewood et al. (1979) και οι L ροπές από τον Hoskig (1990).. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 7

5 Ειδικές περιπτώσεις: r = 1: 1 = β 0 Ειδικές περιπτώσεις Πρακτικό νόηµα 1 = E[X] = m r = 2: 2 = 2 β 1 β 0 2 = 1 2 E[X (1 2) X (2 2) ] r = 3: 3 = 6 β 2 6 β 1 + β 0 3 = 1 3 E[X (1 3) 2X (2 3) + X (3 3) ] r = 4: 4 = 20 β 3 30 β β 1 β 0 4 = 1 4 E[X (1 4) 3X (2 4) + 3 X (3 4) X (4 4) ] όπου X (i ) συµβοίζει την i-στή µεγαύτερη τιµή σε ένα δείγµα µεγέθους. Αδιάστατοι συντεεστές L συντεεστής µεταβητότητας: τ 2 = 2 / 1 L συντεεστής ασυµµετρίας: τ 3 = 3 / 2 L συντεεστής κύρτωσης: τ 4 = 4 / 2. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 8 Εκτιµήσεις των πιθανοτικά σταθµισµένων ροπών Μεροηπτικές εκτιµήσεις Γενικός τύπος: β^r = 1 1 j 0.35 j = 1 r Αµερόηπτες εκτιµήσεις Γενικός τύπος: β^* r = 1 j = 1 j r 1 r (j) r (j) το µέγεθος του δείγµατος και (j) (j = 1,, ) η j-οστή µεγαύτερη τιµή στο δείγµα. Ειδικές περιπτώσεις: Μεροηπτικές εκτιµήσεις j = 1 Αµερόηπτες εκτιµήσεις β^0 = β^ 0= * = 1 (j) j = 1 β^1 = 1 1 j 0.35 (j) β^ 1 * = 1 1 j 1 (j) j = 1 2 j = 1 β^2 = 1 1 j 0.35 (j) β^ 2 * = 1 2 j 1 j = 1 3 j = 1 β^3 = 1 1 j 0.35 (j) β^ 3 * = 1 3 j 1 j = 1 j 1 2 (j) j 1 j (j). Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 9

6 4. Μέθοδοι εκτίµησης παραµέτρων κατανοµής 1. Μέθοδος µέγιστης πιθανοφάνειας: ma L( 1,, ; θ 1,, θ m ) = l f( i, θ 1,, θ m ) i = 1 Ισοδύναµα 1 f( i, θ 1,, θ m ) i = 1 f( i, θ 1,, θ = 0 m ) θ r 2. Μέθοδος ροπών: m r (θ 1,, θ m ) = m^ r( 1,, ) Ισοδύναµα µ r (θ 1,, θ m ) = µ^ r( 1,, ) 3. Μέθοδος L ροπών: r (θ 1,, θ m ) = ^* r( 1,, ) Εναακτικά r (θ 1,, θ m ) = ^ r( 1,, ) Όες οι µέθοδοι καταήγουν σε m εξισώσεις (r = 1,, m) µε αγνώστους τις m παραµέτρους θ 1,, θ m. Ειδικά η αρχική µορφή της µεθόδου µέγιστης πιθανοφάνειας µπορεί να επιυθεί αριθµητικά χωρίς καν να γραφούν οι εξισώσεις.. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων Η γενική κατανοµή ακραίων τιµών (ΓΑΤ) Εισαγωγικές έννοιες Ιστορικά η µεέτη των κατανοµών ακραίων τιµών ξεκινά το 1922 µε τον Bortkiewiez και συνεχίζει µε τους vo Mises, Tippett, Fréchet, Fischer, Gedeko, Elfvig κ.ά., µε κορυφαία τη συµβοή του Gumbel (1958). Το γενικό πρόβηµα που αντιµετωπίζεται είναι η µεέτη της κατανοµής των µεταβητών Χ = ma (Y 1, Y 2,, Y ) ή Χ = mi (Y 1, Y 2,, Y ) για µεγάες τιµές του (θεωρητικά για ), γνωστών ως ασυµπτωτικών κατανοµών ακραίων τιµών. Ο Gumbel (1958) διέκρινε τις ακόουθες τρεις περιπτώσεις ασυµπτωτικών κατανοµών Τύπος κατανοµής Μέγιστες τιµές (Μ) Εάχιστες τιµές (Ε) Ακραίων τιµών 1 (ΑΤ1) Ακραίων τιµών 2 (ΑΤ2) Ακραίων τιµών 3 (ΑΤ3) Η µεταβητή δεν έχει άνω ή κάτω όριο Η µεταβητή δεν µπορεί να γίνει µικρότερη από ένα κάτω όριο Η µεταβητή δεν µπορεί να υπερβεί ένα άνω όριο Η µεταβητή δεν µπορεί να υπερβεί ένα άνω όριο Η µεταβητή δεν µπορεί να γίνει µικρότερη από ένα κάτω όριο Η γενικευµένη κατανοµή ακραίων τιµών (ΓΑΤ) συνδυάζει τις τρεις περιπτώσεις σε µία ενιαία µαθηµατική έκφραση (Prescott ad Walde, 1980).. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 11

7 Τυποόγιο της κατανοµής ΓΑΤ µεγίστων f() = κ ψ 1 / κ 1 Συνάρτηση κατανοµής F() = ep 1 + κ ψ 1 / κ Συνάρτηση ποσοστηµορίου (u) = ψ + κ [( l u) κ 1] Σχέση f X() και F X() f() = 1 + κ F() [ l F()]1 Συνάρτηση πυκνότητας πιθανότητας Τιµές µεταβητής Παράµετροι ep 1 + κ 1 / κ ψ (u = F()) Γενικά: κ κ (ψ 1 / κ) Για κ > 0: (ψ 1 / κ) < (Κατανοµή ΑΤ2-Μ) Για κ < 0: < (ψ 1 / κ) (Κατανοµή ΑΤ3-Μ) ψ: παράµετρος θέσης > 0: παράµετρος κίµακας κ: παράµετρος σχήµατος Μέση τιµή m = ψ + κ [Γ (1 κ) 1] = κ [κ ψ + Γ (1 κ) 1] ιασπορά σ 2 = 2 κ [Γ (1 2 κ) Γ 2 (1 κ)] 3η κεντρική ροπή µ 3 = 3 κ [Γ (1 3 κ) 3 Γ (1 2 κ) Γ (1 κ) + 2Γ 3 (1 κ)] Συντεεστής ασυµµετρίας C s = sg(κ) Γ (1 3 κ) 3 Γ (1 2 κ) Γ (1 κ) + 2 Γ 3 (1 κ) [Γ (1 2 κ) Γ 2 (1 κ)] 3/2. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 12 Ειδική περίπτωση: Η κατανοµή ΑΤ1-Μ (Gumbel µεγίστων) Για κ = 0 δεν ορίζεται η παράσταση 1 + κ ψ 1 / κ. Εφαρµόζοντας τον κανόνα του L Hôpital προκύπτει η ακόουθη κατανοµή, γνωστή ως κατανοµή Gumbel ή ακραίων τιµών τύπου 1 µεγίστων (ΑΤ1-Μ) Συνάρτηση πυκνότητας πιθανότητας f() = 1 ep + ψ ep + ψ Συνάρτηση κατανοµής F() = ep ep + ψ Συνάρτηση ποσοστηµορίου (u) = ψ l (-l u) (u = F()) Σχέση f X() και F X() f() = 1 F() [ l F()] Τιµές µεταβητής < < Παράµετροι ψ: παράµετρος θέσης > 0: παράµετρος κίµακας Μέση τιµή m = (ψ + γ) (γ = = σταθερά Euler) ιασπορά σ 2 = π2 2 6 = η κεντρική ροπή µ 3 = Συντεεστής ασυµµετρίας C s = Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 13

8 Ειδική περίπτωση: Η διπαραµετρική κατανοµή ΑΤ2-Μ Για κ > 0 και ψ = 1 / κ προκύπτει η ειδική περίπτωση της κατανοµής ΑΤ2-Μ µε πεδίο ορισµού το [0, ) Συνάρτηση πυκνότητας πιθανότητας f() = 1 κ 1 / κ 1 ep Συνάρτηση κατανοµής F() = ep κ 1 / κ Συνάρτηση ποσοστηµορίου (u) = κ [( l u) κ ] Σχέση f X() και F X() f() = 1 + κ F() [ l F()]1 κ (u = F()) 1 / κ Τιµές µεταβητής 0 < Παράµετροι > 0: παράµετρος κίµακας κ > 0: παράµετρος σχήµατος Μέση τιµή m = κ Γ (1 κ) ιασπορά σ 2 = 2 κ [Γ (1 2 κ) Γ 2 (1 κ)] 3η κεντρική ροπή µ 3 = 3 κ [Γ (1 3 κ) 3 Γ (1 2 κ) Γ (1 κ) + 2Γ 3 (1 κ)] Συντεεστής µεταβητότητας C v = [Γ (1 2 κ) Γ 2 (1 κ)] 1/2 Γ (1 κ) Συντεεστής ασυµµετρίας C s = Γ (1 3 κ) 3 Γ (1 2 κ) Γ (1 κ) + 2 Γ 3 (1 κ) [Γ (1 2 κ) Γ 2 (1 κ)] 3/2. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 14 fx() Γραφική απεικόνιση της κατανοµής ΓΑΤ µεγίστων: Συνάρτηση πυκνότητας πιθανότητας κ = -0.2, = 0.951, ψ = 1.69 (ΑΤ3-M, < 6.37) κ = 0, = 0.78, ψ = 1.99 (ΑΤ1-M) κ = 0.2, = 0.547, ψ = 2.84 (AT2-M, > -1.18) κ = 0.279, = 0.441, ψ = 3.59 (ΑΤ2-M, > 0) Όες οι κατανοµές αντιστοιχούν σε µέση τιµή 2 και τυπική απόκιση Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 15

9 1 Γραφική απεικόνιση της κατανοµής ΓΑΤ µεγίστων: Συνάρτηση κατανοµής FX() Όες οι κατανοµές αντιστοιχούν σε µέση τιµή 2 και τυπική απόκιση 1 κ = -0.2, = 0.951, ψ = 1.69 (ΑΤ3-M, < 6.37) κ = 0, = 0.78, ψ = 1.99 (ΑΤ1-M) κ = 0.2, = 0.547, ψ = 2.84 (AT2-M, > -1.18) κ = 0.279, = 0.441, ψ = 3.59 (ΑΤ2-M, > 0) Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων Γραφική απεικόνιση της κατανοµής ΓΑΤ µεγίστων: Συνάρτηση κατανοµής σε χαρτί Gumbel µεγίστων Όες οι κατανοµές αντιστοιχούν σε µέση τιµή 2 και τυπική απόκιση κ = -0.2, = 0.951, ψ = 1.69 (ΑΤ3-M, < 6.37) 0 κ = 0, = 0.78, ψ = 1.99 (ΑΤ1-M) κ = 0.2, = 0.547, ψ = 2.84 (AT2-M, > -1.18) κ = 0.279, = 0.441, ψ = 3.59 (ΑΤ2-M, > 0) z = -l(-l F). Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 17

10 Τυποόγιο της κατανοµής ΓΑΤ εαχίστων Συνάρτηση πυκνότητας πιθανότητας Συνάρτηση κατανοµής f() = 1 F() = 1 ep Συνάρτηση ποσοστηµορίου Σχέση f X() και F X() f() = 1 Τιµές µεταβητής Παράµετροι 1 + κ ψ 1 / κ κ ep 1 + κ 1 / κ ψ ψ 1 / κ (u) = ψ + κ { [ l (1 u)]κ 1} [1 F()] { l [1 F()]}1 κ (u = F()) Γενικά: κ κ (ψ 1 / κ) Για κ > 0: (ψ 1 / κ) < (Κατανοµή ΑΤ3-Ε) Για κ < 0: < (ψ 1 / κ) (Κατανοµή ΑΤ2-Ε) ψ: παράµετρος θέσης > 0: παράµετρος κίµακας κ: παράµετρος σχήµατος Μέση τιµή m = ψ + κ [Γ (1 + κ) 1] = κ [κ ψ + Γ (1 + κ) 1] ιασπορά σ 2 = 2 κ [Γ (1 + 2 κ) Γ 2 (1 + κ)] 3η κεντρική ροπή µ 3 = 3 κ [Γ (1 + 3 κ) 3 Γ (1 + 2 κ) Γ (1 + κ) + 2Γ 3 (1 + κ)] Συντεεστής ασυµµετρίας C s = sg(κ) Γ (1 + 3 κ) 3 Γ (1 + 2 κ) Γ (1 + κ) + 2 Γ 3 (1 + κ) [Γ (1 + 2 κ) Γ 2 (1 + κ)] 3/2. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 18 Ειδική περίπτωση: Η κατανοµή ΑΤ1-Ε (Gumbel εαχίστων) Για κ = 0 δεν ορίζεται η παράσταση 1 + κ ψ 1 / κ. Εφαρµόζοντας τον κανόνα του L Hôpital προκύπτει η ακόουθη κατανοµή, γνωστή ως κατανοµή Gumbel ή ακραίων τιµών τύπου 1 εαχίστων (ΑΤ1-Ε) Συνάρτηση πυκνότητας πιθανότητας f() = 1 ep ψ ep ψ Συνάρτηση κατανοµής F() = 1 ep ep ψ Συνάρτηση ποσοστηµορίου (u) = ψ + l [-l (1 u)] (u = F()) Σχέση f X() και F X() f() = 1 [1 F()] { l [1 F()]} Τιµές µεταβητής < < Παράµετροι ψ: παράµετρος θέσης > 0: παράµετρος κίµακας Μέση τιµή m = (ψ γ) (γ = = σταθερά Euler) ιασπορά σ 2 = π2 2 6 = η κεντρική ροπή µ 3 = Συντεεστής ασυµµετρίας C s = Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 19

11 Ειδική περίπτωση: Η διπαραµετρική κατανοµή ΑΤ3-Ε (Weibull) Για κ > 0 και ψ = 1 / κ προκύπτει η ειδική περίπτωση της κατανοµής ΑΤ3-E µε πεδίο ορισµού το [0, ), γνωστή και ως κατανοµή Weibull. Συνάρτηση πυκνότητας πιθανότητας f() = 1 κ 1 / κ 1 ep Συνάρτηση κατανοµής F() = 1 ep κ 1 / κ Συνάρτηση ποσοστηµορίου (u) = κ { [ l (1 u)] κ } Σχέση f X() και F X() f() = 1 κ 1 / κ (u = F()) κ [1 F()] { l [1 F()]}1 Τιµές µεταβητής 0 < Παράµετροι > 0: παράµετρος κίµακας κ > 0: παράµετρος σχήµατος Μέση τιµή m = κ Γ (1 + κ) ιασπορά σ 2 = 2 κ [Γ (1 + 2 κ) Γ 2 (1 + κ)] 3η κεντρική ροπή µ 3 = 3 κ [Γ (1 + 3 κ) 3 Γ (1 + 2 κ) Γ (1 + κ) + 2Γ 3 (1 + κ)] Συντεεστής µεταβητότητας C v = [Γ (1 + 2 κ) Γ 2 (1 + κ)] 1/2 Γ (1 + κ) Συντεεστής ασυµµετρίας C s = Γ (1 + 3 κ) 3 Γ (1 + 2 κ) Γ (1 + κ) + 2 Γ 3 (1 + κ) [Γ (1 + 2 κ) Γ 2 (1 + κ)] 3/2. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 20 fx() Γραφική απεικόνιση της κατανοµής ΓΑΤ εαχίστων: Συνάρτηση πυκνότητας πιθανότητας κ = -0.2, = 0.547, ψ = 4.48 (ΑΤ2-E, < 5.18) κ = 0, = 0.78, ψ = 3.14 (ΑΤ1-E) κ = 0.2, = 0.951, ψ = 2.51 (AT3-E, > -2.37) κ = 0.476, = 1.075, ψ = 2.1 (ΑΤ3-E, > 0) Όες οι κατανοµές αντιστοιχούν σε µέση τιµή 2 και τυπική απόκιση Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 21

12 FX() Γραφική απεικόνιση της κατανοµής ΓΑΤ εαχίστων: Συνάρτηση κατανοµής κ = -0.2, = 0.547, ψ = 4.48 (ΑΤ2-E, < 5.18) κ = 0, = 0.78, ψ = 3.14 (ΑΤ1-E) κ = 0.2, = 0.951, ψ = 2.51 (AT3-E, > -2.37) κ = 0.476, = 1.075, ψ = 2.1 (ΑΤ3-E, > 0) Όες οι κατανοµές αντιστοιχούν σε µέση τιµή 2 και τυπική απόκιση Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων Γραφική απεικόνιση της κατανοµής ΓΑΤ εαχίστων: Συνάρτηση κατανοµής σε χαρτί Gumbel εαχίστων Όες οι κατανοµές αντιστοιχούν σε µέση τιµή 2 και τυπική απόκιση κ = -0.2, = 0.547, ψ = 4.48 (ΑΤ2-E, < 5.18) κ = 0, = 0.78, ψ = 3.14 (ΑΤ1-E) κ = 0.2, = 0.951, ψ = 2.51 (AT3-E, > -2.37) κ = 0.476, = 1.075, ψ = 2.1 (ΑΤ3-E, > 0) z = l[-l (1 - F)]. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 23

13 Μέση τιµή (1η L ροπή) 2η L ροπή L συντεεστής ασυµµετρίας L συντεεστής κύρτωσης Μέση τιµή (1η L ροπή) 2η L ροπή L συντεεστής ασυµµετρίας L συντεεστές ασυµµετρίας & κύρτωσης L ροπές κατανοµών ΓΑΤ µεγίστων και εαχίστων ΓΑΤ-Μ ΑΤ2-Μ (2 παραµέτρων) ΑΤ1-Μ 1 = m = 1 = m = κ [κ ψ 1 + Γ κ Γ 1 = m = (ψ + γ) (1 κ) (γ = ) (1 κ)] 2 = κ Γ (1 κ) (2 κ 1) 2 = l 2 τ 3 = 2 3κ 1 2 κ 1 3 τ 3 = 2 l 3 l 2 3 = τ 4 = 5(4κ ) 10(3 κ ) + 6(2 κ ) 1 2 κ 1 5 l 4 10 l l 2 τ 4 = l 2 = ΓΑΤ-Ε ΑΤ3-Ε (2 παραµέτρων) ΑΤ1-Ε 1 = m = 1 = m = κ [κ ψ 1 + Γ κ Γ 1 = m = (ψ γ) (1 + κ) (γ = ) (1 + κ)] 2 = κ Γ (1 + κ) (1 2 κ 2 = l 2 ) τ 3 = κ 1 2 κ τ 3 = 3 2 l 3 l 2 = τ 4 = 1 6(2 κ ) + 10(3 κ ) 5(4 κ 5 l 4 10 l l 2 ) τ 4 = 1 2 κ l 2 = Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων Εκτίµηση παραµέτρων της κατανοµής ΓΑΤ Εκτίµηση µε τη µέθοδο των ροπών: κατανοµή µεγίστων ΓΑΤ-Μ (Γενική περίπτωση τρεις άγνωστες παράµετροι) sg(κ) Γ(1 3 κ) 3 Γ(1 2 κ) Γ(1 κ) + 2 Γ 3 (1 κ) [Γ(1 2 κ) Γ 2 (1 κ)] 3/2 = C s Προσεγγιστική ύση (ακρίβεια ±0.01 για 1 < κ < 1/3 ή 2 < C s < ): κ = C s + (0.91 C s) κ σ = Γ(1 2 κ) Γ 2 (1 κ) ψ = m Γ(1 κ) 1 κ ΑΤ1-Μ (δύο άγνωστες παράµετροι) = 0.78 σ ψ = m ΑΤ2-Μ (δύο άγνωστες παράµετροι) Γ(1 2 κ) Γ 2 (1 κ) = C2 v + 1 Προσεγγιστική ύση (ακρίβεια ±0.004 για 0 < κ < 0.5 ή 0 < C V < ): κ = ep{2.59 [l(c 2 v + 1)] } +1 κ = m Γ(1 κ) Στη θέση των m, σ, C v και C s χρησιµοποιούνται οι εκτιµήσεις, s, C^ v και C^ s, αντίστοιχα.. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 25

14 Εκτίµηση µε τη µέθοδο των ροπών: κατανοµή εαχίστων ΓΑΤ-Ε (Γενική περίπτωση τρεις άγνωστες παράµετροι) sg(κ) Γ(1 + 3 κ) 3 Γ(1 + 2 κ) Γ(1 + κ) + 2 Γ 3 (1 + κ) [Γ(1 + 2 κ) Γ 2 3/2 (1 + κ)] = Cs Προσεγγιστική ύση (ακρίβεια ±0.01 για 1/3 < κ < 3 ή < C s < 20): 1 κ = C s (0.9 C s ) κ σ = Γ(1 + 2 κ) Γ 2 (1 + κ) ψ = m 1 Γ(1 + κ) + κ ΑΤ1-Ε (δύο άγνωστες παράµετροι) = 0.78 σ ψ = m ΑΤ3-Ε (δύο άγνωστες παράµετροι) Γ(1 + 2 κ) Γ 2 (1 + κ) = C2 v + 1 Προσεγγιστική ύση (ακρίβεια ±0.01 για 0 < κ < 3.2 ή 0 < C V < 5): κ = 2.56 {ep{0.41 [l(c 2 v + 1)] 0.58 } 1} κ = m Γ(1 + κ) Στη θέση των m, σ, C v και C s χρησιµοποιούνται οι εκτιµήσεις, s, C^ v και C^ s, αντίστοιχα.. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 26 Παρά- µετρος ΓΑΤ-Μ ΑΤ1-Μ ΑΤ2-Μ (2 παραµέτρων) κ κ = 7.8 c 1.43 c 2 ψ όπου c := l 2 l τ 3 κ 2 = Γ(1 κ) (2 κ 1) ψ = m Γ(1 κ) 1 κ (κ = 0) = 2 l 2 Εκτίµηση µε τη µέθοδο των L ροπών ψ = m κ = l(1 + τ 2) l 2 κ = m Γ(1 κ) (ψ = 1/κ) Παρά- µετρος ΓΑΤ-Ε ΑΤ1-Ε ΑΤ3-Ε (2 παραµέτρων) κ κ = 7.8 c c 2 2 όπου c := l 2 3 τ 3 l 3 κ 2 = Γ(1 + κ) (1 2 κ ) ψ ψ = m 1 Γ(1 + κ) + κ (κ = 0) = 2 l 2 ψ = m κ = l(1 τ 2) l 2 κ = m Γ(1 + κ) (ψ = 1/κ) Στη θέση των m, 2, και τ 3 χρησιµοποιούνται οι δειγµατικές εκτιµήσεις, ^2 και τ^3, αντίστοιχα. Σηµείωση: Οι συντεεστές του τριωνύµου κ(c) που δίνονται εδώ είναι ακριβέστεροι από αυτούς της βιβιογραφίας (π.χ. Stediger et al., 1993, σ ) για θετικές τιµές του κ που είναι και η συνηθέστερη περίπτωση.. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 27

15 7. Αξιοποίηση ιστορικών και χωρικά γενικευµένων πηροφοριών Προσαρµογή κατανοµής µε αξιοποίηση ιστορικών πηροφοριών Πρόβηµα: ίνεται ένα δείγµα ετήσιων µεγίστων 1,, (συστηµατικές παρατηρήσεις) που αποτεούν πραγµατοποιήσεις µιας µεταβητής Χ. Επιπέον είναι γνωστές οι k µεγαύτερες τιµές z 1,, z k σε ένα (προγενέστερο) διάστηµα r ετών (πρόσθετη ιστορική πηροφορία). Ζητείται η εκτίµηση των παραµέτρων της κατανοµής της µεταβητής Χ παίρνοντας υπόψη και την πρόσθετη ιστορική πηροφορία (Natioal Research Coucil, 1988, σ. 33 Stediger ad Coh, 1986). Μέθοδος εκτίµησης: Μέγιστης πιθανοφάνειας Εξισώσεις: όπου και ma l L( 1,,, z 1,, z k, θ 1,, θ r ) l L( 1,,, z 1,, z k, θ 1,, θ r) = l f( i, θ 1,, θ m) + l f(z i, θ 1,, θ m) + z 0 = mi(z 1,, z k ) Τρόπος επίυσης: Αριθµητικός i = 1. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 28 k i = 1 + (r k) l F (z 0, θ 1,, θ m ) + ct Προσαρµογή κατανοµής µε χρήση γενικευµένων δεδοµένων Πρόβηµα ίνονται k δείγµατα ετήσιων µέγιστων υδροογικών µεταβητών (π.χ. βροχές, πηµµύρες) σε ισάριθµες γειτονικές θέσεις. Έτσι, στη θέση i αντιστοιχεί η µεταβητή Χ i και το δείγµα i,1,, i,i όπου i το µέγεθος του δείγµατος. Ζητείται η ταυτόχρονη εκτίµηση των παραµέτρων των κατανοµών των µεταβητών Χ i αξιοποιώντας (µέσω κατάηων υποθέσεων) την κιµατική συγγένεια των διάφορων θέσεων Υπόθεση 1 Αναογία ποσοστηµορίων µε τις µέσες τιµές Είναι γνωστή και ως υπόθεση δείκτη πηµµύρας (ide flood Natioal Research Coucil, 1988, σ. 39). Μαθηµατικά εκφράζεται από τη σχέση i (u) = m i (u) όπου i (u) το u-ποσοστηµόριο της κατανοµής της µεταβητής Χ i, m i η µέση τιµή της µεταβητής Χ i, και (u) µια αδιαστατοποιηµένη συνάρτηση ποσοστηµορίου ενιαία για όες τις µεταβητές. Για την κατανοµή ΓΑΤ η Υπόθεση 1 συνεπάγεται ισότητα των παραµέτρων σχήµατος και θέσης για όες τις θέσεις, δη. (α) κ i = κ = σταθ. και (β) ψ i = ψ = σταθ. Η παράµετρος κίµακας µπορεί να παίρνει διαφορετικές τιµές ανά θέση. Υπόθεση 2: Σταθερότητα µιας παραµέτρου Συνηθέστατα η παράµετρος που θεωρείται σταθερή για όες τις θέσεις είναι η παράµετρος σχήµατος (κ i = κ = σταθ. Natioal Research Coucil, 1988, σ. 40).. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 29

16 Προσαρµογή κατανοµής µε χρήση γενικευµένων δεδοµένων (2) Υπόθεση 3: Σχέση µεταξύ παραµέτρων. Υποτίθεται ότι δύο ή περισσότερες παράµετροι συνδέονται µεταξύ τους µε µια σχέση, π.χ. θ 2 = α + β θ 1 Εναακτικά, µπορεί να υποτεθεί ότι µία παράµετρος συνδέεται µε µια σχέση µε µια ροπή, π.χ. θ 2 = α + β m Στις περιπτώσεις αυτές, αντί της θ 2 θα πρέπει να εκτιµηθούν οι βοηθητικές παράµετροι α και β, εκτός αν είναι εξ αρχής γνωστές. Προτιµητέα µέθοδος εκτίµησης: Για τις υποθέσεις 1 και 2, καθώς και για την υπόθεση 3 µε άγνωστες τις βοηθητικές παραµέτρους α και β, προτιµητέα είναι η µέθοδος της µέγιστης πιθανοφάνειας, η οποία προσαρµόζεται άµεσα στις συνθήκες που προκύπτουν από τις υποθέσεις. Για την υπόθεση 3 µε γνωστές τις βοηθητικές παραµέτρους α και β µπορεί να χρησιµοποιηθεί οποιαδήποτε µέθοδος.. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 30 Προσαρµογή κατανοµής µε χρήση γενικευµένων δεδοµένων (3) Παράδειγµα για την υπόθεση 3: Από πρόσφατη στατιστική διερεύνηση (Koutsoyiais, 1999) των δεδοµένων από 2645 σταθµούς όου του κόσµου, µε συνοικό πήθος µετρήσεων σταθµών-ετών, τα οποία είχαν µεετηθεί παιότερα από τον Hershfield (1961, 1965) και αποτέεσαν τη βάση για τη διατύπωση της φερώνυµης µεθόδου εκτίµησης της πιθανής µέγιστης κατακρήµνισης (ΠΜΚ) διαπιστώθηκε ότι (α) η κατανοµή ΓΑΤ είναι γενικά κατάηη για ετήσιες σειρές µέγιστων βροχοπτώσεων, (β) η τιµή που υποογίζεται µε τη µέθοδο Hershfield (1961, 1965) ως ΠΜΚ, αντιστοιχεί σε περίοδο επαναφοράς περίπου ετών, και (γ) η τιµή της παραµέτρου σχήµατος της κατανοµής ΓΑΤ δίνεται ως συνάρτηση της µέσης τιµής της ετήσιας µέγιστης 24ωρης βροχόπτωσης m, από τη σχέση κ = m (m σε mm). Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 31

17 L-συντεεστής κύρτωσης (τ 4) Έεγχοι καταηότητας της κατανοµής Ενδεικτικός έεγχος µε βάση διάγραµµα L-ροπών ΓΑΤ-Μ ΓΑΤ-Ε AT1-M Κανονική AT1-E Pareto Λογαριθµοκανονική Pearso III L-συντεεστής ασυµµετρίας (τ 3 ) Η απεικόνιση των εµπειρικών χαρακτηριστικών του δείγµατος στο διπανό διάγραµµα, αποτεεί ένδειξη για το αν η κατανοµή ΓΑΤ είναι κατάηη για το υπόψη δείγµα, ή αν άες τυπικές κατανοµές είναι καταηότερες.. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 32 οκιµή καταηότητας της τριπαραµετρικής κατανοµής ΓΑΤ έναντι των διπαραµετρικών κατανοµών Περίπτωση 1 Μηδενική υπόθεση: Η 0 : κ = 0 (η κατανοµή είναι ΑΤ1 2 παραµέτρων) Εναακτική υπόθεση: Η 1 : κ 0 (απαιτείται τριπαραµετρική κατανοµή) Στατιστική συνάρτηση εέγχου: Z = κ^ / όπου κ^ η εκτίµηση από το δείγµα της τιµής του κ µε τη µέθοδο των L ροπών (χρησιµοποιώντας τις µεροηπτικές εκτιµήσεις) και το µέγεθος του δείγµατος. Η κατανοµή της Ζ είναι κατά προσέγγιση κανονική Ν(0, 1). Κανόνας απόφασης: Απορρίπτουµε την Η 0 αν z > z 1 α / 2, όπου z 1 α / 2 το (1 α / 2)- ποσοστηµόριο της κανονικής κατανοµής και α το επίπεδο σηµαντικότητας που υιοθετείται για τον έεγχο (για α = 0.05, z 1 α / 2 = 1.96). Περίπτωση 2 Μηδενική υπόθεση: Η 0 : η κατανοµή είναι ΑΤ2-Μ ή ΑΤ3-Ε 2 παραµέτρων Εναακτική υπόθεση: Η 1 : απαιτείται τριπαραµετρική κατανοµή Παρατήρηση: Αν ισχύει η Η 0 τότε η κατανοµή της Y = l X είναι ΑΤ1 (Μ ή Ε). Αυτό επιτρέπει τη χρήση της ίδιας διαδικασίας, όπως παραπάνω για την παράµετρο κ^υ που προκύπτει από το δείγµα των ογαρίθµων της υπό έεγχο µεταβητής.. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 33

18 οκιµές προσαρµογής Προτιµητέα µέθοδος: οκιµή χ 2 (β. Κουτσογιάννης, 1997, σσ , ). Πεονέκτηµα: Εφαρµοσιµότητα σε ατεή µηδενική υπόθεση (δηαδή για τη συνήθη περίπτωση που οι παράµετροι εκτιµώνται από το δείγµα). Μειονεκτήµατα: Υποκειµενικότητα στην επιογή του αριθµού κάσεων k (περίπτωση αντιφατικών αποτεεσµάτων για διαφορετικές τιµές του k), µειωµένη (σε σχέση µε άες µεθόδους) ισχύς. Ως επαρκής αριθµός κάσεων θεωρείται (Ma ad Wald, 1942 Williams, 1950 β. και Kottegoda, 1980, σ. 88) ο k = ( 1) 0.4 / z α όπου το µέγεθος του δείγµατος, z 1 α το (1 α)-ποσοστηµόριο της τυποποιηµένης κανονικής κατανοµής και α το επίπεδο σηµαντικότητας της δοκιµής (Για α = 0.05, k = 1.88 ( 1) 0.4 ). Παράηα θα πρέπει k r + 2, όπου r ο αριθµός παραµέτρων της κατανοµής, και k / 5. Εναακτικές µέθοδοι: (α) οκιµή Kolmogorov-Smirov (β. Kottegoda, 1980, σσ ) (β) οκιµή συντεεστή συσχέτισης ως προς την πιθανοτική θέση σχεδίασης (probability plot correlatio β. Stediger et al., 1993, σ ) Πεονεκτήµατα: Έειψη υποκειµενικών θεωρήσεων, αυξηµένη ισχύς. Μειονέκτηµα: Αδυναµία ή δυσκοία εφαρµογής σε ατεή µηδενική υπόθεση. Ειδικά για την κατανοµή ΓΑΤ υπάρχουν πίνακες κρίσιµων τιµών των δύο δοκιµών για ατεή µηδενική υπόθεση µόνο για την περίπτωση που µόνο η παράµετρος κίµακας είναι προς εκτίµηση (Chowdhury et al., 1991).. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων Πιθανοτική αντιµετώπιση διάρκειας ξηρασίας Γενικός ορισµός: ροµή (ru) είναι µια ακοουθία τιµών που έχει µια δεδοµένη ιδιότητα (π.χ. τιµή πάνω από τη µέση ή κάτω από τη µέση) που προηγείται και έπεται µιας ή περισσότερων τιµών που δεν έχουν αυτή την ιδιότητα. Μήκος δροµής: ο αριθµός των στοιχείων της δροµής. Στις µεέτες ξηρασιών η στατιστική θεωρία των δροµών χρησιµοποιείται για τη µεέτη της διάρκειας ξηρασίας. Μπορεί να θεωρηθεί ως διάρκεια ξηρασίας, υδροογικής ή µετεωροογικής, η περίοδος κατά την οποία η απορροή ή η βροχόπτωση, αντίστοιχα, παρουσιάζει συνεχώς τιµές κάτω από το κανονικό επίπεδο, το οποίο συνήθως αντιπροσωπεύεται από τη διάµεση τιµή. Η περίοδος αυτή, µαθηµατικά αντιστοιχεί στο µήκος δροµής b. Η µέθοδος µπορεί να χρησιµοποιηθεί για ετήσιες χρονοσειρές, οι οποίες µπορεί να θεωρηθεί ότι εξασφαίζουν στασιµότητα (για µηνιαίες χρονοσειρές χρειάζεται ειδική µεθοδοογία, β. π.χ. Murota ad Eto, 1973). Σε περίπτωση στάσιµης τυχαίας ανέιξης σε διακριτό χρόνο, µήκους, το µέγιστο µήκος δροµής που αντιστοιχεί σε πιθανότητα υπέρβασης α είναι κατά προσέγγιση b(α) β l + γ όπου 11 β = l ( 2 13 l (1 α)), γ = 1 αν < 213 l (1 α) β = 1 l 2, γ = l ( 2 l (1 α)) l 2 διαφορετικά (Κουτσογιάννης, ανέκδοτη έκθεση, 1999). Τα παραπάνω µπορούν να αξιοποιηθούν για να εεγχθεί αν οι ξηρασίες σε µια παρατηρηµένη ετήσια χρονοσειρά απορροής ή βροχής παρουσιάζουν τυχαία συµπεριφορά και εξηγούνται µε στατιστική θεώρηση ή όχι.. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 35

19 10. Όµβριες καµπύες Γενικές έννοιες Όµβρια καµπύη: Μια µαθηµατική σχέση µεταξύ της έντασης (ή του ύψους), της διάρκειας και της περιόδου επαναφοράς της βροχής (itesity-duratio-frequecy idf relatioship): ιάρκεια, d: Μια αυθαίρετη χρονική διάρκεια (συνήθως από µερικά επτά της ώρας µέχρι µια ή περισσότερες ηµέρες), η οποία ειτουργεί ως «χρονικό παράθυρο» µέσα από το οποίο βέπουµε τη συνεχή ανέιξη της βροχής. Η διάρκεια αυτή δεν έχει σχέση µε την πραγµατική διάρκεια των επεισοδίων βροχής και δεν αποτεεί τυχαία µεταβητή. Ύψος βροχής (µέγιστο), h: Ένα χαρακτηριστικό ύψος βροχής που αναφέρεται σε δεδοµένη διάρκεια d και αντιπροσωπεύει (α) είτε το µέγιστο ύψος βροχής που έχει καταγραφεί σε διάρκεια d κατά τη διάρκεια ενός έτους (συνήθως υδροογικού) * (β) είτε κάθε τιµή του ύψους βροχής που έχει καταγραφεί σε διάρκεια d και υπερβαίνει µια δεδοµένη τιµή κατωφίου φ. Αποτεεί τυχαία µεταβητή. Ένταση (µέγιστη), i: Μια χαρακτηριστική ένταση βροχής που αναφέρεται σε δεδοµένη διάρκεια d και προκύπτει ως το παραπάνω χαρακτηριστικό ύψος βροχής διηρηµένο µε τη διάρκεια d (i = h / d). Αποτεεί τυχαία µεταβητή. Περίοδος επαναφοράς, T: εδοµένου ότι το παραπάνω ύψος και η ένταση βροχής αποτεούν τυχαίες µεταβητές, µπορεί να αντιστοιχιστεί σε κάθε τιµή τους µια τιµή της περιόδου επαναφοράς, µε βάση είτε την εµπειρική είτε τη θεωρητική συνάρτηση κατανοµής τους. * Η σειρά τιµών που περιαµβάνει τη µέγιστη τιµή κάθε έτους είναι γνωστή ως σειρά ετήσιων µεγίστων. Η σειρά τιµών που περιαµβάνει όες τις τιµές που υπερβαίνουν το κατώφι φ είναι γνωστή ως σειρά υπεράνω κατωφίου ή σειρά µερικής διάρκειας.. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 36 Ετήσια µέγιστη ένταση βροχής, i (mm/h) F = Σχηµατική παράσταση 1 5 mi 10 mi 15 mi 30 mi h 2 h 4 h 6 h 24 h Ανηγµένη µεταβητή Gumbel, z = -l(-l F ) εδοµένα: Σταθµοί Κορίνθου και Σπαθοβουνίου (ενοποιηµένο δείγµα). Πηγή: Κουτσογιάννης (1998). Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 37

20 Ένταση βροχής, i (mm/h) Πιθανή µέγιστη κατακρήµνιση κατά Hershfield Σχηµατική παράσταση T= ιάρκεια, d (h) εδοµένα: Σταθµοί Κορίνθου και Σπαθοβουνίου (ενοποιηµένο δείγµα). Πηγή: Κουτσογιάννης (1998). Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 38 Γενικό µαθηµατικό παίσιο (1) Η γενική µεθοδοογία που προτείνεται για την κατάρτιση των όµβριων καµπυών έχει αναπτυχθεί πρόσφατα και περιγράφεται επτοµερώς αού (Κουτσογιάννης, 1997, Koutsoyiais et. al., 1998, Koutsoyiais, 1999). Τα γενικά χαρακτηριστικά της συνοψίζονται στα ακόουθα σηµεία: 1. Η γενική συναρτησιακή σχέση όµβριων καµπυών είναι της µορφής i = a(t) (1) b(d) όπου i η µέγιστη ένταση βροχής διάρκειας d για περίοδο επαναφοράς T, και a(t) και b(d) κατάηες συναρτήσεις της περιόδου επαναφοράς και της διάρκειας, αντίστοιχα (Κουτσογιάννης, 1997). 2. Η συνάρτηση b(d) είναι της ακόουθης, εµπειρικά διαπιστωµένης, γενικής µορφής b(d) = (d + θ) η (2) όπου θ και η αποτεούν παραµέτρους προς εκτίµηση (θ > 0, 0 < η < 1) (Κουτσογιάννης, 1997).. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 39

21 Γενικό µαθηµατικό παίσιο (2) 3. Η συνάρτηση a(t) προκύπτει αναυτικά από τη συνάρτηση κατανοµής που ισχύει για την µέγιστη ένταση βροχής της υπό εξέταση περιοχής, όπως αυτή προκύπτει από την επεξεργασία των διαθέσιµων δεδοµένων. Αποφεύγεται η χρήση εµπειρικών συναρτήσεων (π.χ. a(t) = Τ κ ) (Κουτσογιάννης, 1997). 4. Μια συνάρτηση κατανοµής που αποδεικνύεται κατάηη για τη µέγιστη ένταση βροχής σε µεγάο εύρος περιπτώσεων είναι η κατανοµή ΓΑΤ µε έκφραση F() = ep ψ 1 / κ 1 + κ (ψ 1 / κ) (3) όπου F() η συνάρτηση κατανοµής για τιµές της µεταβητής, και κ > 0, > 0 και ψ οι παράµετροι σχήµατος, κίµακας και θέσης, αντίστοιχα (Η περίπτωση κ < 0, αν και µαθηµατικά είναι δυνατή, δεν είναι κατάηη για µέγιστες εντάσεις βροχής, γιατί συνεπάγεται άνω φραγµένη τιµή της έντασης, γεγονός που αντίκειται στη φυσική πραγµατικότητα). Η µεταβητή αντιπροσωπεύει είτε την ένταση βροχής i είτε, ισοδύναµα, το γινόµενο i b(d) (για δεδοµένη έκφραση της b(d)) στην τεευταία περίπτωση η επίυση της (3) ως προς δίνει αµέσως τη συνάρτηση a(t) και, στη συνέχεια, η επίυση ως προς i δίνει αµέσως την έκφραση της όµβριας καµπύης χωρίς να απαιτείται καµιά πρόσθετη, εµπειρική ή όχι, παραδοχή (Κουτσογιάννης, 1997, Koutsoyiais et. al., 1998).. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 40 Γενικό µαθηµατικό παίσιο (3) 5. Η (3) επιύεται άµεσα ως προς, οπότε µε την προϋπόθεση ότι F() = 1 1 / T (προϋπόθεση που ισχύει για σειρές ετήσιων µέγιστων) προκύπτει T = ψ + l 1 1 κ T κ 1 = ψ + l 1 1 T κ όπου για αποποίηση έχει τεθεί = / κ ad ψ = κ ψ 1 (Koutsoyiais et. al., 1998). 6. Για κ = 0 η κατανοµή ΓΑΤ µεταπίπτει στην κατανοµή ΑΤ1-Μ (Gumbel), οπότε η (3) παίρνει τη ειδική µορφή (4) F() = ep( e / + ψ ) (5) όπου και ψ είναι οι παράµετροι κίµακας και θέσης, αντίστοιχα, της κατανοµής. Αντίστοιχα, η (4) παίρνει τη µορφή (Κουτσογιάννης, 1997, Koutsoyiais et. al., 1998) T = ψ l l 1 1 T 7. Για κ = 1 / ψ (ή ισοδύναµα ψ = 0) η κατανοµή ΓΑΤ µεταπίπτει στην ΑΤ2-Μ δύο παραµέτρων. (6). Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 41

22 Γενικό µαθηµατικό παίσιο (4) 8. Η κατανοµή Gumbel έχει γίνει αποδεκτή ευρύτατα στην Εάδα και διεθνώς για την περιγραφή µέγιστων εντάσεων βροχής, χρησιµοποιώντας συνήθως δείγµατα µήκους ίγων δεκάδων ετών. Ωστόσο, η µεέτη δειγµάτων µεγαύτερου µήκους, δείχνει ότι η κατανοµή Gumbel απορρίπτεται στατιστικώς. Αντίστοιχα είναι τα συµπεράσµατα για την κατανοµή ΑΤ2-Μ δύο παραµέτρων. Αντίθετα, η κατανοµή ΓΑΤ µε παράµετρο σχήµατος κ = 0.10 έως 0.20 φαίνεται κατάηη. 9. Από πρόσφατη στατιστική διερεύνηση (Koutsoyiais, 1999) των δεδοµένων του Hershfield (1961, σταθµοί όου του κόσµου, συνοικό πήθος µετρήσεων σταθµών-ετών) διαπιστώθηκε ότι (α) η κατανοµή ΓΑΤ είναι γενικά κατάηη για ετήσιες σειρές µέγιστων βροχοπτώσεων, (β) η τιµή που υποογίζεται τη µέθοδο Hershfield (1961, 1965) ως ΠΜΚ, αντιστοιχεί σε περίοδο επαναφοράς περίπου ετών, και (γ) η τιµή της παραµέτρου σχήµατος της κατανοµής ΓΑΤ δίνεται ως συνάρτηση της µέσης τιµής της ετήσιας µέγιστης 24ωρης βροχόπτωσης m h, από τη σχέση κ = m h (m h σε mm) (7) Η σύγκριση της παραπάνω εναακτικής διατύπωσης της µεθόδου Hershfield µε την κατανοµή που προκύπτει από το δείγµα 136 ετών του Αστεροσκοπείου Αθηνών έδειξε πήρη συµφωνία (Koutsoyiais, 1999). 10. Τα παραπάνω συνηγορούν στην αποδοχή της ΓΑΤ ως κατάηης κατανοµής για µέγιστες βροχοπτώσεις. Σε περίπτωση που υπάρχει µεγάου µήκους δείγµα, η παράµετρος σχήµατος της κατανοµής µπορεί να εκτιµάται άµεσα από το δείγµα. Σε αντίθετη περίπτωση είναι προτιµότερο να εκτιµάται από την (7).. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 42 Γενικό µαθηµατικό παίσιο (5) 11. Η αποδοχή της κατανοµής ΓΑΤ σε συνδυασµό µε τις (1) και (2) οδηγεί στην ακόουθη γενικευµένη έκφραση όµβριων καµπυών i(d, T) = i(d, T) = l 1 1 κ T l l + ψ η (κ 0) (8) (d + θ) 1 1 T + ψ η (κ = 0) (9) (d + θ) 12. Στις εξισώσεις (8) και (9) η περίοδος επαναφοράς αναφέρεται σε σειρές ετήσιων µεγίστων και κατά συνέπεια παίρνει τιµές µεγαύτερες από 1 έτος. Αν η περίοδος επαναφοράς οριστεί µε αναφορά σε σειρές υπεράνω κατωφίου, οπότε µπορεί να πάρει και τιµές µικρότερες από 1 έτος, οι αντίστοιχες εξισώσεις προκύπτουν θεωρητικά ότι έχουν τις ακόουθες απούστερες εκφράσεις (Koutsoyiais et al., 1998) i(d, T) = (T κ + ψ ) η (κ 0) (10) (d + θ) i(d, T) = (lt + ψ) η (κ = 0) (11) (d + θ) Για µικρές περιόδους επαναφοράς, οι εξισώσεις (10) και (11) είναι προφανώς δυσµενέστερες από τις αντίστοιχές τους (8) και (9), ενώ για µεγαύτερες περιόδους επαναφοράς (Τ > 10 χρόνια) πρακτικώς οι πρώτες ταυτίζονται µε τις δεύτερες, δεδοµένου ότι για µικρές τιµές του 1/Τ ισχύει l [1 (1 /T)] = (1 / T) (1 / T) 2 L 1 /T.. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 43

23 Συνεπείς µέθοδοι εκτίµησης παραµέτρων α. Η µέθοδος ενοποίησης διαρκειών Στάδια µεθόδου: (1) υποογισµός παραµέτρων της συνάρτησης b(d), (2) υποογισµός παραµέτρων της συνάρτησης a(t). Θεωρητική βάση: Όπως προκύπτει από την (1), η τυχαία µεταβητή Y = I b(d) έχει συνάρτηση κατανοµής ανεξάρτητη της διάρκειας d, η οποία καθορίζεται πήρως από τη συνάρτηση a(t). Άρα πρέπει οι παράµετροι θ και η να υποογιστούν έτσι ώστε να ικανοποιούν αυτή τη συνθήκη. Στη συνέχεια, οι παράµετροι της a(t) µπορούν να εκτιµηθούν άµεσα από τη συνάρτηση κατανοµής της Y. Βήµατα µεθόδου Στάδιο 1 α. Υποθέτουµε αρχικές τιµές των παραµέτρων θ και η. β. Υποογίζουµε τις τιµές y jl = i jl b(d j ). Κατά προτίµηση χρησιµοποιούµε υποσύνοο κάθε δείγµατος δεδοµένης διάρκειας d j, π.χ. το 1/3 των µεγαύτερων σε µέγεθος τιµών. Έστω j ο αριθµός στοιχείων του υποσυνόου που αντιστοιχεί σε διάρκεια d j. γ. Ενοποιώντας όα τα δείγµατα που περιέχουν τις τιµές y jl αποκτούµε ένα συνοικό δείγµα µεγέθους k m = j j = 1 δ. Με βάση το δείγµα αυτό, καταταγµένο σε φθίνουσα σειρά, αντιστοιχίζουµε αύξοντες αριθµούς ή βαθµούς (raks) r jl σε όες τις m τιµές y jl.. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 44 Βήµατα µεθόδου Στάδιο 1 Συνεπείς µέθοδοι εκτίµησης παραµέτρων α. Η µέθοδος ενοποίησης διαρκειών (συνέχεια) ε. Επανερχόµενοι στα αρχικά επιµέρους δείγµατα των ξεχωριστών διαρκειών υποογίζουµε για κάθε τιµή το µέσο βαθµό r j = 1 j k rjl j = 1 στ. Υποογίζουµε τη στατιστική παράµετρο Kruskal-Wallis, η οποία που συνδυάζει τους µέσους βαθµούς από όα τα επιµέρους δείγµατα: 12 h = m (m + 1) k j j = 1 2 r j m ζ. Επανααµβάνουµε τα βήµατα β.-στ. µε νέες τιµές των παραµέτρων θ και η, µε στόχο την εύρεση των τιµών που εαχιστοποιούν την h (συστηµατική αναζήτηση µπορεί να γίνει π.χ. µε τη µέθοδο της διχοτόµησης). Στάδιο 2 α. Υποογίζουµε τις τιµές y jl = i jl b(d j ) για τις τεικές τιµές των παραµέτρων θ και η και για τα συνοικά διαθέσιµα δείγµατα. β. Ενοποιούµε όα τα δείγµατα που περιέχουν τις τιµές y jl γ. Από το συνοικό δείγµα εκτιµάµε µε τις τυπικές µεθόδους της στατιστικής (π.χ. µε τη µέθοδο ροπών ή καύτερα των L ροπών) τις παραµέτρους της συνάρτησης a(t).. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 45

24 Συνεπείς µέθοδοι εκτίµησης παραµέτρων β. Η µέθοδος καθοικής εκτίµησης Θεωρητική βάση: Η µέθοδος αυτή εκτιµά ταυτόχρονα το σύνοο των παραµέτρων των όµβριων καµπυών εαχιστοποιώντας το συνοικό σφάµα των όµβριων καµπυών σε σχέση µε τα ιστορικά δεδοµένα Βήµατα µεθόδου α. Για κάθε στοιχείο δείγµατος (i jl, d j ) εκτιµάµε την εµπειρική περίοδο επαναφοράς, T jl χρησιµοποιώντας π.χ. τη σχέση Cuae. Για το στοιχείο (ένταση βροχής) l του δείγµατος j, διατεταγµένου σε φθίνουσα σειρά (συµβοικά i jl, όπου ο δείκτης l είναι ο αύξων αριθµός), η περίοδος επαναφοράς είναι Τ jl = j l 0.44 β. Υποθέτουµε αρχικές τιµές του συνόου των παραµέτρων. γ. Για κάθε στοιχείο του δείγµατος, για δεδοµένα T jl και d j υποογίζουµε την αντίστοιχη θεωρητική (µοντεοποιηµένη) ένταση i^jl = a(t jl) b(d j ) δ. Για κάθε στοιχείο του δείγµατος υποογίζουµε το αντίστοιχο σφάµα e jl = l i jl l i^jl = l i jl i^jl. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 46 Συνεπείς µέθοδοι εκτίµησης παραµέτρων β. Η µέθοδος καθοικής εκτίµησης (συνέχεια) Βήµατα µεθόδου (συνέχεια) ε. Υποογίζουµε το καθοικό µέσο σφάµα από την εξίσωση E = 1 k k 1 j j = 1 j e 2 jl l = 1 ζ. Επανααµβάνουµε τα βήµατα γ.-ε. µε νέες τιµές των παραµέτρων µε στόχο την εύρεση των τιµών που εαχιστοποιούν το σφάµα Ε (συστηµατική αναζήτηση µπορεί να γίνει µε χρήση τυπικών επιυτών).. Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 47

25 Ενοποίηση δειγµάτων διαφορετικών σταθµών Μέθοδος σταθµών ετών: ενοποίηση των δειγµάτων διαφορετικών σταθµών. Οι παράµετροι των όµβριων καµπυών εκτιµώνται από τα ενοποιηµένα δείγµατα, µε έναν από τους τρόπους που περιγράφηκαν παραπάνω. Προϋπόθεση 1 (απαραίτητη): τα δείγµατα των µέγιστων εντάσεων βροχής που έχουν ηφθεί στους διαφορετικούς σταθµούς προέρχονται από τον ίδιο πηθυσµό ή αποτεούν δείγµατα της ίδιας τυχαίας µεταβητής. Έεγχοι προϋπόθεσης 1: εµπειρικός (έεγχος ότι οι θέσεις των µετρητικών σταθµών βρίσκονται στο ίδιο µικροκιµατικό περιβάον) και στατιστικός (π.χ. δοκιµή Kruskal- Wallis) Προϋπόθεση 2: στατιστική ανεξαρτησία δειγµάτων διαφορετικών σταθµών. Έεγχοι προϋπόθεσης 1: εµπειρικός (διαφορετικές ηµεροµηνίες των µέγιστων βροχών στους διάφορους σταθµούς) και στατιστικός (µηδενικός συντεεστής συσχέτισης) µπορεί να θεωρηθεί στατιστικώς µηδέν. Ισοδύναµος αριθµός σταθµών k e σε περίπτωση που δεν ισχύει η ανεξαρτησία, αά υπάρχει θετικός συντεεστής συσχέτισης ρ µεταξύ των διαφορετικών σταθµών (σχέση που αποδίδεται στους Yule και Aleader (Natioal Research Coucil, 1988, σ. 25) k e = k / [1 + (k 1) ρ] όπου k o αριθµός των σταθµών. Επιφυάξεις ως προς την εφαρµογή της µεθόδου: β. Κουτσογιάννης (1997, σ. 285). Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 48 Επίδραση της χρονικής ευκρίνειας των παρατηρήσεων Πηγή σφάµατος: µικρή χρονική ευκρίνεια παρατηρήσεων. Συνέπεια: υπεκτίµηση των µέγιστων εντάσεων. Μέγεθος σφάµατος: εξαρτάται από το όγο διάρκειας προς ευκρίνεια (d/δ). Τρόπος άρσης του σφάµατος (για µικρές τιµές του όγου d/δ): αναγωγή των τιµών i(d), µε ποαπασιασµό επί ένα συντεεστή που εξαρτάται από το όγο d/δ. Τιµές του συντεεστή άρσης του σφάµατος διακριτοποίησης (π.χ. Lisley et al., 1975, σ. 357): Λόγος διάρκειας Συντεεστής άρσης προς ευκρίνεια του σφάµατος (d/δ) διακριτοποίησης Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 49

26 Βασική βιβιογραφία Κουτσογιάννης,., Στατιστική Υδροογία, Έκδοση 4, Εθνικό Μετσόβιο Πουτεχνείο, Αθήνα, Hoskig, J. R. M., L momets: Aalysis ad estimatio of distributios usig liear combiatios of order statistics, J. R. Stat. Soc., Ser. B, 52, , Koutsoyiais, D., A probabilistic view of Hershfield's method for estimatig probable maimum precipitatio, Water Resources Research (i press), Koutsoyiais, D., D. Kozois ad A. Maetas, A mathematical framework for studyig raifall itesity-duratio-frequecy relatioship, J. of Hydrology, 206, , Natioal Research Coucil, Estimatig Probabilities of Etreme Floods: Methods ad Recommeded Research, Natioal Academy Press, Washigto, D.C., Stediger, J. R., R. M. Vogel, ad E. Foufoula-Georgiou, Frequecy aalysis of etreme evets, Chapter 18 i Hadbook of Hydrology, edited by D. R. Maidmet, McGraw-Hill, Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 50 Λοιπές αναφορές Κουτσογιάννης,., Οριστική µεέτη αποχέτευσης Κορίνθου. Μεέτη Χειµάρρου Ξηριά, Υδροογική Μεέτη Πηµµυρών, Chowdhury, J. U., J. R. Stediger, ad L.-H. Lu, Goodess-of-fit tests for regioal geeralized etreme value flood distributios, Water Resources Research, 27(7), , Gumbel, E. J., Statistics of Etremes, Columbia Uiversity Press, New York, Greewood, J. A., J. M. Ladwehr, N. C. Matalas, ad J. R. Wallis, Probability-weighted momets: Defiitio ad relatio to parameters of several distributios epressable i iverse form, Water Resources Research, 15, , Hershfield, D. M., Estimatig the probable maimum precipitatio, Proc. ASCE, J. Hydraul. Div., 87(HY5), , 1961 Hershfield, D. M., Method for estimatig probable maimum precipitatio, J. America Waterworks Associatio, 57, , Kottegoda, N. T., Stochastic Water Resources Techology, Macmilla Press, Lodo, Lisley, R. K. Jr., M. A. Kohler ad J. L. H. Paulus, Hydrology for Egieers, McGraw-Hill, Tokyo, 2d editio, Ma, H. B., ad A. Wald, O the choice of the umber of class itervals i the applicatio of the chi square test, A. Math. Statist., 13, ,1942. Murota, A., ad T. Eto., Theoretical studies o gamma-type distributio ad rus their applicatios to hydrology,, i Floods ad Droughts, Proc. 2d Iter. Symp. i Hydrology, pp , Water Resources Publicatios, Fort Collis, Colorado, Prescott, P., ad A. T. Walde, Maimum likelihood estimatio of the parameters of the gearalized etremevalue distributio, Biometrica, , Rasmusso, E. M., R. E. Dickiso, J. E. Kutzbach, ad M. K. Cleavelad, Climatology, Chapter 2 i Hadbook of Hydrology, edited by D. R. Maidmet, McGraw-Hill, Stediger, J. R., ad T. A. Coh, Flood frequecy aalysis with historical ad paleoflood iformatio, Water Resources Research, 22(5), , U.S. Committee o Opportuities i the Hydrological Scieces, Opportuities i the Hydrological Scieces, edited by P. S. Eagleso, Natioal Academy Press, Washigto, D.C., 348 pp., Williams, C. A. Jr., O the choice of the umber ad width of classes for the chi-square test of goodess of fit, J. Am. Statist. Assoc., 45, 77-86, Κουτσογιάννης, Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδροογικών γεγονότων 51

Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδρολογικών γεγονότων. ηµήτρης Κουτσογιάννης Τοµέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο

Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδρολογικών γεγονότων. ηµήτρης Κουτσογιάννης Τοµέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Εµβάθυνση στην πιθανοτική προσέγγιση εξαιρετικών υδρολογικών γεγονότων ηµήτρης Κουτσογιάννης Τοµέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο 1. Ακραία υδρολογικά περιστατικά Καταιγίδες, πληµµύρες και

Διαβάστε περισσότερα

Όµβριες καµπύλες για το οδικό έργο Καναβάρι- οµβαίνα-πρόδροµος

Όµβριες καµπύλες για το οδικό έργο Καναβάρι- οµβαίνα-πρόδροµος Όµβριες καµπύλες για το οδικό έργο Καναβάρι- οµβαίνα-πρόδροµος Περιοχή έργου Η µελέτη αυτή εκπονήθηκε στα πλαίσια της υδραυλικής µελέτης αποστράγγισης της οδού Καναβάρι- οµβαίνα-πρόδροµος που ανατέθηκε

Διαβάστε περισσότερα

Κεφάλαιο 6 Τυπικές συναρτήσεις κατανομής στην τεχνική υδρολογία

Κεφάλαιο 6 Τυπικές συναρτήσεις κατανομής στην τεχνική υδρολογία Κεφάαιο 6 Τυπικές συναρτήσεις κατανομής στην τεχνική υδροογία Στο κεφάαιο αυτό περιγράφουμε τις τρεις βασικές οικογένειες συναρτήσεων κατανομής που χρησιμοποιούνται στην τεχνική υδροογία. Η πρώτη περιαμβάνει

Διαβάστε περισσότερα

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Τυχαίες μεταβλητές, στοχαστικές ανελίξεις και χρονοσειρές

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Τυχαίες μεταβλητές, στοχαστικές ανελίξεις και χρονοσειρές Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Τυχαίες μεταβλητές, στοχαστικές ανελίξεις και χρονοσειρές Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Eκπόνηση μελετών τμήματος Αντίρριο - Κεφαλόβρυσο του Δυτικού Οδικού Άξονα Β-Ν

Eκπόνηση μελετών τμήματος Αντίρριο - Κεφαλόβρυσο του Δυτικού Οδικού Άξονα Β-Ν Eκπόνηση μελετών τμήματος Αντίρριο - Κεφαλόβρυσο του Δυτικού Οδικού Άξονα Β-Ν Υδρολογική μελέτη περιοχής οδικού άξονα Ιόνιας Οδού, τμήματος Αντίρριο - Κεφαλόβρυσο Περιεχόμενα 1. Εισαγωγή 1 1.1 Αντικείμενο

Διαβάστε περισσότερα

0. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων

0. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων . Σύντοµη επισκόπηση θεωρίας πιθανοτήτων Α. Τυχαίες µεταβητές Τυχαία µεταβητή καείται µια µεταβητή η τιµή της οποίας καθορίζεται από το αποτέεσµα κάποιου στοχαστικού πειράµατος. Αν Ω ο δειγµατικός χώρος

Διαβάστε περισσότερα

TO ΠΡΟΒΛΗΜΑ ΤΗΣ ΤΟΠΟΘΕΤΗΣΗΣ ΠΟΛΩΝ ΜE ΑΝΑΤΡΟΦΟΔΟΤΗΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΣΤΑΣΗΣ

TO ΠΡΟΒΛΗΜΑ ΤΗΣ ΤΟΠΟΘΕΤΗΣΗΣ ΠΟΛΩΝ ΜE ΑΝΑΤΡΟΦΟΔΟΤΗΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΣΤΑΣΗΣ TO ΠΡΟΒΛΗΜΑ ΤΗΣ ΤΟΠΟΘΕΤΗΣΗΣ ΠΟΛΩΝ ΜE ΑΝΑΤΡΟΦΟΔΟΤΗΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΣΤΑΣΗΣ. ΕΙΣΑΓΩΓΗ Ας θεωρήσουμε το σύστημα ανοικτού βρόχου που περιγράφεται από τις εξισώσεις κατάστασης (.) και (.2): x Ax+ Bu (.)

Διαβάστε περισσότερα

Υ ΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ. Πιθανοτική προσέγγιση υδρολογικών µεταβλητών

Υ ΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ. Πιθανοτική προσέγγιση υδρολογικών µεταβλητών Υ ΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ Πιθανοτική προσέγγιση υδρολογικών µεταβλητών Νίκος Μαµάσης Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων Αθήνα 7 ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΓΜΑΤΟΣ Σχήµα στατιστικών επεξεργασιών

Διαβάστε περισσότερα

6. ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ

6. ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ 6. ΑΡΘΜΗΤΚΗ ΟΛΟΚΛΗΡΩΣΗ. Αριθµητική Οοκήρωση Οπως αναφέραµε στην εισαγωγή, είναι συχνά δύσκοο να υποογιστεί ο αναυτικός τύπος, ή δεν υπάρχει αναυτικός τύπος, που δίνει το ορισµένο οοκήρωµα µιας συνεχούς

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών

ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων ΣΥΛΛΟΓΙΣΜΟΣ-ΕΠΑΓΩΓΗ (DEDUCTION

Διαβάστε περισσότερα

14. ΜΕΘΟ ΟΙ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΜΗ-ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ

14. ΜΕΘΟ ΟΙ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΜΗ-ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ 4. ΜΕΘΟ ΟΙ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΜΗ-ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ 4. Η µέθοδος Newn-Raphsn για µη γραµµική ανάυση Η γενική εξίσωση ισορροπίας ενός µη γραµµικού συστήµατος γράφεται: F ( ) = F q () όπου είναι οι εσωτερικές

Διαβάστε περισσότερα

, όπου x = 0,1,...,300000. Έτσι, για την πιθανότητα σε ένα έτος να μην υπάρξουν θάνατοι ζώων από τον εμβολιασμό έχουμε, 2! 299998!

, όπου x = 0,1,...,300000. Έτσι, για την πιθανότητα σε ένα έτος να μην υπάρξουν θάνατοι ζώων από τον εμβολιασμό έχουμε, 2! 299998! Η Κατανομή Poisso Ας δούμε ένα πρόβημα: Σε μια κτηνοτροφική περιοχή υπάρχουν 3 αιγοπρόβατα. Κάθε χρόνο όα τα αιγοπρόβατα εμβοιάζονται για προστασία από κάποια ασθένεια. Σύμφωνα με την άδεια χρήσης του

Διαβάστε περισσότερα

Υ ΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ. Πιθανοτική προσέγγιση υδρολογικών µεταβλητών

Υ ΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ. Πιθανοτική προσέγγιση υδρολογικών µεταβλητών Υ ΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ Πιθανοτική προσέγγιση υδρολογικών µεταβλητών Νίκος Μαµάσης Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων Αθήνα ΣΥΛΛΟΓΙΣΜΟΣ-ΕΠΑΓΩΓΗ (DEDUCTION INDUCTION) Ο Αριστοτέλης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΡΟΠΟΓΕΝΝΗΤΡΙΕΣ

ΚΕΦΑΛΑΙΟ 5 ΡΟΠΟΓΕΝΝΗΤΡΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΡΟΠΟΓΕΝΝΗΤΡΙΕΣ 5 Εισαγωγή Σ αυτό το κεφάαιο θα δούµε ότι οι ροπές µιας τυχαίας µεταβητής µπορούν να υποογιστούν µε τη βοήθεια κατάηων συναρτήσεων Αυτές οι συναρτήσεις καούνται ροπογεννήτριες

Διαβάστε περισσότερα

Υ ΡΟΛΟΓΙΚΗ ΜΕΛΕΤΗ ΛΕΚΑΝΗΣ ΞΗΡΙΑ ΜΑΓΝΗΣΙΑΣ

Υ ΡΟΛΟΓΙΚΗ ΜΕΛΕΤΗ ΛΕΚΑΝΗΣ ΞΗΡΙΑ ΜΑΓΝΗΣΙΑΣ Υ ΡΟΛΟΓΙΚΗ ΜΕΛΕΤΗ ΛΕΚΑΝΗΣ ΞΗΡΙΑ ΜΑΓΝΗΣΙΑΣ ΠΕΡΙΕΧΟΜΕΝΑ 1 Εισαγωγή 1 1.1 Αντικείµενο και διάρθρωση της µελέτης...1 1.2 Περιοχή µελέτης...1 1.2.1 Φυσιογραφικά χαρακτηριστικά...1 1.2.2 Γεωλογικά χαρακτηριστικά...1

Διαβάστε περισσότερα

Υδρολογική διερεύνηση ισχυρών βροχοπτώσεων και στερεοαπορροών του Θριάσιου πεδίου

Υδρολογική διερεύνηση ισχυρών βροχοπτώσεων και στερεοαπορροών του Θριάσιου πεδίου Υδρολογική διερεύνηση ισχυρών βροχοπτώσεων και στερεοαπορροών του Θριάσιου πεδίου ηµήτρης Κουτσογιάννης και Νίκος Μαµάσης Περιεχόµενα 1. Εισαγωγή 2 2. Περιοχή µελέτης 3 3. Κλιµατικά δεδοµένα 4 4. Κατάρτιση

Διαβάστε περισσότερα

Πιθανοτική προσέγγιση των υδρολογικών µεταβλητών

Πιθανοτική προσέγγιση των υδρολογικών µεταβλητών Πιθανοτική προσέγγιση των υδρολογικών µεταβλητών Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων Αθήνα 9 ΣΧΕΣΗ ΤΕΧΝΙΚΗΣ Υ ΡΟΛΟΓΙΑΣ ΚΑΙ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ Οι περισσότερες µέθοδοι της τεχνικής υδρολογίας

Διαβάστε περισσότερα

ΠΡΟΧΩΡΗΜΕΝΗ Υ ΡΟΛΟΓΙΑ. Εµβάθυνση στην πιθανοτική προσέγγιση των υδρολογικών µεταβλητών

ΠΡΟΧΩΡΗΜΕΝΗ Υ ΡΟΛΟΓΙΑ. Εµβάθυνση στην πιθανοτική προσέγγιση των υδρολογικών µεταβλητών ΠΡΟΧΩΡΗΜΕΝΗ Υ ΡΟΛΟΓΙΑ Εµβάθυνση στην πιθανοτική προσέγγιση των υδρολογικών µεταβλητών Νίκος Μαµάσης Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων Αθήνα ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΓΜΑΤΟΣ Σχήµα στατιστικών

Διαβάστε περισσότερα

Υ ΡΟΛΟΓΙΚΗ ΜΕΛΕΤΗ ΠΛΗΜΜΥΡΩΝ ΑΡΑΧΘΟΥ

Υ ΡΟΛΟΓΙΚΗ ΜΕΛΕΤΗ ΠΛΗΜΜΥΡΩΝ ΑΡΑΧΘΟΥ Υ ΡΟΛΟΓΙΚΗ ΜΕΛΕΤΗ ΠΛΗΜΜΥΡΩΝ ΑΡΑΧΘΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1 Εισαγωγή 1 1.1 Αντικείµενο και διάρθρωση της µελέτης...1 1.2 Περιοχή µελέτης...1 1.2.1 Φυσιογραφικά χαρακτηριστικά...1 1.2.2 Κλίσεις...3 1.2.3 Υδρογεωλογία...4

Διαβάστε περισσότερα

Περίπου ίση µε την ελάχιστη τιµή του δείγµατος.

Περίπου ίση µε την ελάχιστη τιµή του δείγµατος. 1. Η µέση υπερετήσια τιµή δείγµατος µέσων ετήσιων παροχών Q (m3/s) που ακολουθούν κατανοµή Gauss, ξεπερνιέται κατά µέσο όρο κάθε: 1/0. = 2 έτη. 1/1 = 1 έτος. 0./1 = 0. έτος. 2. Έστω δείγµα 20 ετών µέσων

Διαβάστε περισσότερα

βροχοπτώσεων 1 ο Πανελλήνιο Συνέδριο Μεγάλων Φραγµάτων Νοεµβρίου 2008, Λάρισα Ενότητα: Φράγµατα, θέµατα Υδραυλικής-Υδρολογίας

βροχοπτώσεων 1 ο Πανελλήνιο Συνέδριο Μεγάλων Φραγµάτων Νοεµβρίου 2008, Λάρισα Ενότητα: Φράγµατα, θέµατα Υδραυλικής-Υδρολογίας Σύγχρονες τάσεις στην εκτίµηση ακραίων βροχοπτώσεων 1 ο Πανελλήνιο Συνέδριο Μεγάλων Φραγµάτων 13-15 Νοεµβρίου 2008, Λάρισα Ενότητα: Φράγµατα, θέµατα Υδραυλικής-Υδρολογίας ηµήτρης Κουτσογιάννης και Νίκος

Διαβάστε περισσότερα

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός ηµήτρης Τσίνογου ρ. Μηχανοόγος Μηχανικός ΤΕΙ Σερρών Τµήµα Μηχανοογίας Αγωγή Μόνιµη κατάσταση Κεφάαιο 3 ΤΕΙ Σερρών Τµήµα Μηχανοογίας Το επίπεδο τοίχωµα Τοιχοποιία σπιτιών (τοίχοι, παράθυρα, στέγες) Τοιχώµατα

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ ΠΑΝΕΠΙΣΗΜΙΟ ΑΙΓΑΙΟΥ ΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ Σηµειώσεις Μη Γραµµικού Προγραµµατισµού Β Κούτρας ΧΙΟΣ Β Κούτρας ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΙΣΜΟΣ ΕΙΣΑΓΩΓΗ Στο κοµµάτι αυτό

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΙΚΗ ΚΑΙ ΕΝΝΟΙΟΛΟΓΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΠΙΘΑΝΗΣ ΜΕΓΙΣΤΗΣ ΚΑΤΑΚΡΗΜΝΙΣΗΣ

ΠΙΘΑΝΟΤΙΚΗ ΚΑΙ ΕΝΝΟΙΟΛΟΓΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΠΙΘΑΝΗΣ ΜΕΓΙΣΤΗΣ ΚΑΤΑΚΡΗΜΝΙΣΗΣ ΠΙΘΑΝΟΤΙΚΗ ΚΑΙ ΕΝΝΟΙΟΛΟΓΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΠΙΘΑΝΗΣ ΜΕΓΙΣΤΗΣ ΚΑΤΑΚΡΗΜΝΙΣΗΣ Σίµων-Μιχαήλ Παπαλεξίου Επιβλέπων:. Κουτσογιάννης, Αν. Καθηγητής Αθήνα, Σεπτέµβριος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΙΕΠΙΣΤΗΜΟΝΙΚΟ ΙΑΤΜΗΜΑΤΙΚΟ

Διαβάστε περισσότερα

Πιθανοτική προσέγγιση των υδρολογικών µεταβλητών

Πιθανοτική προσέγγιση των υδρολογικών µεταβλητών Πιθανοτική προσέγγιση των υδρολογικών µεταβλητών Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων Αθήνα ΣΥΛΛΟΓΙΣΜΟΣ-ΕΠΑΓΩΓΗ (DEDUCTION INDUCTION) Ο Αριστοτέλης δίδαξε ότι κάθε πεποίθηση προέρχεται

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα

Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα Επιμέεια: Ι. Λυχναρόπουος. Έστω ο πίνακας 3. Δείξτε ότι το διάνυσμα v (,3) είναι ένα ιδιοδιάνυσμα που αντιστοιχεί στην ιδιοτιμή

Διαβάστε περισσότερα

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Οαλγόριθµος καθόδου κατά την µέγιστη κλίση (Steepest-descent)

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Οαλγόριθµος καθόδου κατά την µέγιστη κλίση (Steepest-descent) ΒΕΣ Προσαρµοστικά Συστήµατα στις Τηεπικοινωνίες Προσαρµοστικοί Αγόριθµοι Υοποίησης Βέτιστων Ψηφιακών Φίτρων: Οαγόριθµος καθόδου κατά την (Steepest-escent) κατά τη Βιβιογραφία Ενότητας Benvent []: Κεφάαι

Διαβάστε περισσότερα

3. Χαρακτηριστικές Παράμετροι Κατανομών

3. Χαρακτηριστικές Παράμετροι Κατανομών . Χαρακτηριστικές Παράμετροι Κατανομών - Αναμενόμενη ή μέση τιμή μιας διακριτής τυχαίας μεταβητής. Θα ήταν αρκετά χρήσιμο να γνωρίζουμε γύρω από ποια τιμή «κυμαίνεται» η τ.μ. Χ. γύρω από την οποία «απώνεται»

Διαβάστε περισσότερα

ΥΔΡΟΛΟΓΙΑ. Ενότητα 3:Στατιστική και πιθανοτική ανάλυση υδρομετεωρολογικών μεταβλητών- Ασκήσεις. Καθ. Αθανάσιος Λουκάς

ΥΔΡΟΛΟΓΙΑ. Ενότητα 3:Στατιστική και πιθανοτική ανάλυση υδρομετεωρολογικών μεταβλητών- Ασκήσεις. Καθ. Αθανάσιος Λουκάς Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας ΥΔΡΟΛΟΓΙΑ Ενότητα 3:Στατιστική και πιθανοτική ανάλυση υδρομετεωρολογικών μεταβλητών- Ασκήσεις Καθ. Αθανάσιος Λουκάς Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών

Διαβάστε περισσότερα

ΤΟ EWMA ΙΑΓΡΑΜΜΑ ΓΙΑ ΤΗΝ ΙΑΚΥΜΑΝΣΗ ΜΕ ΕΚΤΙΜΩΜΕΝΕΣ ΠΑΡΑΜΕΤΡΟΥΣ

ΤΟ EWMA ΙΑΓΡΑΜΜΑ ΓΙΑ ΤΗΝ ΙΑΚΥΜΑΝΣΗ ΜΕ ΕΚΤΙΜΩΜΕΝΕΣ ΠΑΡΑΜΕΤΡΟΥΣ Εηνικό Στατιστικό Ινστιτούτο Πρακτικά 7 ου Πανεηνίου Συνεδρίου Στατιστικής (4 σε. 9-98 ΤΟ EWA ΙΑΓΡΑΜΜΑ ΓΙΑ ΤΗΝ ΙΑΚΥΜΑΝΣΗ ΜΕ ΕΚΤΙΜΩΜΕΝΕΣ ΠΑΡΑΜΕΤΡΟΥΣ Π.Ε. Μαραβεάκης Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα

Διαβάστε περισσότερα

ΠΡΟΧΩΡΗΜΕΝΗ Υ ΡΟΛΟΓΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΣΤΑΤΙΣΤΙΚΗ

ΠΡΟΧΩΡΗΜΕΝΗ Υ ΡΟΛΟΓΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΣΤΑΤΙΣΤΙΚΗ ΠΡΟΧΩΡΗΜΕΝΗ Υ ΡΟΛΟΓΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΣΤΑΤΙΣΤΙΚΗ Νίκος Μαµάσης Εργαστήριο Υδροογίας και Αξιοποίησης Υδατικών Πόρων Αθήνα 7 ΙΑΡΘΡΩΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ: Εισαγωγή στη γεωστατιστική ΕΙΣΑΓΩΓΗ ΧΩΡΙΚΗ ΜΕΤΑΒΛΗΤΟΤΗΤΑ

Διαβάστε περισσότερα

ΥΔΡΟΛΟΓΙΑ. Ενότητα 4: Όμβριες Καμπύλες - Ασκήσεις. Καθ. Αθανάσιος Λουκάς. Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων

ΥΔΡΟΛΟΓΙΑ. Ενότητα 4: Όμβριες Καμπύλες - Ασκήσεις. Καθ. Αθανάσιος Λουκάς. Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας ΥΔΡΟΛΟΓΙΑ Ενότητα 4: Όμβριες Καμπύλες - Ασκήσεις Καθ. Αθανάσιος Λουκάς Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών

Διαβάστε περισσότερα

Αριθµητικά χαρακτηριστικά µιάς τυχαίας µεταβλητής

Αριθµητικά χαρακτηριστικά µιάς τυχαίας µεταβλητής Αριθµητικά χαρακτηριστικά µιάς τυχαίας µεταβητής (Α) Mέση τιµή Ορισµός Η µέση τιµή ή µαθηµατική επίδα µιας τ.µ. Χ µε πυκνότητα πιθανότητας f (x) είναι ο αριθµός: µ E() + xf (x) xf (x)dx διακριτή συνεχής

Διαβάστε περισσότερα

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6) Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής

Διαβάστε περισσότερα

Κεφάλαιο 5 Τυπική στατιστική ανάλυση μιας υδρολογικής μεταβλητής

Κεφάλαιο 5 Τυπική στατιστική ανάλυση μιας υδρολογικής μεταβλητής Κεφάλαιο 5 Τυπική στατιστική ανάλυση μιας υδρολογικής μεταβλητής Στο κεφάλαιο αυτό θα εφαρμόσουμε τις αρχές και μεθόδους της στατιστικής, τις οποίες παρουσιάσαμε ήδη στο κεφάλαιο 3, σε ένα από τα πιο τυπικά

Διαβάστε περισσότερα

Πλημμύρες Πιθανοτικό πλαίσιο

Πλημμύρες Πιθανοτικό πλαίσιο Πλημμύρες Germany, Bavaria, Franconia, Bamberg, Old City Hall over river Νίκος Μαμάσης Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων Αθήνα 4 Ίχνη πλημμύρας σε κτήρια της Κολωνίας Πηγή: Early Warning

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ ΥΔΡΟΛΟΓΙΚΩΝ ΦΑΙΝΟΜΕΝΩΝ

ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ ΥΔΡΟΛΟΓΙΚΩΝ ΦΑΙΝΟΜΕΝΩΝ ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ ΥΔΡΟΛΟΓΙΚΩΝ ΦΑΙΝΟΜΕΝΩΝ Ανάλυση συχνότητας ενός υδρολογικού μεγέθους: Είναι η εύρεση της σχέσεως μεταξύ του υδρολογικού φαινομένου και της πιθανότητας εμφανίσεως του μεγέθους αυτού. Μεταβλητή:

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Ι. Λυχναρόπουλος

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Ι. Λυχναρόπουλος Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Ι. Λυχναρόπουος Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα 3. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές ποαπότητες

Διαβάστε περισσότερα

ΠΡΟΧΩΡΗΜΕΝΗ Υ ΡΟΛΟΓΙΑ. Πιθανοτική προσέγγιση υδρολογικών µεταβλητών

ΠΡΟΧΩΡΗΜΕΝΗ Υ ΡΟΛΟΓΙΑ. Πιθανοτική προσέγγιση υδρολογικών µεταβλητών ΠΡΟΧΩΡΗΜΕΝΗ Υ ΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση υδρολογικών µεταβλητών Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων Αθήνα ΣΥΛΛΟΓΙΣΜΟΣ-ΕΠΑΓΩΓΗ (DEDUCTION INDUCTION) Ο Αριστοτέλης δίδαξε ότι κάθε πεποίθηση

Διαβάστε περισσότερα

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ακαδημαϊκό έτος Λύσεις για την Προαιρετική Εργασία

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ακαδημαϊκό έτος Λύσεις για την Προαιρετική Εργασία Τεχνικές Εκτίμησης Υποογιστικών Συστημάτων Ακαδημαϊκό έτος 2016-17 Λύσεις για την Προαιρετική Εργασία Φεβρουάριος 2017 Πρόβημα 1 Δίνεται το παρακάτω μητρώο με τις πιθανότητες μετάβασης μιας Μαρκοβιανής

Διαβάστε περισσότερα

Κεφάλαιο 8 Ανάλυση τυχαίας μεταβλητής εξαρτημένης από παράμετρο - Όμβριες καμπύλες

Κεφάλαιο 8 Ανάλυση τυχαίας μεταβλητής εξαρτημένης από παράμετρο - Όμβριες καμπύλες Κεφάλαιο 8 Ανάλυση τυχαίας μεταβλητής εξαρτημένης από παράμετρο - Όμβριες καμπύλες Στο κεφάλαιο αυτό θα εφαρμόσουμε τις γνώσεις όλων των προηγούμενων κεφαλαίων σε ένα τυπικό πρόβλημα της τεχνικής υδρολογίας,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: ΙΔΙΟΤΙΜΕΣ ΚΑΙ ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 4: ΙΔΙΟΤΙΜΕΣ ΚΑΙ ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ :. ΟΡΙΣΜΟΙ Δίνεται ο πίνακας Παρατηρήστε τι γίνεται όταν ποαπασιάζουμε τον Α με το διάνυσμα u u u παίρνουμε δηαδή ένα διάνυσμα ποαπάσιο του u. Η αναζήτηση διανυσμάτων που έχουν παρόμοια

Διαβάστε περισσότερα

Υ ΡΟΛΟΓΙΚΗ ΜΕΛΕΤΗ ΠΛΗΜΜΥΡΩΝ

Υ ΡΟΛΟΓΙΚΗ ΜΕΛΕΤΗ ΠΛΗΜΜΥΡΩΝ Υ ΡΟΛΟΓΙΚΗ ΜΕΛΕΤΗ ΠΛΗΜΜΥΡΩΝ ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 1 1.1 Αντικείµενο και διάρθρωση της µελέτης 1 1.2 Χαρακτηριστικά λεκάνης απορροής 1 1.3 Χαρακτηριστικά του ταµιευτήρα 4 1.4 Υδροµετεωρολογικοί σταθµοί

Διαβάστε περισσότερα

Μελέτη δίαιτας π. Ποταμού Κέρκυρας. Οριστική μελέτη. Υδρολογική Μελέτη Πλημμυρών

Μελέτη δίαιτας π. Ποταμού Κέρκυρας. Οριστική μελέτη. Υδρολογική Μελέτη Πλημμυρών Μελέτη δίαιτας π. Ποταμού Κέρκυρας Οριστική μελέτη Υδρολογική Μελέτη Πλημμυρών Περιεχόμενα 1. Εισαγωγή 2 1.1 Αντικείμενο και διάρθρωση της μελέτης 2 1.2 Περιγραφή λεκάνης απορροής 2 1.3 Γενικά κλιματικά

Διαβάστε περισσότερα

Οριστική Μελέτη Αποχέτευσης Κορίνθου. Υδρολογική Μελέτη Πληµµυρών

Οριστική Μελέτη Αποχέτευσης Κορίνθου. Υδρολογική Μελέτη Πληµµυρών Οριστική Μελέτη Αποχέτευσης Κορίνθου Μελέτη Χειµάρρου Ξηριά Υδρολογική Μελέτη Πληµµυρών Περιεχόµενα 1. Εισαγωγή 1 1.1 Αντικείµενο και διάρθρωση της µελέτης 1 1.2 Περιγραφή λεκάνης απορροής 1 1.3 Γενικά

Διαβάστε περισσότερα

Ενότητα 6 η : Μεταβατική αγωγή Θερμότητας

Ενότητα 6 η : Μεταβατική αγωγή Θερμότητας ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπηρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 6 η : Μεταβατική αγωγή ερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό υικό υπόκειται

Διαβάστε περισσότερα

Σεµινάριο Αυτοµάτου Ελέγχου

Σεµινάριο Αυτοµάτου Ελέγχου Σεµινάριο Αυτοµάτου Εέγχου Μάθηµα 9 Ευστάθεια κατά Lyaunv Η έννοια της ευστάθειας κατά Lyaunv Γενικό κριτήριο ευστάθειας Παραδείγµατα Καιγερόπουος 9 Ευστάθεια κατά Lyaunv Εισαγωγή Η έννοια της ευστάθειας

Διαβάστε περισσότερα

Μεθοδολογική προσέγγιση για τις όµβριες καµπύλες της Αθήνας

Μεθοδολογική προσέγγιση για τις όµβριες καµπύλες της Αθήνας 1 Μεθοδολογική προσέγγιση για τις όµβριες καµπύλες της Αθήνας ηµήτρης Κουτσογιάννης Τοµέας Υδατικών Πόρων, Εθνικό Μετσόβιο Πολυτεχνείο Περίληψη Παρά τις εκτεταµένες έρευνες σε διεθνές επίπεδο για τη συµπεριφορά

Διαβάστε περισσότερα

Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές

Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές Εαρινό εξάμηνο 2018-2019 μήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό μήμα, Πανεπιστήμιο

Διαβάστε περισσότερα

Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών

Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών Εθνικό Μετσόβιο Πολυτεχνείο Τοµέας Υδατικών Πόρων, Υδραυλικών και Θαλάσσιων Έργων Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών. Κουτσογιάννης Α. Ευστρατιάδης Φεβρουάριος 2002 Εισαγωγή

Διαβάστε περισσότερα

4. Όρια ανάλυσης οπτικών οργάνων

4. Όρια ανάλυσης οπτικών οργάνων 4. Όρια ανάυσης οπτικών οργάνων 29 Μαΐου 2013 1 Περίθαση Οι αρχές ειτουργίας των οπτικών οργάνων που περιγράψαμε μέχρι στιγμής βασίζονται στη γεωμετρική οπτική, δηαδή την περιγραφή του φωτός ως ακτίνες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1. Μέσο μήκος ροής στα διαγράμματα ελέγχου τύπου Shewhart

ΚΕΦΑΛΑΙΟ 1. Μέσο μήκος ροής στα διαγράμματα ελέγχου τύπου Shewhart ΚΕΦΑΛΑΙΟ Μέσο μήκος ροής στα διαγράμματα εέγχου τύπου Shwhar. Διάγραμμα εέγχου τύπου Shwhar Στις παραγωγικές διεργασίες μας ενδιαφέρει η παρακοούθηση της συμπεριφορά μιας κρίσιμης ποσότητας ενός μετρήσιμου

Διαβάστε περισσότερα

ΝΙΚΟΛΑΟΥ ΙΩ. ΔΑΡΑ ΕΠΙΚΟΥΡΟΥ ΚΑΘΗΓΗΤΟΥ ΣΤΡΑΤΙΩΤΙΚΗΣ ΣΧΟΛΗΣ ΕΥΕΛΠΙΔΩΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΚΑΙ ΣΤΡΑΤΙΩΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΑΥΤΗΣ. ΤΟΜΟΣ 2 ΟΣ ΒΙΒΛΙΟ 1 ο

ΝΙΚΟΛΑΟΥ ΙΩ. ΔΑΡΑ ΕΠΙΚΟΥΡΟΥ ΚΑΘΗΓΗΤΟΥ ΣΤΡΑΤΙΩΤΙΚΗΣ ΣΧΟΛΗΣ ΕΥΕΛΠΙΔΩΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΚΑΙ ΣΤΡΑΤΙΩΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΑΥΤΗΣ. ΤΟΜΟΣ 2 ΟΣ ΒΙΒΛΙΟ 1 ο ΝΙΚΟΛΑΟΥ ΙΩ. ΔΑΡΑ ΕΠΙΚΟΥΡΟΥ ΚΑΘΗΓΗΤΟΥ ΣΤΡΑΤΙΩΤΙΚΗΣ ΣΧΟΛΗΣ ΕΥΕΛΠΙΔΩΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΚΑΙ ΣΤΡΑΤΙΩΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΑΥΤΗΣ ΤΟΜΟΣ ΟΣ ΒΙΒΛΙΟ ο ΣΤΡΑΤΗΓΙΚΗ ΑΜΥΝΑ ΕΛΛΗΝΙΚΟ ΚΕΝΤΡΟ ΕΛΕΓΧΟΥ ΟΠΛΩΝ www.rmscotrol.fo

Διαβάστε περισσότερα

ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής

ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής ΤΕΠΑΚ, Τμήμα Ποιτικών Μηχ. / Τοπογράων Μηχ. και Μηχ. Γεωπηροορικής Μάθημα 6ου Εξαμήνου: Ανώτερη Γεωδαισία (Ακαδ. Έτος 011-1) ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΕΞΑΜΗΝΟ... ιάρκεια 110 - Επιέξτε και απαντήστε σε δύο από τα

Διαβάστε περισσότερα

Έστω η πραγµατική συνάρτηση f(t) της πραγµατικής µεταβλητής t (π.χ χρόνος). Ο µετασχηµατισµός Laplace της συνάρτησης f(t) δίνεται από τη σχέση:

Έστω η πραγµατική συνάρτηση f(t) της πραγµατικής µεταβλητής t (π.χ χρόνος). Ο µετασχηµατισµός Laplace της συνάρτησης f(t) δίνεται από τη σχέση: ΜΑΘΗΜΑ : Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE. Εισαγωγή Ο µετασχηµατισµός pl και ο µετασχηµατισµός Z είναι δύο πού χρήσιµα µαθηµατικά εργαεία για την ανάυση και σχεδίαση συστηµάτων αυτοµάτου και ιδιαίτερα ΓΧΑ Γραµµικών

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΧΩΡΙΚΗΣ ΔΟΜΗΣ ΤΗΣ ΒΡΟΧΗΣ. Παρουσίαση διπλωματικής εργασίας Αθανάσιος Πασχάλης Επιβλέπων καθηγητής: Δημήτρης Κουτσογιάννης

ΣΤΟΧΑΣΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΧΩΡΙΚΗΣ ΔΟΜΗΣ ΤΗΣ ΒΡΟΧΗΣ. Παρουσίαση διπλωματικής εργασίας Αθανάσιος Πασχάλης Επιβλέπων καθηγητής: Δημήτρης Κουτσογιάννης ΣΤΟΧΑΣΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΧΩΡΙΚΗΣ ΔΟΜΗΣ ΤΗΣ ΒΡΟΧΗΣ Παρουσίαση διπλωματικής εργασίας Αθανάσιος Πασχάλης Επιβλέπων καθηγητής: Δημήτρης Κουτσογιάννης Διάρθρωση ρ της παρουσίασης Εισαγωγή Στατιστική επεξεργασία

Διαβάστε περισσότερα

ΥΔΡΟΛΟΓΙΑ. Ενότητα 3:Στατιστική και πιθανοτική ανάλυση υδρομετεωρολογικών μεταβλητών. Καθ. Αθανάσιος Λουκάς

ΥΔΡΟΛΟΓΙΑ. Ενότητα 3:Στατιστική και πιθανοτική ανάλυση υδρομετεωρολογικών μεταβλητών. Καθ. Αθανάσιος Λουκάς Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας ΥΔΡΟΛΟΓΙΑ Ενότητα 3:Στατιστική και πιθανοτική ανάλυση υδρομετεωρολογικών μεταβλητών Καθ. Αθανάσιος Λουκάς Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων

Διαβάστε περισσότερα

ΥΔΡΟΛΟΓΙΑ. Ενότητα 4: Όμβριες Καμπύλες. Καθ. Αθανάσιος Λουκάς. Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων. Τμήμα Πολιτικών Μηχανικών

ΥΔΡΟΛΟΓΙΑ. Ενότητα 4: Όμβριες Καμπύλες. Καθ. Αθανάσιος Λουκάς. Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων. Τμήμα Πολιτικών Μηχανικών Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας ΥΔΡΟΛΟΓΙΑ Καθ. Αθανάσιος Λουκάς Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Πολυτεχνική Σχολή Σχέσεις Έντασης Διάρκειας

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ Μετά από την εκτίµηση των παραµέτρων ενός προσοµοιώµατος, πρέπει να ελέγχουµε την αλήθεια της υποθέσεως που κάναµε. Είναι ορθή η υπόθεση που κάναµε? Βεβαίως συνήθως υπάρχουν

Διαβάστε περισσότερα

Κύμα ονομάζουμε τη διάδοση μιας διαταραχής από σημείο σε σημείο του χώρου με ορισμένη ταχύτητα.

Κύμα ονομάζουμε τη διάδοση μιας διαταραχής από σημείο σε σημείο του χώρου με ορισμένη ταχύτητα. ΕΙΣΑΓΩΓΗ ΕΝΝΟΙΑ ΤΟΥ ΚΥΜΑΤΟΣ Τι ονομάζουμε κύμα; Κύμα ονομάζουμε τη διάδοση μιας διαταραχής από σημείο σε σημείο του χώρου με ορισμένη ταχύτητα. Η διαταραχή μπορεί να είναι α. Η ταάντωση των μορίων του

Διαβάστε περισσότερα

Συνεργαζόµενοι φορείς: ΕΤΜΕ: Πέππας & Συνεργάτες Ε.Ε. Γραφείο Μαχαίρα Α.Ε.

Συνεργαζόµενοι φορείς: ΕΤΜΕ: Πέππας & Συνεργάτες Ε.Ε. Γραφείο Μαχαίρα Α.Ε. ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ ΕΥΡΩΠΑΪΚΟ ΤΑΜΕΙΟ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΥΚΑΛΙΩΝ Εκτίµηση πληµµυρικών ροών στην Ελλάδα σε συνθήκες υδροκλιµατικής µεταβλητότητας: Ανάπτυξη φυσικά εδραιωµένου εννοιολογικού-πιθανοτικού

Διαβάστε περισσότερα

Το πρόβλημα των μηδενικών ιδιοτιμών.

Το πρόβλημα των μηδενικών ιδιοτιμών. Το πρόβημα των μηδενικών ιδιοτιμών. Από την προηγούμενη συζήτηση έχει γίνει φανερό ότι αν η ομογενής διαφορική εξίσωση L ϕ ( = 0έχει μη μηδενική ύση (ή ύσεις που να ικανοποιεί τις (ομογενείς συνοριακές

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

Στασιμότητα χρονοσειρών Νόθα αποτελέσματα-spurious regression Ο έλεγχος στασιμότητας είναι απαραίτητος ώστε η στοχαστική ανάλυση να οδηγεί σε ασφαλή

Στασιμότητα χρονοσειρών Νόθα αποτελέσματα-spurious regression Ο έλεγχος στασιμότητας είναι απαραίτητος ώστε η στοχαστική ανάλυση να οδηγεί σε ασφαλή Χρονικές σειρές 12 Ο μάθημα: Έλεγχοι στασιμότητας ΑΝΑΚΕΦΑΛΑΙΩΣΗ: Εκτίμηση παραμέτρων γραμμικών μοντέλων Συνάρτηση μερικής αυτοσυσχέτισης Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική

Διαβάστε περισσότερα

( t) ( ) ( 0,1) ( ) ( ) ( ) ( ) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem Lindeberg Levy) τότε η τ.μ. Sn

( t) ( ) ( 0,1) ( ) ( ) ( ) ( ) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem Lindeberg Levy) τότε η τ.μ. Sn Κεντρικό Οριακό Θεώρημα (Cetral Lmt Theorem Leberg Levy Εάν ~ f (, με [ ] µ, Var [ ] σ < και S τότε η τμ S ( S S µ συγκίνει ως προς κατανομή (coverges strbuto στη Var S σ ( N ( 0,, δηαδή N( 0, ή ισοδύναμα

Διαβάστε περισσότερα

Δημήτρης Κουτσογιάννης. Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων ΣΤΑΤΙΣΤΙΚΗ ΥΔΡΟΛΟΓΙΑ

Δημήτρης Κουτσογιάννης. Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων ΣΤΑΤΙΣΤΙΚΗ ΥΔΡΟΛΟΓΙΑ Δημήτρης Κουτσογιάννης Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων ΣΤΑΤΙΣΤΙΚΗ ΥΔΡΟΛΟΓΙΑ Έκδοση 4 Αθήνα 1997 ΣΤΑΤΙΣΤΙΚΗ ΥΔΡΟΛΟΓΙΑ Δημήτρης Κουτσογιάννης Επίκουρος Καθηγητής Τομέας Υδατικών Πόρων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Mεγιστικές συναρτήσεις/τελεστές

ΚΕΦΑΛΑΙΟ 2. Mεγιστικές συναρτήσεις/τελεστές ΚΕΦΑΛΑΙΟ 2 Mεγιστικές συναρτήσεις/τεεστές 2 Eισαγωγή Στο κεφάαιο αυτό ορίζουµε την έννοια του µεγιστικού τεεστή και δείχνουµε τη σπουδαιότητά του όσον αφορά την απόδειξη θεωρηµάτων που σχετίζονται µε τη

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ η Εηνική Μαθηματική Ουμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, ΦΕΒΡΟΥΑΡΙΟΥ 009 ΟΙ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ Θέματα μεγάων τάξεων ΠΡΟΒΛΗΜΑ Να προσδιορίσετε τις τιμές του θετικού ακέραιου 9n Α n 7 είναι

Διαβάστε περισσότερα

Support Vector Machines

Support Vector Machines KEΣ 3 Αναγνώριση Προτύπων και Ανάυση Εικόνας Support Vector Machnes ΤµήµαΕπιστήµης και Τεχνοογίας Τηεπικοινωνιών Πανεπιστήµιο Πεοποννήσου 7 colas sapatsouls Εισαγωγή Γραµµικά διαχωρίσιµες κάσεις Μη γραµµικά

Διαβάστε περισσότερα

Γραπτή Εξέταση στο Μάθημα "ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ" 6ο Εξάμηνο Ηλεκτρολόγων Μηχ. & Μηχ. Υπολογιστών Θέματα και Λύσεις. μ 1.

Γραπτή Εξέταση στο Μάθημα ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 6ο Εξάμηνο Ηλεκτρολόγων Μηχ. & Μηχ. Υπολογιστών Θέματα και Λύσεις. μ 1. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηεκτρονικής & Συστημάτων Πηροφορικής Εργαστήριο Διαχείρισης και Βέτιστου Σχεδιασμού Δικτύων - NETMODE

Διαβάστε περισσότερα

Απλές Μέθοδοι Εκτίμησης Ακραίων Γεγονότων Βροχής

Απλές Μέθοδοι Εκτίμησης Ακραίων Γεγονότων Βροχής Ημερίδα: «Ολοκληρωμένος Σχεδιασμός Αντιπλημμυρικής Προστασίας: Η Πρόκληση για το Μέλλον», Παρασκευή 23 Απριλίου 2010 Απλές Μέθοδοι Εκτίμησης Ακραίων Γεγονότων Βροχής Ανδρέας Λαγγούσης Πολιτικός Μηχανικός,

Διαβάστε περισσότερα

ΦΥΕ34 Λύσεις 6 ης Εργασίας Ασκήσεις

ΦΥΕ34 Λύσεις 6 ης Εργασίας Ασκήσεις ΦΥΕ4 Λύσεις 6 ης Εργασίας Ασκήσεις ) α)η διακριτική ικανότητα του φράγµατος ορίζεται ως ο όγος, όπου, +δ, δ δύο µήκη κύµατος που µόις διακρίνονται µε γυµνό οφθαµό και δ πού µικρό Αυτό συµβαίνει σύµφωνα

Διαβάστε περισσότερα

) = 2lnx lnx 2

) = 2lnx lnx 2 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Σεπτέµβριος 8 Τµήµα Οικονοµικών Επιστηµών Μάθηµα: Μικροοικονοµική Ι ιδάσκοντες: Β. Ράπανος-Ι Χειάς Εξέταση στη Μικροοικονοµική Ι Στην εξέταση αυτή δίνονται δύο σύνοα το Α και το Β.

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ 11. β) τον εκτιμητή μέγιστης πιθανοφάνειας για την άγνωστη παράμετρο λ 0.

ΦΡΟΝΤΙΣΤΗΡΙΟ 11. β) τον εκτιμητή μέγιστης πιθανοφάνειας για την άγνωστη παράμετρο λ 0. ΦΡΟΝΤΙΣΤΗΡΙΟ Άσκηση Έστω X, X,..., X d τυχαίες μεταβλητές με ~ Posso ( ), Να εξάγετε α) τη συνάστηση πιθανοφάνειας στις 3 μορφές τις και β) τον εκτιμητή μέγιστης πιθανοφάνειας για την άγνωστη παράμετρο

Διαβάστε περισσότερα

Στατιστική, Άσκηση 2. (Κανονική κατανομή)

Στατιστική, Άσκηση 2. (Κανονική κατανομή) Στατιστική, Άσκηση 2 (Κανονική κατανομή) Στον πίνακα που ακολουθεί δίνονται οι μέσες παροχές όπως προέκυψαν από μετρήσεις πεδίου σε μια διατομή ενός ποταμού. Ζητείται: 1. Να αποδειχθεί ότι το δείγμα προσαρμόζεται

Διαβάστε περισσότερα

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα Επανέκδοση

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

Σύγχρονες τάσεις στην εκτίµηση ακραίων βροχοπτώσεων

Σύγχρονες τάσεις στην εκτίµηση ακραίων βροχοπτώσεων Σύγχρονες τάσεις στην εκτίµηση ακραίων βροχοπτώσεων ηµήτρης Κουτσογιάννης Αναπληρωτής Καθηγητής, Τοµέας Υδατικών Πόρων και Περιβάλλοντος ΕΜΠ Νίκος Μαµάσης Λέκτορας, Τοµέας Υδατικών Πόρων και Περιβάλλοντος

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Επώνυμο: Όνομα: ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ ΤΗΛ : 777 94 ΑΡΤΑΚΗΣ Κ. ΤΟΥΜΠΑ ΤΗΛ : 99 9494 www.syghrono.gr Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ --7 ΕΝΔΕΙΚΤΙΚΕΣ

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΝΧΕΙΟ ΣΧΟΛΗ ΠΟΛΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΤΟΜΕΑΣ ΥΔΑΤΙΝΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΝΧΕΙΟ ΣΧΟΛΗ ΠΟΛΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΤΟΜΕΑΣ ΥΔΑΤΙΝΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΝΧΕΙΟ ΣΧΟΛΗ ΠΟΛΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΤΟΜΕΑΣ ΥΔΑΤΙΝΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ «Πολυμεταβλητή στατιστική ανάλυση ακραίων βροχοπτώσεων και απορροών σε 400 λεκάνες απορροής από την βάση MOPEX»

Διαβάστε περισσότερα

(2.8) Η αθροιστική πιθανότητα, που προκύπτει με ολοκλήρωση της παραπάνω σχέσης (2.8), δίνεται από τη σχέση: σ π

(2.8) Η αθροιστική πιθανότητα, που προκύπτει με ολοκλήρωση της παραπάνω σχέσης (2.8), δίνεται από τη σχέση: σ π Κεφάλαιο Στατιστικές έννοιες στην Υδρολογία Τα φυσικά γεγονότα όπως είναι οι βροχοπτώσεις, η εξατμισοδιαπνοή και η απορροή είναι από τη φύση τους τυχαία. Οι παρατηρήσεις μας γι αυτά συχνά περιλαμβάνουν

Διαβάστε περισσότερα

Κεφάλαιο 3 Εισαγωγικές έννοιες στατιστικής

Κεφάλαιο 3 Εισαγωγικές έννοιες στατιστικής Κεφάλαιο 3 Εισαγωγικές έννοιες στατιστικής Η στατιστική είναι εφαρμοσμένος κλάδος της πιθανοθεωρίας ο οποίος ασχολείται με πραγματικά προβλήματα, επιδιώκοντας την εξαγωγή συμπερασμάτων βασισμένων σε παρατηρήσεις.

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,

Διαβάστε περισσότερα

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβίου Μαθηµατικών Προσαναταισµού Β Λυκείου. Η έννοια του διανύσµατος. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός ποαπασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβίου

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32 Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 22 Μαΐου 2017 1/32 Εισαγωγή: Τυπικό παράδειγμα στατιστικού ελέγχου υποθέσεων. Ενας νέος τύπος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ A. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες

Διαβάστε περισσότερα

Στατιστική Εισαγωγικές Έννοιες

Στατιστική Εισαγωγικές Έννοιες Στατιστική Εισαγωγικές Έννοιες Στατιστική: η επιστήµη που παρέχει µεθόδους και εργαλεία για την οργάνωση, συστηµατική περιγραφή και περιληπτική παρουσίαση δεδοµένων, καθώς και για την ανάλυση της πληροφορίας

Διαβάστε περισσότερα

Κλιματική αλλαγή, δυναμική Hurst- Kolmogorov και αβεβαιότητα

Κλιματική αλλαγή, δυναμική Hurst- Kolmogorov και αβεβαιότητα Εθνικό Μετσόβιο Πολυτεχνείο ΔΠΜΣ Επιστήμη και Τεχνολογία Υδατικών Πόρων Για το μάθημα «Διαχείριση Υδατικών Πόρων» Κλιματική αλλαγή, δυναμική Hurst- Kolmogorov και αβεβαιότητα Μαρία Καραναστάση Γεωργία

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΚΛΙΜΑΤΙΚΩΝ ΑΛΛΑΓΩΝ ΓΙΑ ΤΟ ΝΗΣΙ ΤΗΣ ΝΑΞΟΥ

ΔΙΕΡΕΥΝΗΣΗ ΚΛΙΜΑΤΙΚΩΝ ΑΛΛΑΓΩΝ ΓΙΑ ΤΟ ΝΗΣΙ ΤΗΣ ΝΑΞΟΥ ΔΙΕΡΕΥΝΗΣΗ ΚΛΙΜΑΤΙΚΩΝ ΑΛΛΑΓΩΝ ΓΙΑ ΤΟ ΝΗΣΙ ΤΗΣ ΝΑΞΟΥ ΜΑΜΜΑΣ ΚΩΝ/ΝΟΣ ΑΜ:331/2003032 ΝΟΕΜΒΡΙΟΣ 2010 Ευχαριστίες Σε αυτό το σημείο θα ήθελα να ευχαριστήσω όλους όσους με βοήθησαν να δημιουργήσω την παρούσα

Διαβάστε περισσότερα

5.1 Ο ΕΛΕΓΧΟΣ SMIRNOV

5.1 Ο ΕΛΕΓΧΟΣ SMIRNOV 5. Ο ΕΛΕΓΧΟΣ SMIRNOV Έστω δύο ανεξάρτητα τυχαία δείγματα, 2,..., n και, 2,..., m n και m παρατηρήσεων πάνω στις τυχαίες μεταβλητές και, αντίστοιχα. Έστω, επίσης, ότι F (), (, ) και F (y), y (, ) είναι

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία ακραίων τιμών

Εισαγωγή στη θεωρία ακραίων τιμών Εισαγωγή στη θεωρία ακραίων τιμών Αντικείμενο της θεωρίας ακραίων τιμών αποτελεί: Η ανάπτυξη και μελέτη στοχαστικών μοντέλων με σκοπό την επίλυση προβλημάτων που σχετίζονται με την εμφάνιση «πολύ μεγάλων»

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΝΙΚΟΛΑΟΥ ΙΩ ΔΑΡΑ ΕΠΙΚΟΥΡΟΥ ΚΑΘΗΓΗΤΗ ΣΤΡΑΤΙΩΤΙΚΗΣ ΣΧΟΛΗΣ ΕΥΕΛΠΙΔΩΝ ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ ος ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ ΑΡΙΘΜΗΤΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ ΙΔΙΟΤΙΜΩΝ ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΑΛΓΕΒΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. Προσομοίωση Βασικών Στοχαστικών Ανελίξεων : Ανέλιξη Poisson και Κίνηση Brown

ΚΕΦΑΛΑΙΟ 4. Προσομοίωση Βασικών Στοχαστικών Ανελίξεων : Ανέλιξη Poisson και Κίνηση Brown ΚΕΦΑΛΑΙΟ 4 Προσομοίωση Βασικών Στοχαστικών Ανείξεων : Ανέιξη Pi και Κίνηση Bw Είναι γνωστό ότι, αν το αποτέεσμα ενός τυχαίου πειράματος είναι ένας αριθμός στο R, τότε αυτό να μπορεί να εκφραστεί χρησιμοποιώντας

Διαβάστε περισσότερα

ΜΑΡΚΟΠΟΥΛΟΣ ΑΠΟΣΤΟΛΟΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΙΟΥΛΙΟΣ 2017

ΜΑΡΚΟΠΟΥΛΟΣ ΑΠΟΣΤΟΛΟΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΙΟΥΛΙΟΣ 2017 ΜΑΡΚΟΠΟΥΛΟΣ ΑΠΟΣΤΟΛΟΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΙΟΥΛΙΟΣ 2017 Κίνητρα μελέτης πλημμυρικών παροχών Τεράστιες επιπτώσεις

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

ιερεύνηση εµπειρικών σχέσεων για την εκτίµηση των πληµµυρικών αιχµών στην Κύπρο Γαλιούνα Ελένη, Πολιτικός Μηχανικός ΕΜΠ Φεβρουάριος 2011

ιερεύνηση εµπειρικών σχέσεων για την εκτίµηση των πληµµυρικών αιχµών στην Κύπρο Γαλιούνα Ελένη, Πολιτικός Μηχανικός ΕΜΠ Φεβρουάριος 2011 ιερεύνηση εµπειρικών σχέσεων για την εκτίµηση των πληµµυρικών αιχµών στην Κύπρο Γαλιούνα Ελένη, Πολιτικός Μηχανικός ΕΜΠ Φεβρουάριος 2011 Αντικείµενο εργασίας Επεξεργασία πρωτογενών δεδοµένων απορροής &

Διαβάστε περισσότερα

Κεφάλαιο 4 Ειδικές έννοιες θεωρίας πιθανοτήτων στην υδρολογία 4.1 Πιθανοθεωρητική περιγραφή υδρολογικών διεργασιών

Κεφάλαιο 4 Ειδικές έννοιες θεωρίας πιθανοτήτων στην υδρολογία 4.1 Πιθανοθεωρητική περιγραφή υδρολογικών διεργασιών Κεφάλαιο 4 Ειδικές έννοιες θεωρίας πιθανοτήτων στην υδρολογία 4.1 Πιθανοθεωρητική περιγραφή υδρολογικών διεργασιών Από την οπτική γωνία της θεωρίας πιθανοτήτων οι υδρολογικές διεργασίες είναι στοχαστικές

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων ΠΡΑΓΜΑΤΙΚΟ ΚΟΣΤΟΣ ΣΥΛΛΟΓΗ ΠΛΗΡΟΦΟΡΙΩΝ ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΕΠΙΛΟΓΗ ΚΑΤΑΝΟΜΗΣ Υπολογισμός πιθανοτήτων και πρόβλεψη τιμών από τις τιμές των παραμέτρων και

Διαβάστε περισσότερα

Β. Στο διπλανό σχήμα παρουσιάζεται η γραφική παράσταση της

Β. Στο διπλανό σχήμα παρουσιάζεται η γραφική παράσταση της ΕΥΚΛΕΙΔΗΣ 96 Διαγώνισμα μαθηματικών Χρήστος Λαζαρίδης Α1. Να αποδείξετε ότι ένα πουώνυμο Ρ(x) έχει παράγοντα το x-μ άν και μόνο αν το ρ είναι ρίζα του Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές

Διαβάστε περισσότερα