Q = ( P) + 1.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Q = (2 3 5... P) + 1."

Transcript

1 Η ΑΠΟΛΟΓΙΑ ΕΝΟΣ ΜΑΘΗΜΑΤΙΚΟΥ G.H. Hardy ΘΑ ΠΡΕΠΕΙ ΝΑ ΕΙΝΑΙ Η Η ΦΑΝΕΡΟ ότι, αν θέλουµε να έχουµε οποιαδήποτε πιθανότητα να προχωρήσει η συζήτηση, οφείλω να δώσω παραδείγµατα «πραγµατικών» µαθηµατικών θεωρηµάτων θεωρήµατα που ο κάθε µαθηµατικός θα παραδεχτεί ότι είναι πρώτης τάξεως. Και ως προς αυτό βρίσκοµαι σε' εξαιρετικά µειονεκτική θέση εξ αιτίας των περιορισµών υπό τους οποίους γράφω. Αφ' ενός µεν τα παραδείγµατα µου πρέπει να είναι πολύ απλά και κατανοητά για τον αναγνώστη που δεν έχει ειδικές µαθηµατικές γνώσεις. Καµιά λεπτοµερής προκαταρκτική εξήγηση δεν θα πρέπει να είναι αναγκαία, και ο αναγνώστης πρέπει να είναι σε θέση να παρακολουθεί τόσο τις αποδείξεις όσο και τις διατυπώσεις. Αυτές οι συνθήκες αποκλείουν, επί παραδείγµατι, πολλά από τα πιο όµορφα θεωρήµατα της Αριθµοθεωρίας, όπως το θεώρηµα «των δύο τετραγώνων» του Fermat ή τον νόµο των τετραγωνικών αντίστροφων. Αφ' ετέρου δε, τα παραδείγµατα µου θα πρέπει να προέρχονται από τα «καθαρά» Μαθηµατικά, τα µαθηµατικά του εργαζόµενου επαγγελµατία µαθηµατικού. Και αυτή η συνθήκη αποκλείει ένα σηµαντικό κοµµάτι τους που θα ήταν συγκριτικά εύκολο να γίνει κατανοητό, αλλά το οποίο υπεισέρχεται στη Μαθηµατική Λογική και Φιλοσοφία. ύσκολα µπορώ να πετύχω κάτι καλύτερο από το να επιστρέψω στους Έλληνες. Θα διατυπώσω και θα αποδείξω δύο από τα διάσηµα θεωρήµατα των Ελληνικών Μαθηµατικών. Είναι µεν «απλά» θεωρήµατα τόσο ως προς την σύλληψη όσο και ως προς την εκτέλεση, αλλά δεν υπάρχει καµιά αµφιβολία ότι είναι θεωρήµατα πρώτης τάξεως. Το κάθε ένα από αυτά είναι τόσο σύγχρονο και σηµαντικό όπως κι όταν ανεκαλύφθη - εδώ και χρόνια παρέµειναν ανέπαφα. Τελικά, οι διατυπώσεις και οι αποδείξεις τους µπορούν να γίνουν κτήµα ενός ευφυούς αναγνώστη µέσα σε µια ώρα, οσοδήποτε αδύνατα κι αν είναι τα µαθηµατικά του εφόδια. Ι. Το πρώτο είναι η απόδειξη του Ευκλείδη [1] για την ύπαρξη απείρου πλήθους πρώτων αριθµών. Οι πρώτοι αριθµοί, ή απλώς πρώτοι, είναι οι αριθµοί: (Α) 2,3,5,7,11,13,17,19,23,29,... οι οποίοι δεν µπορούν να αναλυθούν σε γινόµενο µικρότερων παραγόντων [2]. Έτσι, ο 37 και ο 317 είναι πρώτοι. Οι πρώτοι είναι το υλικό από το οποίο κτίζονται όλοι οι αριθµοί µέσω πολλαπλασιασµού: Έτσι, 666 = Κάθε αριθµός που δεν είναι ο ίδιος πρώτος, διαιρείται τουλάχιστον από έναν πρώτο (βεβαίως, συνήθως διαιρείται από διαφόρους). Πρέπει να αποδείξουµε ότι υπάρχουν άπειροι πρώτοι, δηλαδή ότι η ακολουθία (Α) δεν τελειώνει ποτέ. Ας υποθέσουµε ότι τελειώνει, και ότι 2, 3, 5,... P είναι η πλήρης ακολουθία (ώστε ο P να είναι ο µεγαλύτερος πρώτος). Με αυτή την υπόθεση, ας θεωρήσουµε τον αριθµό Q που ορίζεται από τον τύπο: Q = ( P) + 1. Είναι ξεκάθαρο ότι ο Q δεν διαιρείται µε κανέναν από τους 2, 3, 5,... P αφού αφήνει υπόλοιπο 1. Αλλά αν ο ίδιος ο Q δεν είναι πρώτος, διαιρείται από κάποιον πρώτο, και εποµένως υπάρχει κάποιος πρώτος (ο οποίος µπορεί να είναι ο ίδιος ο Q) µεγαλύτερος από οποιονδήποτε απ' αυτούς. Αυτό αντιφάσκει µε την υπόθεση µας ότι δεν υπάρχει πρώτος µεγαλύτερος από τον P, και άρα η υπόθεση µας είναι εσφαλµένη.

2 Η απόδειξη έγινε µε εις άτοπον απαγωγή, και η εις άτοπον απαγωγή που ο Ευκλείδης αγαπούσε τόσο πολύ, είναι ένα από τα ωραιότερα όπλα του µαθηµατικού." Είναι πιο όµορφο από οποιοδήποτε σκακιστικό γκαµπί. 3 Ένας σκακιστής µπορεί να θυσιάσει ένα πιόνι, ή ακόµη και ένα κοµµάτι, αλλά ο µαθηµατικός προσφέρει το ίδιο το παιγνίδι. II. Το δεύτερο παράδειγµα µου είναι η απόδειξη του Πυθαγόρα [4] για το ότι ο 2 είναι άρρητος. Ένας ρητός αριθµός είναι ένα κλάσµα a, όπου οι a, b είναι ακέραιοι. Μπορεί να b υποθέσουµε ότι οι a, b δεν έχουν κοινό παράγοντα, αφού αν είχαν θα µπορούσαµε να τον απαλείψουµε. Το να πούµε ότι ο «2 είναι άρρητος» είναι απλώς ένας άλλος τρόπος για να πούµε ότι ο 2 δεν µπορεί να γραφεί στην µορφή (alb) 2, το οποίο είναι το ίδιο µε το να πούµε ότι η εξίσωση: (Β) α 2 = 2β 2 δεν µπορεί να ικανοποιηθεί από ακέραιες τιµές των a, b που δεν έχουν κοινό παράγοντα. Αυτό είναι ένα θεώρηµα καθαρής αριθµητικής που δεν απαιτεί καµία γνώση «αρρήτων αριθµών» ούτε εξαρτάται από οποιαδήποτε θεωρία για τη φύση τους. Το αποδεικνύουµε ξανά µε εις άτοπον απαγωγή. Υποθέτουµε ότι η εξίσωση (Β) είναι αληθής και ότι a, b ακέραιοι χωρίς κοινό παράγοντα. Έπεται από την (Β) ότι ο α 2 είναι άρτιος (αφού ο 2b 2 διαιρείται µε το 2), και άρα ο α είναι άρτιος (αφού το τετράγωνο ενός περιττού είναι περιττός). Αν ο α είναι άρτιος, τότε (C) a = 2c για κάποιον ακέραιο c Και εποµένως 2b 2 =a 2 =(2c) 2 =4c 2 ή (D) b 2 =2c 2 Άρα ο b 2 είναι άρτιος και εποµένως (για τους ίδιους λόγους όπως πριν) ο b είναι άρτιος. Αυτό θα πει ότι ο α και ο b είναι και οι δύο άρτιοι και έτσι έχουν κοινό παράγοντα το 2, πράγµα που αντιφάσκει προς την υπόθεση µας και εποµένως η υπόθεση µας είναι ψευδής. Από το θεώρηµα του Πυθαγόρα έπεται ότι η διαγώνιος ενός τετραγώνου είναι ασύµµετρος προς την πλευρά (ότι ο λόγος τους δεν είναι ρητός αριθµός, δηλαδή δεν υπάρχει µονάδα µήκους της οποίας η πλευρά και η διαγώνιος να είναι ακέραια πολλαπλάσια). Αυτό συµβαίνει επειδή, αν πάρουµε την πλευρά του ως µονάδα µήκους και το µήκος της διαγωνίου είναι d, τότε από ένα πολύ οικείο θεώρηµα το οποίο επίσης αποδίδεται στον Πυθαγόρα [5], d 2 = =2 και άρα ο d δεν µπορεί να είναι ρητός. Θα µπορούσα να αναφέρω οσαδήποτε θαυµάσια θεωρήµατα από την Αριθµοθεωρία, των οποίων το νόηµα ήταν σε θέση να καταλάβει ο καθένας. Για παράδειγµα, υπάρχει το αποκαλούµενο «Θεµελιώδες Θεώρηµα της Αριθµητικής» που λέει ότι οποιοσδήποτε ακέραιος µπορεί να αναλυθεί, κατά έναν και µόνο τρόπο, σε

3 γινόµενο πρώτων. Έτσι, 666 = και δεν υπάρχει άλλη ανάλυση. Είναι αδύνατον 666 = ή = (και µπορούµε να το δούµε χωρίς να κάνουµε τον πολλαπλασιασµό). Αυτό το θεώρηµα, όπως το συµπεραίνει κανείς κι από το όνοµα του, είναι το θεµέλιο της ανωτέρας αριθµητικής. Αλλά η απόδειξη, αν και δεν είναι «δύσκολη», απαιτεί µια κάπως εκτεταµένη εισαγωγή και µπορεί να θεωρηθεί βασανιστική για κάποιον µη µαθηµατικό αναγνώστη. Ένα άλλο περίφηµο και όµορφο θεώρηµα είναι το «Θεώρηµα των δύο τετραγώνων» του Fermat. Οι πρώτοι (αν αγνοηθεί η ειδική περίπτωση του 2) µπορεί να διαταχθούν σε δύο κατηγορίες: στους πρώτους 5,13,17,29,37,41,... οι οποίοι αφήνουν υπόλοιπο 1 όταν διαιρεθούν µε το 4, και στους πρώτους 3,7,11,19,23,31,... οι οποίοι αφήνουν υπόλοιπο 3 όταν διαιρεθούν µε το 4. Όλοι οι πρώτοι της πρώτης κατηγορίας, και κανένας της δεύτερης, µπορούν να γραφούν ως το άθροισµα των τετραγώνων δύο ακεραίων. Έτσι, 5 = , 13 = = , 29 = Αλλά, ο 3, ο 7, ο 11 και ο 19 δεν µπορούν να εκφραστούν µε αυτό τον τρόπο (όπως µπορεί να ελέγξει ο αναγνώστης µε δοκιµές). Αυτό είναι το θεώρηµα του Fermat, το οποίο κατατάσσεται, και δίκαια, στα ωραιότερα της Αριθµητικής. υστυχώς, δεν υπάρχει απόδειξη στα πλαίσια της αντίληψης οποιουδήποτε δεν είναι αρκετά έµπειρος µαθηµατικός. Υπάρχουν επίσης όµορφα θεωρήµατα στη Συνολοθεωρία, όπως το θεώρηµα του Cantor για την «µη αριθµησιµότητα» του συνεχούς. Εδώ ακριβώς υπάρχει η αντίστροφη δυσκολία. Η απόδειξη είναι αρκετά εύκολη, όταν κάποιος κατέχει την µαθηµατική γλώσσα, αλλά είναι αναγκαίες πολλές επεξηγήσεις πριν το νόηµα του θεωρήµατος γίνει καθαρό. Γι' αυτό και δεν θα προσπαθήσω να δώσω περισσότερα παραδείγµατα. Αυτά που έδωσα είναι ενδεικτικά, και ένας αναγνώστης που δεν µπορεί να τα εκτιµήσει, είναι απίθανο να εκτιµήσει ο,τιδήποτε στα Μαθηµατικά. Είπα ότι ένας µαθηµατικός είναι κατασκευαστής σχεδιασµάτων από ιδέες, και ότι η οµορφιά και η σοβαρότητα είναι τα κριτήρια µε τα οποία τα σχεδιάσµατα του θα έπρεπε να κριθούν. εν µπορώ να πιστέψω πως οποιοσδήποτε κατάλαβε τα δύο θεωρήµατα που έφερα ως παραδείγµατα, θα αµφισβητήσει ότι ικανοποιούν αυτά τα κριτήρια. Αν συγκρίνουµε τα δύο παραδείγµατα µε τις πιο έξυπνες σπαζοκεφαλιές του Dudeney, ή µε τα καλύτερα σκακιστικά προβλήµατα που οι µαιτρ του είδους έχουν συνθέσει, η ανωτερότητα τους και ως προς τις δύο πλευρές είναι εµφανής: υπάρχει µια σαφέστατη διαφορά επιπέδου. Είναι πολύ πιο σοβαρά και επίσης πολύ πιο όµορφα. Μπορούµε, άραγε, κοιτώντας τα προσεκτικότερα, να καθορίσουµε πού έγκειται η ανωτερότητα τους; ΚΑΤ' ΑΡΧΗΝ, Η ΑΝΩΤΕΡΟΤΗΤΑ των µαθηµατικών θεωρηµάτων ως προς την σοβαρότητα είναι προφανής και συντριπτική. Το σκακιστικό πρόβληµα είναι το προϊόν ενός ιδιοφυούς αλλά πολύ περιορισµένου πλέγµατος ιδεών, οι οποίες δεν διαφέρουν ουσιαστικά από το ένα πρόβληµα στο άλλο και ούτε έχουν εξωτερικές επιπτώσεις. Θα σκεφτόµασταν µε ακριβώς τον ίδιο τρόπο ακόµη κι αν το σκάκι δεν

4 είχε εφευρεθεί ποτέ, ενώ τα θεωρήµατα του Ευκλείδη και του Πυθαγόρα έχουν επηρεάσει βαθιά την σκέψη, και µάλιστα έξω από τον κύκλο των Μαθηµατικών. Έτσι, το θεώρηµα του Ευκλείδη είναι ζωτικής σηµασίας για όλη την δοµή της Αριθµητικής. Οι πρώτοι αριθµοί είναι το αρχικό υλικό µε το οποίο έχουµε οικοδοµήσει την αριθµητική, και το θεώρηµα του Ευκλείδη µάς εξασφαλίζει ότι έχουµε άφθονο υλικό γι' αυτό το σκοπό. Το θεώρηµα του Πυθαγόρα όµως έχει ευρύτερες εφαρµογές και προσφέρεται για µια καλύτερη παρουσίαση. Πρέπει να παρατηρήσουµε, κατ' αρχάς, ότι ο συλλογισµός µπορεί να επεκταθεί κατά πολύ, και µπορεί να εφαρµοστεί -µε µικρή αλλαγή στην βάση του- σε ευρύτατες κατηγορίες «αρρήτων». Με όµοιο τρόπο, είναι δυνατόν να αποδείξουµε (όπως φαίνεται ότι το έκανε ο Θεόδωρος) ότι οι: 3, 5, 7, 9, 11, 13 είναι άρρητοι, ή (πηγαίνοντας πιο πέρα κι απ' τον Θεόδωρο) ότι ο 3 2 και ο 3 17 είναι άρρητοι. [6] Το Θεώρηµα του Ευκλείδη µας λέει ότι έχουµε ένα ικανό απόθεµα υλικού για την κατασκευή µιας συγκροτηµένης αριθµητικής των ακεραίων αριθµών. Το Θεώρηµα του Πυθαγόρα και οι επεκτάσεις του µας λένε ότι, άπαξ και κατασκευάσθηκε αυτή η αριθµητική, δεν θα αποδειχτεί αρκετή για τις ανάγκες µας, αφού υπάρχουν πολλά µεγέθη τα οποία µας επιβάλλουν την παρουσία τους και τα οποία αυτή η αριθµητική είναι ανήµπορη να µετρήσει: η διαγώνιος του τετραγώνου είναι απλώς το πιο προφανές παράδειγµα. Η µεγάλη σπουδαιότητα αυτής της ανακάλυψης αναγνωρίστηκε αµέσως από τους Έλληνες µαθηµατικούς. Είχαν ξεκινήσει µε την υπόθεση ότι (σε συµφωνία, υποθέτω, µε τις «φυσικές» επιταγές της «κοινής λογικής») όλα τα µεγέθη του ίδιου είδους είναι σύµµετρα (ότι για παράδειγµα, δύο οποιαδήποτε µήκη είναι πολλαπλάσια κάποιας κοινής µονάδας µήκους), και είχαν κατασκευάσει µια θεωρία αναλογιών στηριγµένη σ' αυτή την υπόθεση. Η ανακάλυψη του Πυθαγόρα κατέδειξε το µη στέρεο της θεµελίωσης αυτής και οδήγησε στην κατασκευή της πολύ βαθύτερης θεωρίας του Ευδόξου που εκτίθεται στο πέµπτο βιβλίο των Στοιχείων και που θεωρείται από πολλούς σύγχρονους µαθηµατικούς ως το εξέχον επίτευγµα των ελληνικών Μαθηµατικών. Αυτή η θεωρία είναι εκπληκτικά σύγχρονη στο πνεύµα της, και µπορεί να θεωρηθεί ως η απαρχή της σηµερινής θεωρίας των αρρήτων αριθµών που έφερε επανάσταση στη Μαθηµατική Ανάλυση και είχε µεγάλη επίδραση στη φιλοσοφία του καιρού µας. εν υπάρχει καµία αµφιβολία, εποµένως, ως προς τη «σοβαρότητα» και των δύο θεωρηµάτων. Κατά συνέπεια, αξίζει περισσότερο απ' όλα να σηµειώσουµε ότι κανένα απ' αυτά δεν έχει την παραµικρή πρακτική σπουδαιότητα. Στις πρακτικές εφαρµογές ασχολούµαστε µόνο µε µικρούς συγκριτικά αριθµούς µόνο η Αστρονοµία και η Ατοµική Φυσική ασχολούνται µε µεγάλους αριθµούς και αυτές, επί τους παρόντος, έχουν πολύ µικρή πρακτική σηµασία σε σχέση µε τα αφηρηµένα και περισσότερο καθαρά Μαθηµατικά.36 εν γνωρίζω ποιος είναι ο πλέόν µεγάλος βαθµός ακριβείας που χρησίµευσε ποτέ σ' έναν µηχανικό - θα είµαστε πολύ γενναιόδωροι αν πούµε έως το δέκατο δεκαδικό ψηφίο. Τώρα, ο 3, (που είναι η τιµή του π µέχρι το ένατο δεκαδικό ψηφίο) είναι το πηλίκον:

5 δύο αριθµών µε δέκα ψηφία. Το πλήθος των πρώτων αριθµών µέχρι το είναι : αυτό είναι αρκετό για έναν µηχανικό ο οποίος µπορεί να αισθάνεται απολύτως ευτυχής χωρίς τους υπόλοιπους πρώτους. Αυτά όσον αφορά στο Θεώρηµα του Ευκλείδη σε σχέση µε εκείνο του Πυθαγόρα, είναι προφανές ότι οι άρρητοι δεν ενδιαφέρουν έναν µηχανικό, αφού αυτός ενδιαφέρεται µόνο για προσεγγίσεις και αφού όλες οι προσεγγίσεις είναι ρητές. 1. Στοιχεία IX 20. Η πραγµατική προέλευση πολλών θεωρηµάτων των Στοιχείων είναι οµιχλώδης, αλλά δεν υπάρχει κανένας ιδιαίτερος λόγος να υποθέσουµε ότι δεν είναι του ίδιου του Ευκλείδη. 2. Υπάρχουν τεχνικοί λόγοι για τους οποίους δεν µετράµε τον 1 ως πρώτοι. Η απόδειξη µπορεί να διευθετηθεί κατά τέτοιον τρόπο ώστε να αποφεύγει την απαγωγή, και οι Λογικοί ορισµένων σχολών θα το προτιµούσαν έτσι. 3. Γκαµπί: σκακιστικός όρος για τη θυσία κοµµατιού που επιφέρει εντούτοις πλεονέκτηµα. 4. Παραδοσιακά, η απόδειξη αποδίδεται στον Πυθαγόρα και σίγουρα είναι προϊόν της σχολής του. Το θεώρηµα εµφανίζεται σε µια πολύ πιο γενική µορφή στον Ευκλείδη (Στοιχεία Χ, 9). 5. Ευκλείδης, Στοιχεία Βλέπε Κεφ. IV των Hardy και Wright, Introduction to the Theory of Numbers {Εισαγωγή στη Θεωρία των Αριθµών), όπου υπάρχουν συζητήσεις γα διάφορες γενικεύσεις του συλλογισµοί του Πυθαγόρα, και ένας ιστορικός γρίφος για τον Θεόδωρο.

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης

Διαβάστε περισσότερα

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς Σημειώσεις Ανάλυσης Ι 1. Οι ρητοί αριθμοί Θεωρούμε γνωστούς τους φυσικούς αριθμούς 1, 2, 3, και τις πράξεις (πρόσθεση - πολλαπλασιασμό)μεταξύ αυτών. Οι φυσικοί αριθμοί είναι επίσης διατεταγμένοι με κάποια

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

Οι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών

Οι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών Οι Φυσικοί Αριθμοί Γνωρίζουμε ότι οι αριθμοί είναι ποσοτικές έννοιες και για να τους γράψουμε χρησιμοποιούμε τα αριθμητικά σύμβολα. Οι αριθμοί μετρούν συγκεκριμένα πράγματα και φανερώνουν το πλήθος της

Διαβάστε περισσότερα

Οι πραγµατικοί αριθµοί

Οι πραγµατικοί αριθµοί Οι πραγµατικοί αριθµοί Προλεγόµενα Η ανάγκη απαρίθµησης αντικειµένων, οδήγησε στην εισαγωγή του συνόλου των φυσικών αριθµών Η ανάγκη µέτρησης µεγεθών, οδήγησε στην εισαγωγή του συνόλου των ρητών αριθµών

Διαβάστε περισσότερα

Θεώρηµα: Z ( Απόδειξη: Περ. #1: Περ. #2: *1, *2: αποδεικνύονται εύκολα, διερευνώντας τις περιπτώσεις ο k να είναι άρτιος ή περιττός

Θεώρηµα: Z ( Απόδειξη: Περ. #1: Περ. #2: *1, *2: αποδεικνύονται εύκολα, διερευνώντας τις περιπτώσεις ο k να είναι άρτιος ή περιττός HY118- ιακριτά Μαθηµατικά Την προηγούµενη φορά Τρόποι απόδειξης Τρίτη, 07/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter,

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα...

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα... HY118- ιακριτά Μαθηµατικά Παρασκευή, 11/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/15/2016

Διαβάστε περισσότερα

Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα

Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα [ 1 ] Πανεπιστήµιο Κύπρου Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα Νικόλαος Στυλιανόπουλος Ηµερίδα Ιστορία των Μαθηµατικών Πανεπιστήµιο Κύπρου Νοέµβριος 2016 [ 2 ] Πανεπιστήµιο Κύπρου υσκολίες

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Αλέξανδρος Γ. Συγκελάκης 6 Απριλίου 2006 Περίληψη Θέµα της εργασίας αυτής, είναι η απόδειξη οτι η εξίσωση x 3 + y 3 = z 3 όπου xyz 0,

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 7 Οκτωβρίου 016 Ασκηση 1. Βρείτε όλους

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 07/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/7/2017

Διαβάστε περισσότερα

1 ο Γυµνάσιο Μελισσίων Λέσχη Ανάγνωσης ΤΡΙΧΟΤΟΜΗΣΗ ΓΩΝΙΑΣ. Η δική µας Εικασία

1 ο Γυµνάσιο Μελισσίων Λέσχη Ανάγνωσης ΤΡΙΧΟΤΟΜΗΣΗ ΓΩΝΙΑΣ. Η δική µας Εικασία 1 ο Γυµνάσιο Μελισσίων Λέσχη Ανάγνωσης ΤΡΙΧΟΤΟΜΗΣΗ ΓΩΝΙΑΣ Η δική µας Εικασία Οι αρχαίοι Έλληνες γνώριζαν να διχοτοµούν µια τυχαία γωνία µε χρήση κανόνα και διαβήτη, και, κατά συνέπεια, µπορούσαν να διαιρέσουν

Διαβάστε περισσότερα

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1) Κεφάλαιο 4 Ευθέα γινόµενα οµάδων Στο Παράδειγµα 1.1.2.11 ορίσαµε το ευθύ εξωτερικό γινόµενο G 1 G 2 G n των οµάδων G i, 1 i n. Στο κεφάλαιο αυτό ϑα ασχοληθούµε λεπτοµερέστερα µε τα ευθέα γινόµενα οµάδων

Διαβάστε περισσότερα

Υπερβατικοί Αριθµοί και Θεώρηµα του Liouville

Υπερβατικοί Αριθµοί και Θεώρηµα του Liouville Υπερβατικοί Αριθµοί και Θεώρηµα του Liouville Χρήστος Κονταράτος 14 Νοεµβρίου 2014 1 Περιεχόµενα 1 Εισαγωγή 3 2 Το Θεώρηµα του Liouville 4 3 Η Υπερβατικότητα του ξ 6 4 Αριθµοί του Liouville 8 2 1 Εισαγωγή

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, 5-10-13 Μ. Παπαδημητράκης. 1 Τώρα θα μιλήσουμε για την έννοια της περιοχής, η οποία έχει κεντρικό ρόλο στη μελέτη της έννοιας του ορίου (ακολουθίας και συνάρτησης). Αν > 0, ονομάζουμε

Διαβάστε περισσότερα

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457.

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457. 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο ξεκινάει από τη σελίδα κ και τελειώνει στη σελίδα λ, από πόσες

Διαβάστε περισσότερα

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β) Κεφάλαιο 3β Ελεύθερα Πρότυπα (µέρος β) Ο σκοπός µας εδώ είναι να αποδείξουµε το εξής σηµαντικό αποτέλεσµα. 3.3.6 Θεώρηµα Έστω R µια περιοχή κυρίων ιδεωδών, F ένα ελεύθερο R-πρότυπο τάξης s < και N F. Τότε

Διαβάστε περισσότερα

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος Περιγραφή μαθήματος Θεωρία Υπολογισμού Άρτιοι ΑΜ Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας (Θεωρία Αλγορίθμων). Διδάσκων: Σταύρος Κολλιόπουλος

Διαβάστε περισσότερα

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Θεωρία Υπολογισμού Άρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Περιγραφή μαθήματος Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας

Διαβάστε περισσότερα

Η Ευκλείδεια διαίρεση

Η Ευκλείδεια διαίρεση 1 Η Ευκλείδεια διαίρεση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Αποδεικνύεται ότι για οποιουσδήποτε ακέραιους α και β, β 0, ισχύει το παρακάτω θεώρηµα και διατυπώνεται ως εξής : Αν α και β ακέραιοι µε β

Διαβάστε περισσότερα

1 Υποθέσεις και Θεωρήµατα

1 Υποθέσεις και Θεωρήµατα Υποθέσεις και Θεωρήµατα Στο Λύκειο αλλά πολλές ϕορές και στο Πανεπιστήµιο τα µαθηµατικά µας παρουσιάζονται σαν έτοιµο προΐόν. Βλέπουµε συνήθως τη µια πλευρά των πραγµάτων, τη ϕωτεινή πλευρά όπου ϐρίσκονται

Διαβάστε περισσότερα

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Σχολή Ναυτικών οκίµων Ακ. Ετος 2018-2019 Εισαγωγικά Βασικοί Ορισµοί Πράξεις Γεγονότων Σχεδιάγραµµα της Υλης Βασικές Εννοιες της Θεωρίας Πιθανοτήτων

Διαβάστε περισσότερα

1. Να σημειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισμούς :

1. Να σημειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισμούς : ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ 1. Να σημειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισμούς : 1. Αν μια πρόταση Ρ(ν) αληθής για ν = 3 και με την υπόθεση ότι Ρ(ν) είναι αληθής αποδείξουμε ότι και η Ρ(ν+1)

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς

Διαβάστε περισσότερα

Mathematics and its Applications, 5th

Mathematics and its Applications, 5th Μαθηµατικα για Πληροφορικη Εφαρµογες και τεχνικες Ηλιας Κουτσουπιάς Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών Σχετικα µε το µαθηµα Σχετικα µε το µαθηµα Το µαθηµα πραγµατευεται καποια ϑεµατα

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο. Ασκήσεις

Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο. Ασκήσεις Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο Σηµειώσεις Προετοιµασίας για Μαθηµατικούς ιαγωνισµούς Ασκήσεις Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Νοέµβριος 2012 1 Ασκησεις στη Θεωρια Αριθµων 1 Μαθηµατική

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Να γνωρίζει: την αποδεικτική μέθοδο της μαθηματικής επαγωγής για την οποία πρέπει να γίνει κατανοητό ότι η αλήθεια

Διαβάστε περισσότερα

Ασαφής Λογική Παράδειγµα. Νίκος Καραδήµας

Ασαφής Λογική Παράδειγµα. Νίκος Καραδήµας Ασαφής Λογική Παράδειγµα Νίκος Καραδήµας Παράδειγµα Θα εξεταστεί το πρόβληµα του φιλοδωρήµατος: «Ποιο είναι το "σωστό" φιλοδώρηµα γιατονσερβιτόροµας;» Λαµβάνοντας υπόψη έναν αριθµό µεταξύ 0 και 10 που

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Επιπλέον Ασκήσεις. Μαθηµατική Επαγωγή. ιαιρετότητα. Προβλήµατα ιαιρετότητας.

Επιπλέον Ασκήσεις. Μαθηµατική Επαγωγή. ιαιρετότητα. Προβλήµατα ιαιρετότητας. Επιπλέον Ασκήσεις Μαθηµατική Επαγωγή Για κάθε n 1: 2 = n(n + 1(2n + 1 6 Ορέστης Τελέλης telels@unpgr Για κάθε n 1: 3 = n2 (n + 1 2 4 Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Για κάθε n 10: 2 n

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, 17-10-13 Μ. Παπαδημητράκης. 1 Την προηγούμενη φορά αναφέραμε (και αποδείξαμε στην περίπτωση n = 2) το θεώρημα που λέει ότι, αν n N, n 2, τότε για κάθε y 0 υπάρχει μοναδική μηαρνητική

Διαβάστε περισσότερα

Κεφάλαιο 8. Η οµάδα S n. 8.1 Βασικές ιδιότητες της S n

Κεφάλαιο 8. Η οµάδα S n. 8.1 Βασικές ιδιότητες της S n Κεφάλαιο 8 Η οµάδα S n Στο κεφάλαιο αυτό ϑα µελετήσουµε την οµάδα µεταθέσεων ή συµµετρική οµάδα S n εφαρµόζοντας τη ϑεωρία που αναπτύχθηκε στα προηγούµενα κε- ϕάλαια. Η σηµαντικότητα της S n εµφανίστηκε

Διαβάστε περισσότερα

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Μαθηµατική Επαγωγή Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Επαγωγή 1 / 20 Επιπλέον Ασκήσεις Για κάθε n 1: n i 2 = n(n + 1)(2n

Διαβάστε περισσότερα

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε 1. Να αποδειχθεί ότι κάθε ϑετικός ακέραιος αριθµός n 6, µπορεί να γραφεί στη µορφή όπου οι a, b, c είναι ϑετικοί ακέραιοι. n = a + b c,. Να αποδειχθεί ότι για κάθε ακέραιο

Διαβάστε περισσότερα

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι. 1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

Θέµατα και απαντήσεις 1 στα «Σύνολα και Αριθµοί» Εξεταστική Ιανουαρίου 2012 ιδάξας Χ. Κορνάρος.

Θέµατα και απαντήσεις 1 στα «Σύνολα και Αριθµοί» Εξεταστική Ιανουαρίου 2012 ιδάξας Χ. Κορνάρος. Πανεπιστηµιο Αιγαιου Τµηµα Μαθηµατικων 8 200 Καρλοβασι Σαµος Καρλόβασι 09/02/2012 Θέµατα και απαντήσεις 1 στα «Σύνολα και Αριθµοί» Εξεταστική Ιανουαρίου 2012 ιδάξας Χ. Κορνάρος. 1. Απαντήστε µε α(αλήθεια)

Διαβάστε περισσότερα

Ευρωπαίοι μαθηματικοί απέδειξαν έπειτα από 40 χρόνια τη θεωρία περί της ύπαρξης του Θεού του Γκέντελ με τη βοήθεια ηλεκτρονικού υπολογιστή

Ευρωπαίοι μαθηματικοί απέδειξαν έπειτα από 40 χρόνια τη θεωρία περί της ύπαρξης του Θεού του Γκέντελ με τη βοήθεια ηλεκτρονικού υπολογιστή Ευρωπαίοι μαθηματικοί απέδειξαν έπειτα από 40 χρόνια τη θεωρία περί της ύπαρξης του Θεού του Γκέντελ με τη βοήθεια ηλεκτρονικού υπολογιστή Καθηγητή Χάρη Βάρβογλη 1 / 6 Υπάρχει Θεός; Το ερώτημα αυτό απασχολεί

Διαβάστε περισσότερα

Σχόλιο. Παρατηρήσεις. Παρατηρήσεις. p q p. , p1 p2

Σχόλιο. Παρατηρήσεις. Παρατηρήσεις. p q p. , p1 p2 A. ΠΡΟΤΑΣΕΙΣ Στα Μαθηµατικά χρησιµοποιούµε προτάσεις οι οποίες µπορούν να χαρακτηριστούν ως αληθείς (α) ή ψευδείς (ψ). Τις προτάσεις συµβολίζουµε µε τα τελευταία µικρά γράµµατα του Λατινικού αλφαβήτου:

Διαβάστε περισσότερα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 5 Ιδιοτιµές και Ιδιοδιανύσµατα 5 Ιδιοτιµές και Ιδιοδιανύσµατα Αν ο A είναι ένας n n πίνακας και το x είναι ένα διάνυσµα στον R n, τότε το Ax είναι και αυτό ένα διάνυσµα στον R n Συνήθως δεν υπάρχει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί. q Z, a = b q + r.

2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί. q Z, a = b q + r. Κεφάλαιο 2 Θεωρία Αριθμών Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Hardy and Wright 1979 και Graham, Knuth, and Patashnik 1994. 2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί Θεώρημα 2.1 Αν

Διαβάστε περισσότερα

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44.

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44. ΤΕΧΝΙΚΕΣ ΚΑΤΑΜΕΤΡΗΣΗΣ Η καταµετρηση ενος συνολου µε πεπερασµενα στοιχεια ειναι ισως η πιο παλια µαθηµατικη ασχολια του ανθρωπου. Θα µαθουµε πως, δεδοµενης της περιγραφης ενος συνολου, να µπορουµε να ϐρουµε

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Το σύνολο των πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α)

Διαβάστε περισσότερα

Θεωρια Αριθµων Προβληµατα

Θεωρια Αριθµων Προβληµατα Θεωρια Αριθµων Προβληµατα Μιχάλης Κολουντζάκης Τµήµα Μαθηµατικών και Εφαρµοσµένων Μαθηµατικών Πανεπιστήµιο Κρήτης Βούτες 700 3 Ηράκλειο 6 Απριλίου 205 Πολλές από τις παρακάτω ασκήσεις είναι από το ϐιβλίο

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ)

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ) 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή

HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή Επαγωγή HY8- ιακριτά Μαθηµατικά Τρίτη, /03/06 Μαθηµατική Επαγωγή Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω

Διαβάστε περισσότερα

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ 174 46 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ Εισαγωγή Ένα από τα αρχαιότερα προβλήματα της Θεωρίας Αριθμών είναι η αναζήτηση των ακέραιων αριθμών που ικανοποιούν κάποιες δεδομένες σχέσεις Με σύγχρονη ορολογία

Διαβάστε περισσότερα

x 2 + y 2 = z 2 x = 3, y = 4, z = 5 x 2 + y 2 = z 2 (2.1)

x 2 + y 2 = z 2 x = 3, y = 4, z = 5 x 2 + y 2 = z 2 (2.1) Πυθαγόρειες Τριάδες Χριστίνα Ιατράκη Ημερομηνία παράδοσης -10-014 1 Εισαγωγικά Ορισμός 1.1 Πυθαγόρεια τριάδα καλείται κάθε τριάδα ακέραιων (x, y, z) που είναι μη τετριμμένη λύση της εξίσωσης Μια τέτοια

Διαβάστε περισσότερα

Κεφάλαιο 6. Πεπερασµένα παραγόµενες αβελιανές οµάδες. Z 4 = 1 και Z 2 Z 2.

Κεφάλαιο 6. Πεπερασµένα παραγόµενες αβελιανές οµάδες. Z 4 = 1 και Z 2 Z 2. Κεφάλαιο 6 Πεπερασµένα παραγόµενες αβελιανές οµάδες Στο κεφάλαιο αυτό ϑα ταξινοµήσουµε τις πεπερασµένα παραγόµενες αβελιανές οµάδες. Αυτές οι οµάδες είναι από τις λίγες περιπτώσεις οµάδων µε µία συγκεκριµένη

Διαβάστε περισσότερα

(GNU-Linux, FreeBSD, MacOsX, QNX

(GNU-Linux, FreeBSD, MacOsX, QNX 1.7 διαταξεις (σελ. 17) Παράδειγµα 1 Θα πρέπει να κάνουµε σαφές ότι η επιλογή των λέξεων «προηγείται» και «έπεται» δεν έγινε απλώς για λόγους αφαίρεσης. Μπορούµε δηλαδή να ϐρούµε διάφορα παραδείγµατα στα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΡΧΗ ΤΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΑΓΩΓΗΣ

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΡΧΗ ΤΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΑΓΩΓΗΣ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ - 11 - ΚΕΦΑΛΑΙΟ 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΡΧΗ ΤΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΑΓΩΓΗΣ Έστω Ρ(ν) ένας ισχυρισµός, ο οποίος αναφέρεται στους θετικούς ακέραιους Αν: i) o ισχυρισµός είναι αληθής για τον ακέραιο 1,

Διαβάστε περισσότερα

Δραστηριότητα για τους µαθητές µε το κόσκινο του Ερατοσθένη:.. (και άσκηση 10 σελ. 219 «Η φύση και η δύναµη των µαθηµατικών»)

Δραστηριότητα για τους µαθητές µε το κόσκινο του Ερατοσθένη:.. (και άσκηση 10 σελ. 219 «Η φύση και η δύναµη των µαθηµατικών») Πρώτοι αριθµοί: Τι µας λέει στο βιβλίο (σελ.25-26): 1. Μου αρέσουν οι πρώτοι αριθµοί, γι αυτό αρίθµησα µε πρώτους τα κεφάλαια. Οι πρώτοι αριθµοί είναι αυτό που αποµένει όταν αφαιρέσεις όλα τα στερεότυπα

Διαβάστε περισσότερα

Αριθµοί Liouville. Ιωάννης Μπαρµπαγιάννης

Αριθµοί Liouville. Ιωάννης Μπαρµπαγιάννης Αριθµοί Liouville Ιωάννης Μπαρµπαγιάννης Εισαγωγή Η ϑεωρία των υπερβατικών αριθµών έχει ως αφετηρία µια ϕηµισµένη εργασία του Liouville, το 844, ο οποίος περιέγραψε µια κλάση πραγµατικών αριθµών οι οποίοι

Διαβάστε περισσότερα

Άλγεβρα Α Λυκείου Κεφάλαιο 2ο. οι πράξεις και οι ιδιότητές τους

Άλγεβρα Α Λυκείου Κεφάλαιο 2ο. οι πράξεις και οι ιδιότητές τους οι πράξεις και οι ιδιότητές τους Μερικές ακόμη ταυτότητες (επιπλέον από τις αξιοσημείωτες που βρίσκονται στο σχολικό βιβλίο) ) Διαφορά δυνάμεων με ίδιο εκθέτη: ειδικά αν ο εκθέτης ν είναι άρτιος υπάρχει

Διαβάστε περισσότερα

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση 8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 9 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ...11 1.1 Βασικές θεωρητικές γνώσεις... 11 1.. Λυμένα προβλήματα... 19 1. Προβλήματα προς λύση... 4 1.4 Απαντήσεις προβλημάτων Πραγματικοί αριθμοί... 0 ΑΚΟΛΟΥΘΙΕΣ

Διαβάστε περισσότερα

Ο Σέρλοκ Χόλμς, η εις άτοπο απαγωγή και οι απαρχές του internet.

Ο Σέρλοκ Χόλμς, η εις άτοπο απαγωγή και οι απαρχές του internet. Λέσχη Ανάγνωσης Γενικού Λυκείου Σαντορίνης Σχολικό έτος 2011-2012 Ο Σέρλοκ Χόλμς, η εις άτοπο απαγωγή και οι απαρχές του internet. Γιάννης Παπόγλου Το σμαραγδένιο στέμμα Σύµφωνα µε ένα παλιό µου ρητό,

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 13 Μαρτίου 2013 Ασκηση 1. Αφού ϐρείτε την

Διαβάστε περισσότερα

Μαθηµατικά για Πληροφορική

Μαθηµατικά για Πληροφορική Μαθηµατικά για Πληροφορική 1ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 2/10/08 2/10/08 1 / 1 Γενικό πλάνο 1 Σχετικά µε το µάθηµα 2 Υποθεσεις -

Διαβάστε περισσότερα

Άρρητοι αριθµοί: Προαγγελία της πρώτης κρίσης

Άρρητοι αριθµοί: Προαγγελία της πρώτης κρίσης Άρρητοι αριθµοί: Προαγγελία της πρώτης κρίσης Οι πρώτοι αριθµοί µε τους οποίους ερχόµαστε σε επαφή στα πρώτα παιδικά µας χρόνια είναι οι λεγόµενοι φυσικοί ή θετικοί ακέραιοι αριθµοί 1, 2, 3,... Αυτοί οι

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΠΡΩΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΠΡΩΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ ΕΙΚΟΣΤΟ ΠΡΩΤΟ ΜΑΘΗΜΑ, --3 Μ. Παπαδημητράκης. Τώρα θα δούμε μια ακόμη εφαρμογή του Κριτηρίου του Ολοκληρώματος. Παράδειγμα. Γνωρίζουμε ότι η αρμονική σειρά αποκλίνει στο +, το οποίο φυσικά σημαίνει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία

Διαβάστε περισσότερα

με μ,ν ακέραιους και ν 0 και δημιουργήθηκε το σύνολο Q ( ρητοί). Το σύνολο Ζ επεκτάθηκε με την προσθήκη αριθμών της τύπου

με μ,ν ακέραιους και ν 0 και δημιουργήθηκε το σύνολο Q ( ρητοί). Το σύνολο Ζ επεκτάθηκε με την προσθήκη αριθμών της τύπου ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΠΡΑΓΜΑΤΙΚΟΥΣ ΚΑΙ ΣΤΟ ΜΑΘΗΜΑΤΙΚΟ ΛΟΓΙΣΜΟ Η ΑΛΓΕΒΡΑ ασχολείται με τους αριθμούς και τις μεταξύ τους σχέσεις Οι φυσικοί αριθμοί (συμβολίζονται με το γράμμα Ν) Ν={ 1,,3 }επινοήθηκαν από τον

Διαβάστε περισσότερα

ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ

ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 4. ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΤH Α. ΘΕΩΡΙΑ ΜΕΘΟ ΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ Εάν ζητείται να δειχθεί ισότητα ή ανίσωση

Διαβάστε περισσότερα

Δυναμική ενέργεια στο βαρυτικό πεδίο. Θετική ή αρνητική;

Δυναμική ενέργεια στο βαρυτικό πεδίο. Θετική ή αρνητική; ράφει το σχολικό βιβλίο: Δυναμική ενέργεια στο βαρυτικό πεδίο. Θετική ή αρνητική; Μια πρώτη ένσταση θα µπορούσε να διατυπωθεί, για την απουσία της δυναµικής ενέργειας από τον παραπάνω ορισµό. ιατί να µην

Διαβάστε περισσότερα

P (A) = 1/2, P (B) = 1/2, P (C) = 1/9

P (A) = 1/2, P (B) = 1/2, P (C) = 1/9 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-1: Πιθανότητες - Χειµερινό Εξάµηνο 011 ιδάσκων : Π. Τσακαλίδης Λύσεις εύτερης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : /11/011 Ηµεροµηνία Παράδοσης : 1/11/011

Διαβάστε περισσότερα

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί Αριθμήσιμα σύνολα Μαθηματικά Πληροφορικής 5ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Ορισμός Πόσα στοιχεία έχει το σύνολο {a, b, r, q, x}; Οσα και το σύνολο {,,, 4, 5} που είναι

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 8 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi07/asi07.html Παρασκευή 9 Μαίου 07 Για κάθε µετάθεση

Διαβάστε περισσότερα

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]} 7 ΙΙΙ Ολοκληρωτικός Λογισµός πολλών µεταβλητών Βασικές έννοιες στη µια µεταβλητή Έστω f :[ ] φραγµένη συνάρτηση ( Ρ = { t = < < t = } είναι διαµέριση του [ ] 0 ( Ρ ) = Μ ( ) όπου sup f ( t) : t [ t t]

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: Εισαγωγικές Εννοιες Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

2 Αποδείξεις. 2.1 Εξαντλητική µέθοδος. Εκδοση 2005/03/22. Υπάρχουν πολλών ειδών αποδείξεις. Εδώ ϑα δούµε τις πιο κοινές:

2 Αποδείξεις. 2.1 Εξαντλητική µέθοδος. Εκδοση 2005/03/22. Υπάρχουν πολλών ειδών αποδείξεις. Εδώ ϑα δούµε τις πιο κοινές: 2 Αποδείξεις Υπάρχουν πολλών ειδών αποδείξεις. Εδώ ϑα δούµε τις πιο κοινές: Εκδοση 2005/03/22 Εξαντλητική µέθοδος ή µέθοδος επισκόπησης. Οταν το πρόβληµα έχει πεπερασµένες αριθµό περιπτώσεων τις εξετάζουµε

Διαβάστε περισσότερα

a 1d L(A) = {m 1 a m d a d : m i Z} a 11 a A = M B, B = N A, k=1

a 1d L(A) = {m 1 a m d a d : m i Z} a 11 a A = M B, B = N A, k=1 Α44 ΚΡΥΠΤΟΓΡΑΦΙΑ ΣΗΜΕΙΩΣΕΙΣ #12 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ 1 Πλεγµατα Εστω ο διανυσµατικός χώρος R d διάστασης d Ο χώρος R d έρχεται µε ένα εσωτερικό γινόµενο x, y = d i=1 x iy i και τη σχετική νόρµα x = x,

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Πέμπτη, 01/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 02-Mar-18

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Παρασκευή, 11/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/15/2016

Διαβάστε περισσότερα

Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA. Κασαπίδης Γεώργιος -Μαθηµατικός

Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA. Κασαπίδης Γεώργιος -Μαθηµατικός Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA Τον Απρίλιο του 977 οι Ρόναλντ Ρίβεστ, Άντι Σαµίρ και Λέοναρντ Άντλεµαν, ερευνητές στο Ινστιτούτο Τεχνολογίας της Μασσαχουσέτης (ΜΙΤ) µετά από ένα χρόνο προσπαθειών

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 3 Νοεµβρίου 2016 Ασκηση 1. Αφού ϐρείτε

Διαβάστε περισσότερα

3 ΙΣΟΡΡΟΠΙΕΣ 3 ΙΣΟΡΡΟΠΙΕΣ

3 ΙΣΟΡΡΟΠΙΕΣ 3 ΙΣΟΡΡΟΠΙΕΣ Kεφάλαιο 11 Θα επαναλάβουµε αυτά που είχαµε πει την προηγούµενη φορά. Παραστατικά αν έχουµε το εξής παίγνιο όπου οι δύο παίχτες παίρνουν ταυτόχρονα τις αποφάσεις τους αφού αποφασίσει ο Ι, θα δούµε πόσα

Διαβάστε περισσότερα

Φ(s(n)) = s (Φ(n)). (i) Φ(1) = a.

Φ(s(n)) = s (Φ(n)). (i) Φ(1) = a. 1. Τα θεμελιώδη αριθμητικά συστήματα Με τον όρο θεμελιώδη αριθμητικά συστήματα εννοούμε τα σύνολα N των φυσικών αριθμών, Z των ακεραίων, Q των ρητών και R των πραγματικών. Από αυτά, το σύνολο N είναι πρωτογενές

Διαβάστε περισσότερα

Κατακερματισμός (Hashing)

Κατακερματισμός (Hashing) Κατακερματισμός (Hashing) O κατακερματισμός είναι μια τεχνική οργάνωσης ενός αρχείου. Είναι αρκετά δημοφιλής μέθοδος για την οργάνωση αρχείων Βάσεων Δεδομένων, καθώς βοηθάει σημαντικά στην γρήγορη αναζήτηση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού Σύµφωνα µε την Υ.Α. 139606/Γ2/01-10-2013 Άλγεβρα Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΛ Ι. ιδακτέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 2013) Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.1

Διαβάστε περισσότερα

Α ΛΥΚΕΙΟΥ. Άσκηση 3. Να λυθεί η εξίσωση: 2(x 1) x 2. 4 x (1). Λύση. Έχουμε, για κάθε x D : x 5 12x. 2x 1 6 (1) x 4. . Συνεπώς: D.

Α ΛΥΚΕΙΟΥ. Άσκηση 3. Να λυθεί η εξίσωση: 2(x 1) x 2. 4 x (1). Λύση. Έχουμε, για κάθε x D : x 5 12x. 2x 1 6 (1) x 4. . Συνεπώς: D. Α ΛΥΚΕΙΟΥ ΕΥΚΛΕΙΔΗΣ Β 77 τ/8 Αλγεβρα Α Λυκείου ΕΞΙΣΩΣΕΙΣ ΑΝΙΣΩΣΕΙΣ Αντώνης Κυριακόπουλος - Θανάσης Μαλαφέκας Επιμέλεια: Χρήστος Λαζαρίδης, Χρήστος Τσιφάκης Στα επόμενα, με D θα συμβολίζουμε το σύνολο ορισμού

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 02/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/2/2017

Διαβάστε περισσότερα

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων - Λύσεις

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων - Λύσεις ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2018 3 η Σειρά Ασκήσεων - Λύσεις Άσκηση 3.1 [1 μονάδα] Έστω Α={1,2,3,{1,3},4,{5,6}}. Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λάθος; i. {5,6} Α vi.

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/4/2016

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής

Ερωτήσεις πολλαπλής επιλογής Ερωτήσεις πολλαπλής επιλογής 1. * Η µέθοδος της µαθηµατικής επαγωγής χρησιµοποιείται για την απόδειξη προτάσεων Ρ (ν), όταν Α. ν R Β. ν Q Γ. ν R*. ν N Ε. κανένα από τα προηγούµενα 2. * Για τους ακεραίους

Διαβάστε περισσότερα

* * * ( ) mod p = (a p 1. 2 ) mod p.

* * * ( ) mod p = (a p 1. 2 ) mod p. Θεωρια Αριθμων Εαρινο Εξαμηνο 2016 17 Μέρος Α: Πρώτοι Αριθμοί Διάλεξη 1 Ενότητα 1. Διαιρετότητα: Διαιρετότητα, διαιρέτες, πολλαπλάσια, στοιχειώδεις ιδιότητες. Γραμμικοί Συνδυασμοί (ΓΣ). Ενότητα 2. Πρώτοι

Διαβάστε περισσότερα

Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Στα μαθηματικά και στις άλλες επιστήμες κάνουμε συχνά υποθέσεις. Οταν δείξουμε ότι μια υπόθεση είναι αλη

Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Στα μαθηματικά και στις άλλες επιστήμες κάνουμε συχνά υποθέσεις. Οταν δείξουμε ότι μια υπόθεση είναι αλη Υποθέσεις - - Θεωρήματα Μαθηματικά Πληροφορικής 1ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Στα μαθηματικά και στις άλλες επιστήμες

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 15 Μαΐου 2013 Ασκηση 1. Εστω n 3 ακέραιος.

Διαβάστε περισσότερα

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π.

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π. Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, 1.000 δέντρα κ.λ.π. Εκτός από πλήθος οι αριθμοί αυτοί μπορούν να δηλώσουν και τη θέση

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 8 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi06/asi06.html Πέµπτη Απριλίου 06 Ασκηση. Θεωρούµε τα

Διαβάστε περισσότερα